Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thierry Reding | 17572 | 99.42% | 53 | 85.48% |
Tomeu Vizoso | 45 | 0.25% | 1 | 1.61% |
Jon Hunter | 40 | 0.23% | 1 | 1.61% |
Ville Syrjälä | 9 | 0.05% | 2 | 3.23% |
Dan Carpenter | 2 | 0.01% | 1 | 1.61% |
Thomas Gleixner | 2 | 0.01% | 1 | 1.61% |
Andrew Morton | 2 | 0.01% | 1 | 1.61% |
Shashank Sharma | 1 | 0.01% | 1 | 1.61% |
Daniel Vetter | 1 | 0.01% | 1 | 1.61% |
Total | 17674 | 62 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2013 NVIDIA Corporation */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/debugfs.h> #include <linux/gpio.h> #include <linux/io.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <soc/tegra/pmc.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_dp_helper.h> #include <drm/drm_panel.h> #include <drm/drm_scdc_helper.h> #include "dc.h" #include "drm.h" #include "hda.h" #include "sor.h" #include "trace.h" #define SOR_REKEY 0x38 struct tegra_sor_hdmi_settings { unsigned long frequency; u8 vcocap; u8 filter; u8 ichpmp; u8 loadadj; u8 tmds_termadj; u8 tx_pu_value; u8 bg_temp_coef; u8 bg_vref_level; u8 avdd10_level; u8 avdd14_level; u8 sparepll; u8 drive_current[4]; u8 preemphasis[4]; }; #if 1 static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = { { .frequency = 54000000, .vcocap = 0x0, .filter = 0x0, .ichpmp = 0x1, .loadadj = 0x3, .tmds_termadj = 0x9, .tx_pu_value = 0x10, .bg_temp_coef = 0x3, .bg_vref_level = 0x8, .avdd10_level = 0x4, .avdd14_level = 0x4, .sparepll = 0x0, .drive_current = { 0x33, 0x3a, 0x3a, 0x3a }, .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, }, { .frequency = 75000000, .vcocap = 0x3, .filter = 0x0, .ichpmp = 0x1, .loadadj = 0x3, .tmds_termadj = 0x9, .tx_pu_value = 0x40, .bg_temp_coef = 0x3, .bg_vref_level = 0x8, .avdd10_level = 0x4, .avdd14_level = 0x4, .sparepll = 0x0, .drive_current = { 0x33, 0x3a, 0x3a, 0x3a }, .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, }, { .frequency = 150000000, .vcocap = 0x3, .filter = 0x0, .ichpmp = 0x1, .loadadj = 0x3, .tmds_termadj = 0x9, .tx_pu_value = 0x66, .bg_temp_coef = 0x3, .bg_vref_level = 0x8, .avdd10_level = 0x4, .avdd14_level = 0x4, .sparepll = 0x0, .drive_current = { 0x33, 0x3a, 0x3a, 0x3a }, .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, }, { .frequency = 300000000, .vcocap = 0x3, .filter = 0x0, .ichpmp = 0x1, .loadadj = 0x3, .tmds_termadj = 0x9, .tx_pu_value = 0x66, .bg_temp_coef = 0x3, .bg_vref_level = 0xa, .avdd10_level = 0x4, .avdd14_level = 0x4, .sparepll = 0x0, .drive_current = { 0x33, 0x3f, 0x3f, 0x3f }, .preemphasis = { 0x00, 0x17, 0x17, 0x17 }, }, { .frequency = 600000000, .vcocap = 0x3, .filter = 0x0, .ichpmp = 0x1, .loadadj = 0x3, .tmds_termadj = 0x9, .tx_pu_value = 0x66, .bg_temp_coef = 0x3, .bg_vref_level = 0x8, .avdd10_level = 0x4, .avdd14_level = 0x4, .sparepll = 0x0, .drive_current = { 0x33, 0x3f, 0x3f, 0x3f }, .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, }, }; #else static const struct tegra_sor_hdmi_settings tegra210_sor_hdmi_defaults[] = { { .frequency = 75000000, .vcocap = 0x3, .filter = 0x0, .ichpmp = 0x1, .loadadj = 0x3, .tmds_termadj = 0x9, .tx_pu_value = 0x40, .bg_temp_coef = 0x3, .bg_vref_level = 0x8, .avdd10_level = 0x4, .avdd14_level = 0x4, .sparepll = 0x0, .drive_current = { 0x29, 0x29, 0x29, 0x29 }, .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, }, { .frequency = 150000000, .vcocap = 0x3, .filter = 0x0, .ichpmp = 0x1, .loadadj = 0x3, .tmds_termadj = 0x9, .tx_pu_value = 0x66, .bg_temp_coef = 0x3, .bg_vref_level = 0x8, .avdd10_level = 0x4, .avdd14_level = 0x4, .sparepll = 0x0, .drive_current = { 0x30, 0x37, 0x37, 0x37 }, .preemphasis = { 0x01, 0x02, 0x02, 0x02 }, }, { .frequency = 300000000, .vcocap = 0x3, .filter = 0x0, .ichpmp = 0x6, .loadadj = 0x3, .tmds_termadj = 0x9, .tx_pu_value = 0x66, .bg_temp_coef = 0x3, .bg_vref_level = 0xf, .avdd10_level = 0x4, .avdd14_level = 0x4, .sparepll = 0x0, .drive_current = { 0x30, 0x37, 0x37, 0x37 }, .preemphasis = { 0x10, 0x3e, 0x3e, 0x3e }, }, { .frequency = 600000000, .vcocap = 0x3, .filter = 0x0, .ichpmp = 0xa, .loadadj = 0x3, .tmds_termadj = 0xb, .tx_pu_value = 0x66, .bg_temp_coef = 0x3, .bg_vref_level = 0xe, .avdd10_level = 0x4, .avdd14_level = 0x4, .sparepll = 0x0, .drive_current = { 0x35, 0x3e, 0x3e, 0x3e }, .preemphasis = { 0x02, 0x3f, 0x3f, 0x3f }, }, }; #endif static const struct tegra_sor_hdmi_settings tegra186_sor_hdmi_defaults[] = { { .frequency = 54000000, .vcocap = 0, .filter = 5, .ichpmp = 5, .loadadj = 3, .tmds_termadj = 0xf, .tx_pu_value = 0, .bg_temp_coef = 3, .bg_vref_level = 8, .avdd10_level = 4, .avdd14_level = 4, .sparepll = 0x54, .drive_current = { 0x3a, 0x3a, 0x3a, 0x33 }, .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, }, { .frequency = 75000000, .vcocap = 1, .filter = 5, .ichpmp = 5, .loadadj = 3, .tmds_termadj = 0xf, .tx_pu_value = 0, .bg_temp_coef = 3, .bg_vref_level = 8, .avdd10_level = 4, .avdd14_level = 4, .sparepll = 0x44, .drive_current = { 0x3a, 0x3a, 0x3a, 0x33 }, .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, }, { .frequency = 150000000, .vcocap = 3, .filter = 5, .ichpmp = 5, .loadadj = 3, .tmds_termadj = 15, .tx_pu_value = 0x66 /* 0 */, .bg_temp_coef = 3, .bg_vref_level = 8, .avdd10_level = 4, .avdd14_level = 4, .sparepll = 0x00, /* 0x34 */ .drive_current = { 0x3a, 0x3a, 0x3a, 0x37 }, .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, }, { .frequency = 300000000, .vcocap = 3, .filter = 5, .ichpmp = 5, .loadadj = 3, .tmds_termadj = 15, .tx_pu_value = 64, .bg_temp_coef = 3, .bg_vref_level = 8, .avdd10_level = 4, .avdd14_level = 4, .sparepll = 0x34, .drive_current = { 0x3d, 0x3d, 0x3d, 0x33 }, .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, }, { .frequency = 600000000, .vcocap = 3, .filter = 5, .ichpmp = 5, .loadadj = 3, .tmds_termadj = 12, .tx_pu_value = 96, .bg_temp_coef = 3, .bg_vref_level = 8, .avdd10_level = 4, .avdd14_level = 4, .sparepll = 0x34, .drive_current = { 0x3d, 0x3d, 0x3d, 0x33 }, .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, } }; static const struct tegra_sor_hdmi_settings tegra194_sor_hdmi_defaults[] = { { .frequency = 54000000, .vcocap = 0, .filter = 5, .ichpmp = 5, .loadadj = 3, .tmds_termadj = 0xf, .tx_pu_value = 0, .bg_temp_coef = 3, .bg_vref_level = 8, .avdd10_level = 4, .avdd14_level = 4, .sparepll = 0x54, .drive_current = { 0x3a, 0x3a, 0x3a, 0x33 }, .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, }, { .frequency = 75000000, .vcocap = 1, .filter = 5, .ichpmp = 5, .loadadj = 3, .tmds_termadj = 0xf, .tx_pu_value = 0, .bg_temp_coef = 3, .bg_vref_level = 8, .avdd10_level = 4, .avdd14_level = 4, .sparepll = 0x44, .drive_current = { 0x3a, 0x3a, 0x3a, 0x33 }, .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, }, { .frequency = 150000000, .vcocap = 3, .filter = 5, .ichpmp = 5, .loadadj = 3, .tmds_termadj = 15, .tx_pu_value = 0x66 /* 0 */, .bg_temp_coef = 3, .bg_vref_level = 8, .avdd10_level = 4, .avdd14_level = 4, .sparepll = 0x00, /* 0x34 */ .drive_current = { 0x3a, 0x3a, 0x3a, 0x37 }, .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, }, { .frequency = 300000000, .vcocap = 3, .filter = 5, .ichpmp = 5, .loadadj = 3, .tmds_termadj = 15, .tx_pu_value = 64, .bg_temp_coef = 3, .bg_vref_level = 8, .avdd10_level = 4, .avdd14_level = 4, .sparepll = 0x34, .drive_current = { 0x3d, 0x3d, 0x3d, 0x33 }, .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, }, { .frequency = 600000000, .vcocap = 3, .filter = 5, .ichpmp = 5, .loadadj = 3, .tmds_termadj = 12, .tx_pu_value = 96, .bg_temp_coef = 3, .bg_vref_level = 8, .avdd10_level = 4, .avdd14_level = 4, .sparepll = 0x34, .drive_current = { 0x3d, 0x3d, 0x3d, 0x33 }, .preemphasis = { 0x00, 0x00, 0x00, 0x00 }, } }; struct tegra_sor_regs { unsigned int head_state0; unsigned int head_state1; unsigned int head_state2; unsigned int head_state3; unsigned int head_state4; unsigned int head_state5; unsigned int pll0; unsigned int pll1; unsigned int pll2; unsigned int pll3; unsigned int dp_padctl0; unsigned int dp_padctl2; }; struct tegra_sor_soc { bool supports_edp; bool supports_lvds; bool supports_hdmi; bool supports_dp; const struct tegra_sor_regs *regs; bool has_nvdisplay; const struct tegra_sor_hdmi_settings *settings; unsigned int num_settings; const u8 *xbar_cfg; }; struct tegra_sor; struct tegra_sor_ops { const char *name; int (*probe)(struct tegra_sor *sor); int (*remove)(struct tegra_sor *sor); }; struct tegra_sor { struct host1x_client client; struct tegra_output output; struct device *dev; const struct tegra_sor_soc *soc; void __iomem *regs; unsigned int index; unsigned int irq; struct reset_control *rst; struct clk *clk_parent; struct clk *clk_safe; struct clk *clk_out; struct clk *clk_pad; struct clk *clk_dp; struct clk *clk; u8 xbar_cfg[5]; struct drm_dp_aux *aux; struct drm_info_list *debugfs_files; const struct tegra_sor_ops *ops; enum tegra_io_pad pad; /* for HDMI 2.0 */ struct tegra_sor_hdmi_settings *settings; unsigned int num_settings; struct regulator *avdd_io_supply; struct regulator *vdd_pll_supply; struct regulator *hdmi_supply; struct delayed_work scdc; bool scdc_enabled; struct tegra_hda_format format; }; struct tegra_sor_state { struct drm_connector_state base; unsigned int link_speed; unsigned long pclk; unsigned int bpc; }; static inline struct tegra_sor_state * to_sor_state(struct drm_connector_state *state) { return container_of(state, struct tegra_sor_state, base); } struct tegra_sor_config { u32 bits_per_pixel; u32 active_polarity; u32 active_count; u32 tu_size; u32 active_frac; u32 watermark; u32 hblank_symbols; u32 vblank_symbols; }; static inline struct tegra_sor * host1x_client_to_sor(struct host1x_client *client) { return container_of(client, struct tegra_sor, client); } static inline struct tegra_sor *to_sor(struct tegra_output *output) { return container_of(output, struct tegra_sor, output); } static inline u32 tegra_sor_readl(struct tegra_sor *sor, unsigned int offset) { u32 value = readl(sor->regs + (offset << 2)); trace_sor_readl(sor->dev, offset, value); return value; } static inline void tegra_sor_writel(struct tegra_sor *sor, u32 value, unsigned int offset) { trace_sor_writel(sor->dev, offset, value); writel(value, sor->regs + (offset << 2)); } static int tegra_sor_set_parent_clock(struct tegra_sor *sor, struct clk *parent) { int err; clk_disable_unprepare(sor->clk); err = clk_set_parent(sor->clk_out, parent); if (err < 0) return err; err = clk_prepare_enable(sor->clk); if (err < 0) return err; return 0; } struct tegra_clk_sor_pad { struct clk_hw hw; struct tegra_sor *sor; }; static inline struct tegra_clk_sor_pad *to_pad(struct clk_hw *hw) { return container_of(hw, struct tegra_clk_sor_pad, hw); } static const char * const tegra_clk_sor_pad_parents[] = { "pll_d2_out0", "pll_dp" }; static int tegra_clk_sor_pad_set_parent(struct clk_hw *hw, u8 index) { struct tegra_clk_sor_pad *pad = to_pad(hw); struct tegra_sor *sor = pad->sor; u32 value; value = tegra_sor_readl(sor, SOR_CLK_CNTRL); value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK; switch (index) { case 0: value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK; break; case 1: value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK; break; } tegra_sor_writel(sor, value, SOR_CLK_CNTRL); return 0; } static u8 tegra_clk_sor_pad_get_parent(struct clk_hw *hw) { struct tegra_clk_sor_pad *pad = to_pad(hw); struct tegra_sor *sor = pad->sor; u8 parent = U8_MAX; u32 value; value = tegra_sor_readl(sor, SOR_CLK_CNTRL); switch (value & SOR_CLK_CNTRL_DP_CLK_SEL_MASK) { case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK: case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_PCLK: parent = 0; break; case SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK: case SOR_CLK_CNTRL_DP_CLK_SEL_DIFF_DPCLK: parent = 1; break; } return parent; } static const struct clk_ops tegra_clk_sor_pad_ops = { .set_parent = tegra_clk_sor_pad_set_parent, .get_parent = tegra_clk_sor_pad_get_parent, }; static struct clk *tegra_clk_sor_pad_register(struct tegra_sor *sor, const char *name) { struct tegra_clk_sor_pad *pad; struct clk_init_data init; struct clk *clk; pad = devm_kzalloc(sor->dev, sizeof(*pad), GFP_KERNEL); if (!pad) return ERR_PTR(-ENOMEM); pad->sor = sor; init.name = name; init.flags = 0; init.parent_names = tegra_clk_sor_pad_parents; init.num_parents = ARRAY_SIZE(tegra_clk_sor_pad_parents); init.ops = &tegra_clk_sor_pad_ops; pad->hw.init = &init; clk = devm_clk_register(sor->dev, &pad->hw); return clk; } static int tegra_sor_dp_train_fast(struct tegra_sor *sor, struct drm_dp_link *link) { unsigned int i; u8 pattern; u32 value; int err; /* setup lane parameters */ value = SOR_LANE_DRIVE_CURRENT_LANE3(0x40) | SOR_LANE_DRIVE_CURRENT_LANE2(0x40) | SOR_LANE_DRIVE_CURRENT_LANE1(0x40) | SOR_LANE_DRIVE_CURRENT_LANE0(0x40); tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT0); value = SOR_LANE_PREEMPHASIS_LANE3(0x0f) | SOR_LANE_PREEMPHASIS_LANE2(0x0f) | SOR_LANE_PREEMPHASIS_LANE1(0x0f) | SOR_LANE_PREEMPHASIS_LANE0(0x0f); tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS0); value = SOR_LANE_POSTCURSOR_LANE3(0x00) | SOR_LANE_POSTCURSOR_LANE2(0x00) | SOR_LANE_POSTCURSOR_LANE1(0x00) | SOR_LANE_POSTCURSOR_LANE0(0x00); tegra_sor_writel(sor, value, SOR_LANE_POSTCURSOR0); /* disable LVDS mode */ tegra_sor_writel(sor, 0, SOR_LVDS); value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0); value |= SOR_DP_PADCTL_TX_PU_ENABLE; value &= ~SOR_DP_PADCTL_TX_PU_MASK; value |= SOR_DP_PADCTL_TX_PU(2); /* XXX: don't hardcode? */ tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0); value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0); value |= SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 | SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0; tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0); usleep_range(10, 100); value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0); value &= ~(SOR_DP_PADCTL_CM_TXD_3 | SOR_DP_PADCTL_CM_TXD_2 | SOR_DP_PADCTL_CM_TXD_1 | SOR_DP_PADCTL_CM_TXD_0); tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0); err = drm_dp_aux_prepare(sor->aux, DP_SET_ANSI_8B10B); if (err < 0) return err; for (i = 0, value = 0; i < link->num_lanes; i++) { unsigned long lane = SOR_DP_TPG_CHANNEL_CODING | SOR_DP_TPG_SCRAMBLER_NONE | SOR_DP_TPG_PATTERN_TRAIN1; value = (value << 8) | lane; } tegra_sor_writel(sor, value, SOR_DP_TPG); pattern = DP_TRAINING_PATTERN_1; err = drm_dp_aux_train(sor->aux, link, pattern); if (err < 0) return err; value = tegra_sor_readl(sor, SOR_DP_SPARE0); value |= SOR_DP_SPARE_SEQ_ENABLE; value &= ~SOR_DP_SPARE_PANEL_INTERNAL; value |= SOR_DP_SPARE_MACRO_SOR_CLK; tegra_sor_writel(sor, value, SOR_DP_SPARE0); for (i = 0, value = 0; i < link->num_lanes; i++) { unsigned long lane = SOR_DP_TPG_CHANNEL_CODING | SOR_DP_TPG_SCRAMBLER_NONE | SOR_DP_TPG_PATTERN_TRAIN2; value = (value << 8) | lane; } tegra_sor_writel(sor, value, SOR_DP_TPG); pattern = DP_LINK_SCRAMBLING_DISABLE | DP_TRAINING_PATTERN_2; err = drm_dp_aux_train(sor->aux, link, pattern); if (err < 0) return err; for (i = 0, value = 0; i < link->num_lanes; i++) { unsigned long lane = SOR_DP_TPG_CHANNEL_CODING | SOR_DP_TPG_SCRAMBLER_GALIOS | SOR_DP_TPG_PATTERN_NONE; value = (value << 8) | lane; } tegra_sor_writel(sor, value, SOR_DP_TPG); pattern = DP_TRAINING_PATTERN_DISABLE; err = drm_dp_aux_train(sor->aux, link, pattern); if (err < 0) return err; return 0; } static void tegra_sor_super_update(struct tegra_sor *sor) { tegra_sor_writel(sor, 0, SOR_SUPER_STATE0); tegra_sor_writel(sor, 1, SOR_SUPER_STATE0); tegra_sor_writel(sor, 0, SOR_SUPER_STATE0); } static void tegra_sor_update(struct tegra_sor *sor) { tegra_sor_writel(sor, 0, SOR_STATE0); tegra_sor_writel(sor, 1, SOR_STATE0); tegra_sor_writel(sor, 0, SOR_STATE0); } static int tegra_sor_setup_pwm(struct tegra_sor *sor, unsigned long timeout) { u32 value; value = tegra_sor_readl(sor, SOR_PWM_DIV); value &= ~SOR_PWM_DIV_MASK; value |= 0x400; /* period */ tegra_sor_writel(sor, value, SOR_PWM_DIV); value = tegra_sor_readl(sor, SOR_PWM_CTL); value &= ~SOR_PWM_CTL_DUTY_CYCLE_MASK; value |= 0x400; /* duty cycle */ value &= ~SOR_PWM_CTL_CLK_SEL; /* clock source: PCLK */ value |= SOR_PWM_CTL_TRIGGER; tegra_sor_writel(sor, value, SOR_PWM_CTL); timeout = jiffies + msecs_to_jiffies(timeout); while (time_before(jiffies, timeout)) { value = tegra_sor_readl(sor, SOR_PWM_CTL); if ((value & SOR_PWM_CTL_TRIGGER) == 0) return 0; usleep_range(25, 100); } return -ETIMEDOUT; } static int tegra_sor_attach(struct tegra_sor *sor) { unsigned long value, timeout; /* wake up in normal mode */ value = tegra_sor_readl(sor, SOR_SUPER_STATE1); value |= SOR_SUPER_STATE_HEAD_MODE_AWAKE; value |= SOR_SUPER_STATE_MODE_NORMAL; tegra_sor_writel(sor, value, SOR_SUPER_STATE1); tegra_sor_super_update(sor); /* attach */ value = tegra_sor_readl(sor, SOR_SUPER_STATE1); value |= SOR_SUPER_STATE_ATTACHED; tegra_sor_writel(sor, value, SOR_SUPER_STATE1); tegra_sor_super_update(sor); timeout = jiffies + msecs_to_jiffies(250); while (time_before(jiffies, timeout)) { value = tegra_sor_readl(sor, SOR_TEST); if ((value & SOR_TEST_ATTACHED) != 0) return 0; usleep_range(25, 100); } return -ETIMEDOUT; } static int tegra_sor_wakeup(struct tegra_sor *sor) { unsigned long value, timeout; timeout = jiffies + msecs_to_jiffies(250); /* wait for head to wake up */ while (time_before(jiffies, timeout)) { value = tegra_sor_readl(sor, SOR_TEST); value &= SOR_TEST_HEAD_MODE_MASK; if (value == SOR_TEST_HEAD_MODE_AWAKE) return 0; usleep_range(25, 100); } return -ETIMEDOUT; } static int tegra_sor_power_up(struct tegra_sor *sor, unsigned long timeout) { u32 value; value = tegra_sor_readl(sor, SOR_PWR); value |= SOR_PWR_TRIGGER | SOR_PWR_NORMAL_STATE_PU; tegra_sor_writel(sor, value, SOR_PWR); timeout = jiffies + msecs_to_jiffies(timeout); while (time_before(jiffies, timeout)) { value = tegra_sor_readl(sor, SOR_PWR); if ((value & SOR_PWR_TRIGGER) == 0) return 0; usleep_range(25, 100); } return -ETIMEDOUT; } struct tegra_sor_params { /* number of link clocks per line */ unsigned int num_clocks; /* ratio between input and output */ u64 ratio; /* precision factor */ u64 precision; unsigned int active_polarity; unsigned int active_count; unsigned int active_frac; unsigned int tu_size; unsigned int error; }; static int tegra_sor_compute_params(struct tegra_sor *sor, struct tegra_sor_params *params, unsigned int tu_size) { u64 active_sym, active_count, frac, approx; u32 active_polarity, active_frac = 0; const u64 f = params->precision; s64 error; active_sym = params->ratio * tu_size; active_count = div_u64(active_sym, f) * f; frac = active_sym - active_count; /* fraction < 0.5 */ if (frac >= (f / 2)) { active_polarity = 1; frac = f - frac; } else { active_polarity = 0; } if (frac != 0) { frac = div_u64(f * f, frac); /* 1/fraction */ if (frac <= (15 * f)) { active_frac = div_u64(frac, f); /* round up */ if (active_polarity) active_frac++; } else { active_frac = active_polarity ? 1 : 15; } } if (active_frac == 1) active_polarity = 0; if (active_polarity == 1) { if (active_frac) { approx = active_count + (active_frac * (f - 1)) * f; approx = div_u64(approx, active_frac * f); } else { approx = active_count + f; } } else { if (active_frac) approx = active_count + div_u64(f, active_frac); else approx = active_count; } error = div_s64(active_sym - approx, tu_size); error *= params->num_clocks; if (error <= 0 && abs(error) < params->error) { params->active_count = div_u64(active_count, f); params->active_polarity = active_polarity; params->active_frac = active_frac; params->error = abs(error); params->tu_size = tu_size; if (error == 0) return true; } return false; } static int tegra_sor_compute_config(struct tegra_sor *sor, const struct drm_display_mode *mode, struct tegra_sor_config *config, struct drm_dp_link *link) { const u64 f = 100000, link_rate = link->rate * 1000; const u64 pclk = mode->clock * 1000; u64 input, output, watermark, num; struct tegra_sor_params params; u32 num_syms_per_line; unsigned int i; if (!link_rate || !link->num_lanes || !pclk || !config->bits_per_pixel) return -EINVAL; output = link_rate * 8 * link->num_lanes; input = pclk * config->bits_per_pixel; if (input >= output) return -ERANGE; memset(¶ms, 0, sizeof(params)); params.ratio = div64_u64(input * f, output); params.num_clocks = div_u64(link_rate * mode->hdisplay, pclk); params.precision = f; params.error = 64 * f; params.tu_size = 64; for (i = params.tu_size; i >= 32; i--) if (tegra_sor_compute_params(sor, ¶ms, i)) break; if (params.active_frac == 0) { config->active_polarity = 0; config->active_count = params.active_count; if (!params.active_polarity) config->active_count--; config->tu_size = params.tu_size; config->active_frac = 1; } else { config->active_polarity = params.active_polarity; config->active_count = params.active_count; config->active_frac = params.active_frac; config->tu_size = params.tu_size; } dev_dbg(sor->dev, "polarity: %d active count: %d tu size: %d active frac: %d\n", config->active_polarity, config->active_count, config->tu_size, config->active_frac); watermark = params.ratio * config->tu_size * (f - params.ratio); watermark = div_u64(watermark, f); watermark = div_u64(watermark + params.error, f); config->watermark = watermark + (config->bits_per_pixel / 8) + 2; num_syms_per_line = (mode->hdisplay * config->bits_per_pixel) * (link->num_lanes * 8); if (config->watermark > 30) { config->watermark = 30; dev_err(sor->dev, "unable to compute TU size, forcing watermark to %u\n", config->watermark); } else if (config->watermark > num_syms_per_line) { config->watermark = num_syms_per_line; dev_err(sor->dev, "watermark too high, forcing to %u\n", config->watermark); } /* compute the number of symbols per horizontal blanking interval */ num = ((mode->htotal - mode->hdisplay) - 7) * link_rate; config->hblank_symbols = div_u64(num, pclk); if (link->capabilities & DP_LINK_CAP_ENHANCED_FRAMING) config->hblank_symbols -= 3; config->hblank_symbols -= 12 / link->num_lanes; /* compute the number of symbols per vertical blanking interval */ num = (mode->hdisplay - 25) * link_rate; config->vblank_symbols = div_u64(num, pclk); config->vblank_symbols -= 36 / link->num_lanes + 4; dev_dbg(sor->dev, "blank symbols: H:%u V:%u\n", config->hblank_symbols, config->vblank_symbols); return 0; } static void tegra_sor_apply_config(struct tegra_sor *sor, const struct tegra_sor_config *config) { u32 value; value = tegra_sor_readl(sor, SOR_DP_LINKCTL0); value &= ~SOR_DP_LINKCTL_TU_SIZE_MASK; value |= SOR_DP_LINKCTL_TU_SIZE(config->tu_size); tegra_sor_writel(sor, value, SOR_DP_LINKCTL0); value = tegra_sor_readl(sor, SOR_DP_CONFIG0); value &= ~SOR_DP_CONFIG_WATERMARK_MASK; value |= SOR_DP_CONFIG_WATERMARK(config->watermark); value &= ~SOR_DP_CONFIG_ACTIVE_SYM_COUNT_MASK; value |= SOR_DP_CONFIG_ACTIVE_SYM_COUNT(config->active_count); value &= ~SOR_DP_CONFIG_ACTIVE_SYM_FRAC_MASK; value |= SOR_DP_CONFIG_ACTIVE_SYM_FRAC(config->active_frac); if (config->active_polarity) value |= SOR_DP_CONFIG_ACTIVE_SYM_POLARITY; else value &= ~SOR_DP_CONFIG_ACTIVE_SYM_POLARITY; value |= SOR_DP_CONFIG_ACTIVE_SYM_ENABLE; value |= SOR_DP_CONFIG_DISPARITY_NEGATIVE; tegra_sor_writel(sor, value, SOR_DP_CONFIG0); value = tegra_sor_readl(sor, SOR_DP_AUDIO_HBLANK_SYMBOLS); value &= ~SOR_DP_AUDIO_HBLANK_SYMBOLS_MASK; value |= config->hblank_symbols & 0xffff; tegra_sor_writel(sor, value, SOR_DP_AUDIO_HBLANK_SYMBOLS); value = tegra_sor_readl(sor, SOR_DP_AUDIO_VBLANK_SYMBOLS); value &= ~SOR_DP_AUDIO_VBLANK_SYMBOLS_MASK; value |= config->vblank_symbols & 0xffff; tegra_sor_writel(sor, value, SOR_DP_AUDIO_VBLANK_SYMBOLS); } static void tegra_sor_mode_set(struct tegra_sor *sor, const struct drm_display_mode *mode, struct tegra_sor_state *state) { struct tegra_dc *dc = to_tegra_dc(sor->output.encoder.crtc); unsigned int vbe, vse, hbe, hse, vbs, hbs; u32 value; value = tegra_sor_readl(sor, SOR_STATE1); value &= ~SOR_STATE_ASY_PIXELDEPTH_MASK; value &= ~SOR_STATE_ASY_CRC_MODE_MASK; value &= ~SOR_STATE_ASY_OWNER_MASK; value |= SOR_STATE_ASY_CRC_MODE_COMPLETE | SOR_STATE_ASY_OWNER(dc->pipe + 1); if (mode->flags & DRM_MODE_FLAG_PHSYNC) value &= ~SOR_STATE_ASY_HSYNCPOL; if (mode->flags & DRM_MODE_FLAG_NHSYNC) value |= SOR_STATE_ASY_HSYNCPOL; if (mode->flags & DRM_MODE_FLAG_PVSYNC) value &= ~SOR_STATE_ASY_VSYNCPOL; if (mode->flags & DRM_MODE_FLAG_NVSYNC) value |= SOR_STATE_ASY_VSYNCPOL; switch (state->bpc) { case 16: value |= SOR_STATE_ASY_PIXELDEPTH_BPP_48_444; break; case 12: value |= SOR_STATE_ASY_PIXELDEPTH_BPP_36_444; break; case 10: value |= SOR_STATE_ASY_PIXELDEPTH_BPP_30_444; break; case 8: value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444; break; case 6: value |= SOR_STATE_ASY_PIXELDEPTH_BPP_18_444; break; default: value |= SOR_STATE_ASY_PIXELDEPTH_BPP_24_444; break; } tegra_sor_writel(sor, value, SOR_STATE1); /* * TODO: The video timing programming below doesn't seem to match the * register definitions. */ value = ((mode->vtotal & 0x7fff) << 16) | (mode->htotal & 0x7fff); tegra_sor_writel(sor, value, sor->soc->regs->head_state1 + dc->pipe); /* sync end = sync width - 1 */ vse = mode->vsync_end - mode->vsync_start - 1; hse = mode->hsync_end - mode->hsync_start - 1; value = ((vse & 0x7fff) << 16) | (hse & 0x7fff); tegra_sor_writel(sor, value, sor->soc->regs->head_state2 + dc->pipe); /* blank end = sync end + back porch */ vbe = vse + (mode->vtotal - mode->vsync_end); hbe = hse + (mode->htotal - mode->hsync_end); value = ((vbe & 0x7fff) << 16) | (hbe & 0x7fff); tegra_sor_writel(sor, value, sor->soc->regs->head_state3 + dc->pipe); /* blank start = blank end + active */ vbs = vbe + mode->vdisplay; hbs = hbe + mode->hdisplay; value = ((vbs & 0x7fff) << 16) | (hbs & 0x7fff); tegra_sor_writel(sor, value, sor->soc->regs->head_state4 + dc->pipe); /* XXX interlacing support */ tegra_sor_writel(sor, 0x001, sor->soc->regs->head_state5 + dc->pipe); } static int tegra_sor_detach(struct tegra_sor *sor) { unsigned long value, timeout; /* switch to safe mode */ value = tegra_sor_readl(sor, SOR_SUPER_STATE1); value &= ~SOR_SUPER_STATE_MODE_NORMAL; tegra_sor_writel(sor, value, SOR_SUPER_STATE1); tegra_sor_super_update(sor); timeout = jiffies + msecs_to_jiffies(250); while (time_before(jiffies, timeout)) { value = tegra_sor_readl(sor, SOR_PWR); if (value & SOR_PWR_MODE_SAFE) break; } if ((value & SOR_PWR_MODE_SAFE) == 0) return -ETIMEDOUT; /* go to sleep */ value = tegra_sor_readl(sor, SOR_SUPER_STATE1); value &= ~SOR_SUPER_STATE_HEAD_MODE_MASK; tegra_sor_writel(sor, value, SOR_SUPER_STATE1); tegra_sor_super_update(sor); /* detach */ value = tegra_sor_readl(sor, SOR_SUPER_STATE1); value &= ~SOR_SUPER_STATE_ATTACHED; tegra_sor_writel(sor, value, SOR_SUPER_STATE1); tegra_sor_super_update(sor); timeout = jiffies + msecs_to_jiffies(250); while (time_before(jiffies, timeout)) { value = tegra_sor_readl(sor, SOR_TEST); if ((value & SOR_TEST_ATTACHED) == 0) break; usleep_range(25, 100); } if ((value & SOR_TEST_ATTACHED) != 0) return -ETIMEDOUT; return 0; } static int tegra_sor_power_down(struct tegra_sor *sor) { unsigned long value, timeout; int err; value = tegra_sor_readl(sor, SOR_PWR); value &= ~SOR_PWR_NORMAL_STATE_PU; value |= SOR_PWR_TRIGGER; tegra_sor_writel(sor, value, SOR_PWR); timeout = jiffies + msecs_to_jiffies(250); while (time_before(jiffies, timeout)) { value = tegra_sor_readl(sor, SOR_PWR); if ((value & SOR_PWR_TRIGGER) == 0) return 0; usleep_range(25, 100); } if ((value & SOR_PWR_TRIGGER) != 0) return -ETIMEDOUT; /* switch to safe parent clock */ err = tegra_sor_set_parent_clock(sor, sor->clk_safe); if (err < 0) { dev_err(sor->dev, "failed to set safe parent clock: %d\n", err); return err; } value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0); value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 | SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2); tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0); /* stop lane sequencer */ value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_UP | SOR_LANE_SEQ_CTL_POWER_STATE_DOWN; tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL); timeout = jiffies + msecs_to_jiffies(250); while (time_before(jiffies, timeout)) { value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL); if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0) break; usleep_range(25, 100); } if ((value & SOR_LANE_SEQ_CTL_TRIGGER) != 0) return -ETIMEDOUT; value = tegra_sor_readl(sor, sor->soc->regs->pll2); value |= SOR_PLL2_PORT_POWERDOWN; tegra_sor_writel(sor, value, sor->soc->regs->pll2); usleep_range(20, 100); value = tegra_sor_readl(sor, sor->soc->regs->pll0); value |= SOR_PLL0_VCOPD | SOR_PLL0_PWR; tegra_sor_writel(sor, value, sor->soc->regs->pll0); value = tegra_sor_readl(sor, sor->soc->regs->pll2); value |= SOR_PLL2_SEQ_PLLCAPPD; value |= SOR_PLL2_SEQ_PLLCAPPD_ENFORCE; tegra_sor_writel(sor, value, sor->soc->regs->pll2); usleep_range(20, 100); return 0; } static int tegra_sor_crc_wait(struct tegra_sor *sor, unsigned long timeout) { u32 value; timeout = jiffies + msecs_to_jiffies(timeout); while (time_before(jiffies, timeout)) { value = tegra_sor_readl(sor, SOR_CRCA); if (value & SOR_CRCA_VALID) return 0; usleep_range(100, 200); } return -ETIMEDOUT; } static int tegra_sor_show_crc(struct seq_file *s, void *data) { struct drm_info_node *node = s->private; struct tegra_sor *sor = node->info_ent->data; struct drm_crtc *crtc = sor->output.encoder.crtc; struct drm_device *drm = node->minor->dev; int err = 0; u32 value; drm_modeset_lock_all(drm); if (!crtc || !crtc->state->active) { err = -EBUSY; goto unlock; } value = tegra_sor_readl(sor, SOR_STATE1); value &= ~SOR_STATE_ASY_CRC_MODE_MASK; tegra_sor_writel(sor, value, SOR_STATE1); value = tegra_sor_readl(sor, SOR_CRC_CNTRL); value |= SOR_CRC_CNTRL_ENABLE; tegra_sor_writel(sor, value, SOR_CRC_CNTRL); value = tegra_sor_readl(sor, SOR_TEST); value &= ~SOR_TEST_CRC_POST_SERIALIZE; tegra_sor_writel(sor, value, SOR_TEST); err = tegra_sor_crc_wait(sor, 100); if (err < 0) goto unlock; tegra_sor_writel(sor, SOR_CRCA_RESET, SOR_CRCA); value = tegra_sor_readl(sor, SOR_CRCB); seq_printf(s, "%08x\n", value); unlock: drm_modeset_unlock_all(drm); return err; } #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name } static const struct debugfs_reg32 tegra_sor_regs[] = { DEBUGFS_REG32(SOR_CTXSW), DEBUGFS_REG32(SOR_SUPER_STATE0), DEBUGFS_REG32(SOR_SUPER_STATE1), DEBUGFS_REG32(SOR_STATE0), DEBUGFS_REG32(SOR_STATE1), DEBUGFS_REG32(SOR_HEAD_STATE0(0)), DEBUGFS_REG32(SOR_HEAD_STATE0(1)), DEBUGFS_REG32(SOR_HEAD_STATE1(0)), DEBUGFS_REG32(SOR_HEAD_STATE1(1)), DEBUGFS_REG32(SOR_HEAD_STATE2(0)), DEBUGFS_REG32(SOR_HEAD_STATE2(1)), DEBUGFS_REG32(SOR_HEAD_STATE3(0)), DEBUGFS_REG32(SOR_HEAD_STATE3(1)), DEBUGFS_REG32(SOR_HEAD_STATE4(0)), DEBUGFS_REG32(SOR_HEAD_STATE4(1)), DEBUGFS_REG32(SOR_HEAD_STATE5(0)), DEBUGFS_REG32(SOR_HEAD_STATE5(1)), DEBUGFS_REG32(SOR_CRC_CNTRL), DEBUGFS_REG32(SOR_DP_DEBUG_MVID), DEBUGFS_REG32(SOR_CLK_CNTRL), DEBUGFS_REG32(SOR_CAP), DEBUGFS_REG32(SOR_PWR), DEBUGFS_REG32(SOR_TEST), DEBUGFS_REG32(SOR_PLL0), DEBUGFS_REG32(SOR_PLL1), DEBUGFS_REG32(SOR_PLL2), DEBUGFS_REG32(SOR_PLL3), DEBUGFS_REG32(SOR_CSTM), DEBUGFS_REG32(SOR_LVDS), DEBUGFS_REG32(SOR_CRCA), DEBUGFS_REG32(SOR_CRCB), DEBUGFS_REG32(SOR_BLANK), DEBUGFS_REG32(SOR_SEQ_CTL), DEBUGFS_REG32(SOR_LANE_SEQ_CTL), DEBUGFS_REG32(SOR_SEQ_INST(0)), DEBUGFS_REG32(SOR_SEQ_INST(1)), DEBUGFS_REG32(SOR_SEQ_INST(2)), DEBUGFS_REG32(SOR_SEQ_INST(3)), DEBUGFS_REG32(SOR_SEQ_INST(4)), DEBUGFS_REG32(SOR_SEQ_INST(5)), DEBUGFS_REG32(SOR_SEQ_INST(6)), DEBUGFS_REG32(SOR_SEQ_INST(7)), DEBUGFS_REG32(SOR_SEQ_INST(8)), DEBUGFS_REG32(SOR_SEQ_INST(9)), DEBUGFS_REG32(SOR_SEQ_INST(10)), DEBUGFS_REG32(SOR_SEQ_INST(11)), DEBUGFS_REG32(SOR_SEQ_INST(12)), DEBUGFS_REG32(SOR_SEQ_INST(13)), DEBUGFS_REG32(SOR_SEQ_INST(14)), DEBUGFS_REG32(SOR_SEQ_INST(15)), DEBUGFS_REG32(SOR_PWM_DIV), DEBUGFS_REG32(SOR_PWM_CTL), DEBUGFS_REG32(SOR_VCRC_A0), DEBUGFS_REG32(SOR_VCRC_A1), DEBUGFS_REG32(SOR_VCRC_B0), DEBUGFS_REG32(SOR_VCRC_B1), DEBUGFS_REG32(SOR_CCRC_A0), DEBUGFS_REG32(SOR_CCRC_A1), DEBUGFS_REG32(SOR_CCRC_B0), DEBUGFS_REG32(SOR_CCRC_B1), DEBUGFS_REG32(SOR_EDATA_A0), DEBUGFS_REG32(SOR_EDATA_A1), DEBUGFS_REG32(SOR_EDATA_B0), DEBUGFS_REG32(SOR_EDATA_B1), DEBUGFS_REG32(SOR_COUNT_A0), DEBUGFS_REG32(SOR_COUNT_A1), DEBUGFS_REG32(SOR_COUNT_B0), DEBUGFS_REG32(SOR_COUNT_B1), DEBUGFS_REG32(SOR_DEBUG_A0), DEBUGFS_REG32(SOR_DEBUG_A1), DEBUGFS_REG32(SOR_DEBUG_B0), DEBUGFS_REG32(SOR_DEBUG_B1), DEBUGFS_REG32(SOR_TRIG), DEBUGFS_REG32(SOR_MSCHECK), DEBUGFS_REG32(SOR_XBAR_CTRL), DEBUGFS_REG32(SOR_XBAR_POL), DEBUGFS_REG32(SOR_DP_LINKCTL0), DEBUGFS_REG32(SOR_DP_LINKCTL1), DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT0), DEBUGFS_REG32(SOR_LANE_DRIVE_CURRENT1), DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT0), DEBUGFS_REG32(SOR_LANE4_DRIVE_CURRENT1), DEBUGFS_REG32(SOR_LANE_PREEMPHASIS0), DEBUGFS_REG32(SOR_LANE_PREEMPHASIS1), DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS0), DEBUGFS_REG32(SOR_LANE4_PREEMPHASIS1), DEBUGFS_REG32(SOR_LANE_POSTCURSOR0), DEBUGFS_REG32(SOR_LANE_POSTCURSOR1), DEBUGFS_REG32(SOR_DP_CONFIG0), DEBUGFS_REG32(SOR_DP_CONFIG1), DEBUGFS_REG32(SOR_DP_MN0), DEBUGFS_REG32(SOR_DP_MN1), DEBUGFS_REG32(SOR_DP_PADCTL0), DEBUGFS_REG32(SOR_DP_PADCTL1), DEBUGFS_REG32(SOR_DP_PADCTL2), DEBUGFS_REG32(SOR_DP_DEBUG0), DEBUGFS_REG32(SOR_DP_DEBUG1), DEBUGFS_REG32(SOR_DP_SPARE0), DEBUGFS_REG32(SOR_DP_SPARE1), DEBUGFS_REG32(SOR_DP_AUDIO_CTRL), DEBUGFS_REG32(SOR_DP_AUDIO_HBLANK_SYMBOLS), DEBUGFS_REG32(SOR_DP_AUDIO_VBLANK_SYMBOLS), DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_HEADER), DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK0), DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK1), DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK2), DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK3), DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK4), DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK5), DEBUGFS_REG32(SOR_DP_GENERIC_INFOFRAME_SUBPACK6), DEBUGFS_REG32(SOR_DP_TPG), DEBUGFS_REG32(SOR_DP_TPG_CONFIG), DEBUGFS_REG32(SOR_DP_LQ_CSTM0), DEBUGFS_REG32(SOR_DP_LQ_CSTM1), DEBUGFS_REG32(SOR_DP_LQ_CSTM2), }; static int tegra_sor_show_regs(struct seq_file *s, void *data) { struct drm_info_node *node = s->private; struct tegra_sor *sor = node->info_ent->data; struct drm_crtc *crtc = sor->output.encoder.crtc; struct drm_device *drm = node->minor->dev; unsigned int i; int err = 0; drm_modeset_lock_all(drm); if (!crtc || !crtc->state->active) { err = -EBUSY; goto unlock; } for (i = 0; i < ARRAY_SIZE(tegra_sor_regs); i++) { unsigned int offset = tegra_sor_regs[i].offset; seq_printf(s, "%-38s %#05x %08x\n", tegra_sor_regs[i].name, offset, tegra_sor_readl(sor, offset)); } unlock: drm_modeset_unlock_all(drm); return err; } static const struct drm_info_list debugfs_files[] = { { "crc", tegra_sor_show_crc, 0, NULL }, { "regs", tegra_sor_show_regs, 0, NULL }, }; static int tegra_sor_late_register(struct drm_connector *connector) { struct tegra_output *output = connector_to_output(connector); unsigned int i, count = ARRAY_SIZE(debugfs_files); struct drm_minor *minor = connector->dev->primary; struct dentry *root = connector->debugfs_entry; struct tegra_sor *sor = to_sor(output); int err; sor->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files), GFP_KERNEL); if (!sor->debugfs_files) return -ENOMEM; for (i = 0; i < count; i++) sor->debugfs_files[i].data = sor; err = drm_debugfs_create_files(sor->debugfs_files, count, root, minor); if (err < 0) goto free; return 0; free: kfree(sor->debugfs_files); sor->debugfs_files = NULL; return err; } static void tegra_sor_early_unregister(struct drm_connector *connector) { struct tegra_output *output = connector_to_output(connector); unsigned int count = ARRAY_SIZE(debugfs_files); struct tegra_sor *sor = to_sor(output); drm_debugfs_remove_files(sor->debugfs_files, count, connector->dev->primary); kfree(sor->debugfs_files); sor->debugfs_files = NULL; } static void tegra_sor_connector_reset(struct drm_connector *connector) { struct tegra_sor_state *state; state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) return; if (connector->state) { __drm_atomic_helper_connector_destroy_state(connector->state); kfree(connector->state); } __drm_atomic_helper_connector_reset(connector, &state->base); } static enum drm_connector_status tegra_sor_connector_detect(struct drm_connector *connector, bool force) { struct tegra_output *output = connector_to_output(connector); struct tegra_sor *sor = to_sor(output); if (sor->aux) return drm_dp_aux_detect(sor->aux); return tegra_output_connector_detect(connector, force); } static struct drm_connector_state * tegra_sor_connector_duplicate_state(struct drm_connector *connector) { struct tegra_sor_state *state = to_sor_state(connector->state); struct tegra_sor_state *copy; copy = kmemdup(state, sizeof(*state), GFP_KERNEL); if (!copy) return NULL; __drm_atomic_helper_connector_duplicate_state(connector, ©->base); return ©->base; } static const struct drm_connector_funcs tegra_sor_connector_funcs = { .reset = tegra_sor_connector_reset, .detect = tegra_sor_connector_detect, .fill_modes = drm_helper_probe_single_connector_modes, .destroy = tegra_output_connector_destroy, .atomic_duplicate_state = tegra_sor_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, .late_register = tegra_sor_late_register, .early_unregister = tegra_sor_early_unregister, }; static int tegra_sor_connector_get_modes(struct drm_connector *connector) { struct tegra_output *output = connector_to_output(connector); struct tegra_sor *sor = to_sor(output); int err; if (sor->aux) drm_dp_aux_enable(sor->aux); err = tegra_output_connector_get_modes(connector); if (sor->aux) drm_dp_aux_disable(sor->aux); return err; } static enum drm_mode_status tegra_sor_connector_mode_valid(struct drm_connector *connector, struct drm_display_mode *mode) { return MODE_OK; } static const struct drm_connector_helper_funcs tegra_sor_connector_helper_funcs = { .get_modes = tegra_sor_connector_get_modes, .mode_valid = tegra_sor_connector_mode_valid, }; static const struct drm_encoder_funcs tegra_sor_encoder_funcs = { .destroy = tegra_output_encoder_destroy, }; static void tegra_sor_edp_disable(struct drm_encoder *encoder) { struct tegra_output *output = encoder_to_output(encoder); struct tegra_dc *dc = to_tegra_dc(encoder->crtc); struct tegra_sor *sor = to_sor(output); u32 value; int err; if (output->panel) drm_panel_disable(output->panel); err = tegra_sor_detach(sor); if (err < 0) dev_err(sor->dev, "failed to detach SOR: %d\n", err); tegra_sor_writel(sor, 0, SOR_STATE1); tegra_sor_update(sor); /* * The following accesses registers of the display controller, so make * sure it's only executed when the output is attached to one. */ if (dc) { value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); value &= ~SOR_ENABLE(0); tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); tegra_dc_commit(dc); } err = tegra_sor_power_down(sor); if (err < 0) dev_err(sor->dev, "failed to power down SOR: %d\n", err); if (sor->aux) { err = drm_dp_aux_disable(sor->aux); if (err < 0) dev_err(sor->dev, "failed to disable DP: %d\n", err); } err = tegra_io_pad_power_disable(sor->pad); if (err < 0) dev_err(sor->dev, "failed to power off I/O pad: %d\n", err); if (output->panel) drm_panel_unprepare(output->panel); pm_runtime_put(sor->dev); } #if 0 static int calc_h_ref_to_sync(const struct drm_display_mode *mode, unsigned int *value) { unsigned int hfp, hsw, hbp, a = 0, b; hfp = mode->hsync_start - mode->hdisplay; hsw = mode->hsync_end - mode->hsync_start; hbp = mode->htotal - mode->hsync_end; pr_info("hfp: %u, hsw: %u, hbp: %u\n", hfp, hsw, hbp); b = hfp - 1; pr_info("a: %u, b: %u\n", a, b); pr_info("a + hsw + hbp = %u\n", a + hsw + hbp); if (a + hsw + hbp <= 11) { a = 1 + 11 - hsw - hbp; pr_info("a: %u\n", a); } if (a > b) return -EINVAL; if (hsw < 1) return -EINVAL; if (mode->hdisplay < 16) return -EINVAL; if (value) { if (b > a && a % 2) *value = a + 1; else *value = a; } return 0; } #endif static void tegra_sor_edp_enable(struct drm_encoder *encoder) { struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; struct tegra_output *output = encoder_to_output(encoder); struct tegra_dc *dc = to_tegra_dc(encoder->crtc); struct tegra_sor *sor = to_sor(output); struct tegra_sor_config config; struct tegra_sor_state *state; struct drm_dp_link link; u8 rate, lanes; unsigned int i; int err = 0; u32 value; state = to_sor_state(output->connector.state); pm_runtime_get_sync(sor->dev); if (output->panel) drm_panel_prepare(output->panel); err = drm_dp_aux_enable(sor->aux); if (err < 0) dev_err(sor->dev, "failed to enable DP: %d\n", err); err = drm_dp_link_probe(sor->aux, &link); if (err < 0) { dev_err(sor->dev, "failed to probe eDP link: %d\n", err); return; } /* switch to safe parent clock */ err = tegra_sor_set_parent_clock(sor, sor->clk_safe); if (err < 0) dev_err(sor->dev, "failed to set safe parent clock: %d\n", err); memset(&config, 0, sizeof(config)); config.bits_per_pixel = state->bpc * 3; err = tegra_sor_compute_config(sor, mode, &config, &link); if (err < 0) dev_err(sor->dev, "failed to compute configuration: %d\n", err); value = tegra_sor_readl(sor, SOR_CLK_CNTRL); value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK; value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_DPCLK; tegra_sor_writel(sor, value, SOR_CLK_CNTRL); value = tegra_sor_readl(sor, sor->soc->regs->pll2); value &= ~SOR_PLL2_BANDGAP_POWERDOWN; tegra_sor_writel(sor, value, sor->soc->regs->pll2); usleep_range(20, 100); value = tegra_sor_readl(sor, sor->soc->regs->pll3); value |= SOR_PLL3_PLL_VDD_MODE_3V3; tegra_sor_writel(sor, value, sor->soc->regs->pll3); value = SOR_PLL0_ICHPMP(0xf) | SOR_PLL0_VCOCAP_RST | SOR_PLL0_PLLREG_LEVEL_V45 | SOR_PLL0_RESISTOR_EXT; tegra_sor_writel(sor, value, sor->soc->regs->pll0); value = tegra_sor_readl(sor, sor->soc->regs->pll2); value |= SOR_PLL2_SEQ_PLLCAPPD; value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE; value |= SOR_PLL2_LVDS_ENABLE; tegra_sor_writel(sor, value, sor->soc->regs->pll2); value = SOR_PLL1_TERM_COMPOUT | SOR_PLL1_TMDS_TERM; tegra_sor_writel(sor, value, sor->soc->regs->pll1); while (true) { value = tegra_sor_readl(sor, sor->soc->regs->pll2); if ((value & SOR_PLL2_SEQ_PLLCAPPD_ENFORCE) == 0) break; usleep_range(250, 1000); } value = tegra_sor_readl(sor, sor->soc->regs->pll2); value &= ~SOR_PLL2_POWERDOWN_OVERRIDE; value &= ~SOR_PLL2_PORT_POWERDOWN; tegra_sor_writel(sor, value, sor->soc->regs->pll2); /* * power up */ /* set safe link bandwidth (1.62 Gbps) */ value = tegra_sor_readl(sor, SOR_CLK_CNTRL); value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK; value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G1_62; tegra_sor_writel(sor, value, SOR_CLK_CNTRL); /* step 1 */ value = tegra_sor_readl(sor, sor->soc->regs->pll2); value |= SOR_PLL2_SEQ_PLLCAPPD_ENFORCE | SOR_PLL2_PORT_POWERDOWN | SOR_PLL2_BANDGAP_POWERDOWN; tegra_sor_writel(sor, value, sor->soc->regs->pll2); value = tegra_sor_readl(sor, sor->soc->regs->pll0); value |= SOR_PLL0_VCOPD | SOR_PLL0_PWR; tegra_sor_writel(sor, value, sor->soc->regs->pll0); value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0); value &= ~SOR_DP_PADCTL_PAD_CAL_PD; tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0); /* step 2 */ err = tegra_io_pad_power_enable(sor->pad); if (err < 0) dev_err(sor->dev, "failed to power on I/O pad: %d\n", err); usleep_range(5, 100); /* step 3 */ value = tegra_sor_readl(sor, sor->soc->regs->pll2); value &= ~SOR_PLL2_BANDGAP_POWERDOWN; tegra_sor_writel(sor, value, sor->soc->regs->pll2); usleep_range(20, 100); /* step 4 */ value = tegra_sor_readl(sor, sor->soc->regs->pll0); value &= ~SOR_PLL0_VCOPD; value &= ~SOR_PLL0_PWR; tegra_sor_writel(sor, value, sor->soc->regs->pll0); value = tegra_sor_readl(sor, sor->soc->regs->pll2); value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE; tegra_sor_writel(sor, value, sor->soc->regs->pll2); usleep_range(200, 1000); /* step 5 */ value = tegra_sor_readl(sor, sor->soc->regs->pll2); value &= ~SOR_PLL2_PORT_POWERDOWN; tegra_sor_writel(sor, value, sor->soc->regs->pll2); /* XXX not in TRM */ for (value = 0, i = 0; i < 5; i++) value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->xbar_cfg[i]) | SOR_XBAR_CTRL_LINK1_XSEL(i, i); tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL); tegra_sor_writel(sor, value, SOR_XBAR_CTRL); /* switch to DP parent clock */ err = tegra_sor_set_parent_clock(sor, sor->clk_dp); if (err < 0) dev_err(sor->dev, "failed to set parent clock: %d\n", err); /* power DP lanes */ value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0); if (link.num_lanes <= 2) value &= ~(SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_2); else value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_2; if (link.num_lanes <= 1) value &= ~SOR_DP_PADCTL_PD_TXD_1; else value |= SOR_DP_PADCTL_PD_TXD_1; if (link.num_lanes == 0) value &= ~SOR_DP_PADCTL_PD_TXD_0; else value |= SOR_DP_PADCTL_PD_TXD_0; tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0); value = tegra_sor_readl(sor, SOR_DP_LINKCTL0); value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK; value |= SOR_DP_LINKCTL_LANE_COUNT(link.num_lanes); tegra_sor_writel(sor, value, SOR_DP_LINKCTL0); /* start lane sequencer */ value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN | SOR_LANE_SEQ_CTL_POWER_STATE_UP; tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL); while (true) { value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL); if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0) break; usleep_range(250, 1000); } /* set link bandwidth */ value = tegra_sor_readl(sor, SOR_CLK_CNTRL); value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK; value |= drm_dp_link_rate_to_bw_code(link.rate) << 2; tegra_sor_writel(sor, value, SOR_CLK_CNTRL); tegra_sor_apply_config(sor, &config); /* enable link */ value = tegra_sor_readl(sor, SOR_DP_LINKCTL0); value |= SOR_DP_LINKCTL_ENABLE; value |= SOR_DP_LINKCTL_ENHANCED_FRAME; tegra_sor_writel(sor, value, SOR_DP_LINKCTL0); for (i = 0, value = 0; i < 4; i++) { unsigned long lane = SOR_DP_TPG_CHANNEL_CODING | SOR_DP_TPG_SCRAMBLER_GALIOS | SOR_DP_TPG_PATTERN_NONE; value = (value << 8) | lane; } tegra_sor_writel(sor, value, SOR_DP_TPG); /* enable pad calibration logic */ value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0); value |= SOR_DP_PADCTL_PAD_CAL_PD; tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0); err = drm_dp_link_probe(sor->aux, &link); if (err < 0) dev_err(sor->dev, "failed to probe eDP link: %d\n", err); err = drm_dp_link_power_up(sor->aux, &link); if (err < 0) dev_err(sor->dev, "failed to power up eDP link: %d\n", err); err = drm_dp_link_configure(sor->aux, &link); if (err < 0) dev_err(sor->dev, "failed to configure eDP link: %d\n", err); rate = drm_dp_link_rate_to_bw_code(link.rate); lanes = link.num_lanes; value = tegra_sor_readl(sor, SOR_CLK_CNTRL); value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK; value |= SOR_CLK_CNTRL_DP_LINK_SPEED(rate); tegra_sor_writel(sor, value, SOR_CLK_CNTRL); value = tegra_sor_readl(sor, SOR_DP_LINKCTL0); value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK; value |= SOR_DP_LINKCTL_LANE_COUNT(lanes); if (link.capabilities & DP_LINK_CAP_ENHANCED_FRAMING) value |= SOR_DP_LINKCTL_ENHANCED_FRAME; tegra_sor_writel(sor, value, SOR_DP_LINKCTL0); /* disable training pattern generator */ for (i = 0; i < link.num_lanes; i++) { unsigned long lane = SOR_DP_TPG_CHANNEL_CODING | SOR_DP_TPG_SCRAMBLER_GALIOS | SOR_DP_TPG_PATTERN_NONE; value = (value << 8) | lane; } tegra_sor_writel(sor, value, SOR_DP_TPG); err = tegra_sor_dp_train_fast(sor, &link); if (err < 0) dev_err(sor->dev, "DP fast link training failed: %d\n", err); dev_dbg(sor->dev, "fast link training succeeded\n"); err = tegra_sor_power_up(sor, 250); if (err < 0) dev_err(sor->dev, "failed to power up SOR: %d\n", err); /* CSTM (LVDS, link A/B, upper) */ value = SOR_CSTM_LVDS | SOR_CSTM_LINK_ACT_A | SOR_CSTM_LINK_ACT_B | SOR_CSTM_UPPER; tegra_sor_writel(sor, value, SOR_CSTM); /* use DP-A protocol */ value = tegra_sor_readl(sor, SOR_STATE1); value &= ~SOR_STATE_ASY_PROTOCOL_MASK; value |= SOR_STATE_ASY_PROTOCOL_DP_A; tegra_sor_writel(sor, value, SOR_STATE1); tegra_sor_mode_set(sor, mode, state); /* PWM setup */ err = tegra_sor_setup_pwm(sor, 250); if (err < 0) dev_err(sor->dev, "failed to setup PWM: %d\n", err); tegra_sor_update(sor); value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); value |= SOR_ENABLE(0); tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); tegra_dc_commit(dc); err = tegra_sor_attach(sor); if (err < 0) dev_err(sor->dev, "failed to attach SOR: %d\n", err); err = tegra_sor_wakeup(sor); if (err < 0) dev_err(sor->dev, "failed to enable DC: %d\n", err); if (output->panel) drm_panel_enable(output->panel); } static int tegra_sor_encoder_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { struct tegra_output *output = encoder_to_output(encoder); struct tegra_sor_state *state = to_sor_state(conn_state); struct tegra_dc *dc = to_tegra_dc(conn_state->crtc); unsigned long pclk = crtc_state->mode.clock * 1000; struct tegra_sor *sor = to_sor(output); struct drm_display_info *info; int err; info = &output->connector.display_info; /* * For HBR2 modes, the SOR brick needs to use the x20 multiplier, so * the pixel clock must be corrected accordingly. */ if (pclk >= 340000000) { state->link_speed = 20; state->pclk = pclk / 2; } else { state->link_speed = 10; state->pclk = pclk; } err = tegra_dc_state_setup_clock(dc, crtc_state, sor->clk_parent, pclk, 0); if (err < 0) { dev_err(output->dev, "failed to setup CRTC state: %d\n", err); return err; } switch (info->bpc) { case 8: case 6: state->bpc = info->bpc; break; default: DRM_DEBUG_KMS("%u bits-per-color not supported\n", info->bpc); state->bpc = 8; break; } return 0; } static const struct drm_encoder_helper_funcs tegra_sor_edp_helpers = { .disable = tegra_sor_edp_disable, .enable = tegra_sor_edp_enable, .atomic_check = tegra_sor_encoder_atomic_check, }; static inline u32 tegra_sor_hdmi_subpack(const u8 *ptr, size_t size) { u32 value = 0; size_t i; for (i = size; i > 0; i--) value = (value << 8) | ptr[i - 1]; return value; } static void tegra_sor_hdmi_write_infopack(struct tegra_sor *sor, const void *data, size_t size) { const u8 *ptr = data; unsigned long offset; size_t i, j; u32 value; switch (ptr[0]) { case HDMI_INFOFRAME_TYPE_AVI: offset = SOR_HDMI_AVI_INFOFRAME_HEADER; break; case HDMI_INFOFRAME_TYPE_AUDIO: offset = SOR_HDMI_AUDIO_INFOFRAME_HEADER; break; case HDMI_INFOFRAME_TYPE_VENDOR: offset = SOR_HDMI_VSI_INFOFRAME_HEADER; break; default: dev_err(sor->dev, "unsupported infoframe type: %02x\n", ptr[0]); return; } value = INFOFRAME_HEADER_TYPE(ptr[0]) | INFOFRAME_HEADER_VERSION(ptr[1]) | INFOFRAME_HEADER_LEN(ptr[2]); tegra_sor_writel(sor, value, offset); offset++; /* * Each subpack contains 7 bytes, divided into: * - subpack_low: bytes 0 - 3 * - subpack_high: bytes 4 - 6 (with byte 7 padded to 0x00) */ for (i = 3, j = 0; i < size; i += 7, j += 8) { size_t rem = size - i, num = min_t(size_t, rem, 4); value = tegra_sor_hdmi_subpack(&ptr[i], num); tegra_sor_writel(sor, value, offset++); num = min_t(size_t, rem - num, 3); value = tegra_sor_hdmi_subpack(&ptr[i + 4], num); tegra_sor_writel(sor, value, offset++); } } static int tegra_sor_hdmi_setup_avi_infoframe(struct tegra_sor *sor, const struct drm_display_mode *mode) { u8 buffer[HDMI_INFOFRAME_SIZE(AVI)]; struct hdmi_avi_infoframe frame; u32 value; int err; /* disable AVI infoframe */ value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL); value &= ~INFOFRAME_CTRL_SINGLE; value &= ~INFOFRAME_CTRL_OTHER; value &= ~INFOFRAME_CTRL_ENABLE; tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL); err = drm_hdmi_avi_infoframe_from_display_mode(&frame, &sor->output.connector, mode); if (err < 0) { dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err); return err; } err = hdmi_avi_infoframe_pack(&frame, buffer, sizeof(buffer)); if (err < 0) { dev_err(sor->dev, "failed to pack AVI infoframe: %d\n", err); return err; } tegra_sor_hdmi_write_infopack(sor, buffer, err); /* enable AVI infoframe */ value = tegra_sor_readl(sor, SOR_HDMI_AVI_INFOFRAME_CTRL); value |= INFOFRAME_CTRL_CHECKSUM_ENABLE; value |= INFOFRAME_CTRL_ENABLE; tegra_sor_writel(sor, value, SOR_HDMI_AVI_INFOFRAME_CTRL); return 0; } static void tegra_sor_write_eld(struct tegra_sor *sor) { size_t length = drm_eld_size(sor->output.connector.eld), i; for (i = 0; i < length; i++) tegra_sor_writel(sor, i << 8 | sor->output.connector.eld[i], SOR_AUDIO_HDA_ELD_BUFWR); /* * The HDA codec will always report an ELD buffer size of 96 bytes and * the HDA codec driver will check that each byte read from the buffer * is valid. Therefore every byte must be written, even if no 96 bytes * were parsed from EDID. */ for (i = length; i < 96; i++) tegra_sor_writel(sor, i << 8 | 0, SOR_AUDIO_HDA_ELD_BUFWR); } static void tegra_sor_audio_prepare(struct tegra_sor *sor) { u32 value; tegra_sor_write_eld(sor); value = SOR_AUDIO_HDA_PRESENSE_ELDV | SOR_AUDIO_HDA_PRESENSE_PD; tegra_sor_writel(sor, value, SOR_AUDIO_HDA_PRESENSE); } static void tegra_sor_audio_unprepare(struct tegra_sor *sor) { tegra_sor_writel(sor, 0, SOR_AUDIO_HDA_PRESENSE); } static int tegra_sor_hdmi_enable_audio_infoframe(struct tegra_sor *sor) { u8 buffer[HDMI_INFOFRAME_SIZE(AUDIO)]; struct hdmi_audio_infoframe frame; u32 value; int err; err = hdmi_audio_infoframe_init(&frame); if (err < 0) { dev_err(sor->dev, "failed to setup audio infoframe: %d\n", err); return err; } frame.channels = sor->format.channels; err = hdmi_audio_infoframe_pack(&frame, buffer, sizeof(buffer)); if (err < 0) { dev_err(sor->dev, "failed to pack audio infoframe: %d\n", err); return err; } tegra_sor_hdmi_write_infopack(sor, buffer, err); value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL); value |= INFOFRAME_CTRL_CHECKSUM_ENABLE; value |= INFOFRAME_CTRL_ENABLE; tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL); return 0; } static void tegra_sor_hdmi_audio_enable(struct tegra_sor *sor) { u32 value; value = tegra_sor_readl(sor, SOR_AUDIO_CNTRL); /* select HDA audio input */ value &= ~SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_MASK); value |= SOR_AUDIO_CNTRL_SOURCE_SELECT(SOURCE_SELECT_HDA); /* inject null samples */ if (sor->format.channels != 2) value &= ~SOR_AUDIO_CNTRL_INJECT_NULLSMPL; else value |= SOR_AUDIO_CNTRL_INJECT_NULLSMPL; value |= SOR_AUDIO_CNTRL_AFIFO_FLUSH; tegra_sor_writel(sor, value, SOR_AUDIO_CNTRL); /* enable advertising HBR capability */ tegra_sor_writel(sor, SOR_AUDIO_SPARE_HBR_ENABLE, SOR_AUDIO_SPARE); tegra_sor_writel(sor, 0, SOR_HDMI_ACR_CTRL); value = SOR_HDMI_SPARE_ACR_PRIORITY_HIGH | SOR_HDMI_SPARE_CTS_RESET(1) | SOR_HDMI_SPARE_HW_CTS_ENABLE; tegra_sor_writel(sor, value, SOR_HDMI_SPARE); /* enable HW CTS */ value = SOR_HDMI_ACR_SUBPACK_LOW_SB1(0); tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_LOW); /* allow packet to be sent */ value = SOR_HDMI_ACR_SUBPACK_HIGH_ENABLE; tegra_sor_writel(sor, value, SOR_HDMI_ACR_0441_SUBPACK_HIGH); /* reset N counter and enable lookup */ value = SOR_HDMI_AUDIO_N_RESET | SOR_HDMI_AUDIO_N_LOOKUP; tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N); value = (24000 * 4096) / (128 * sor->format.sample_rate / 1000); tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0320); tegra_sor_writel(sor, 4096, SOR_AUDIO_NVAL_0320); tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0441); tegra_sor_writel(sor, 4704, SOR_AUDIO_NVAL_0441); tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_0882); tegra_sor_writel(sor, 9408, SOR_AUDIO_NVAL_0882); tegra_sor_writel(sor, 20000, SOR_AUDIO_AVAL_1764); tegra_sor_writel(sor, 18816, SOR_AUDIO_NVAL_1764); value = (24000 * 6144) / (128 * sor->format.sample_rate / 1000); tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0480); tegra_sor_writel(sor, 6144, SOR_AUDIO_NVAL_0480); value = (24000 * 12288) / (128 * sor->format.sample_rate / 1000); tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_0960); tegra_sor_writel(sor, 12288, SOR_AUDIO_NVAL_0960); value = (24000 * 24576) / (128 * sor->format.sample_rate / 1000); tegra_sor_writel(sor, value, SOR_AUDIO_AVAL_1920); tegra_sor_writel(sor, 24576, SOR_AUDIO_NVAL_1920); value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_N); value &= ~SOR_HDMI_AUDIO_N_RESET; tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_N); tegra_sor_hdmi_enable_audio_infoframe(sor); } static void tegra_sor_hdmi_disable_audio_infoframe(struct tegra_sor *sor) { u32 value; value = tegra_sor_readl(sor, SOR_HDMI_AUDIO_INFOFRAME_CTRL); value &= ~INFOFRAME_CTRL_ENABLE; tegra_sor_writel(sor, value, SOR_HDMI_AUDIO_INFOFRAME_CTRL); } static void tegra_sor_hdmi_audio_disable(struct tegra_sor *sor) { tegra_sor_hdmi_disable_audio_infoframe(sor); } static struct tegra_sor_hdmi_settings * tegra_sor_hdmi_find_settings(struct tegra_sor *sor, unsigned long frequency) { unsigned int i; for (i = 0; i < sor->num_settings; i++) if (frequency <= sor->settings[i].frequency) return &sor->settings[i]; return NULL; } static void tegra_sor_hdmi_disable_scrambling(struct tegra_sor *sor) { u32 value; value = tegra_sor_readl(sor, SOR_HDMI2_CTRL); value &= ~SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4; value &= ~SOR_HDMI2_CTRL_SCRAMBLE; tegra_sor_writel(sor, value, SOR_HDMI2_CTRL); } static void tegra_sor_hdmi_scdc_disable(struct tegra_sor *sor) { struct i2c_adapter *ddc = sor->output.ddc; drm_scdc_set_high_tmds_clock_ratio(ddc, false); drm_scdc_set_scrambling(ddc, false); tegra_sor_hdmi_disable_scrambling(sor); } static void tegra_sor_hdmi_scdc_stop(struct tegra_sor *sor) { if (sor->scdc_enabled) { cancel_delayed_work_sync(&sor->scdc); tegra_sor_hdmi_scdc_disable(sor); } } static void tegra_sor_hdmi_enable_scrambling(struct tegra_sor *sor) { u32 value; value = tegra_sor_readl(sor, SOR_HDMI2_CTRL); value |= SOR_HDMI2_CTRL_CLOCK_MODE_DIV_BY_4; value |= SOR_HDMI2_CTRL_SCRAMBLE; tegra_sor_writel(sor, value, SOR_HDMI2_CTRL); } static void tegra_sor_hdmi_scdc_enable(struct tegra_sor *sor) { struct i2c_adapter *ddc = sor->output.ddc; drm_scdc_set_high_tmds_clock_ratio(ddc, true); drm_scdc_set_scrambling(ddc, true); tegra_sor_hdmi_enable_scrambling(sor); } static void tegra_sor_hdmi_scdc_work(struct work_struct *work) { struct tegra_sor *sor = container_of(work, struct tegra_sor, scdc.work); struct i2c_adapter *ddc = sor->output.ddc; if (!drm_scdc_get_scrambling_status(ddc)) { DRM_DEBUG_KMS("SCDC not scrambled\n"); tegra_sor_hdmi_scdc_enable(sor); } schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000)); } static void tegra_sor_hdmi_scdc_start(struct tegra_sor *sor) { struct drm_scdc *scdc = &sor->output.connector.display_info.hdmi.scdc; struct drm_display_mode *mode; mode = &sor->output.encoder.crtc->state->adjusted_mode; if (mode->clock >= 340000 && scdc->supported) { schedule_delayed_work(&sor->scdc, msecs_to_jiffies(5000)); tegra_sor_hdmi_scdc_enable(sor); sor->scdc_enabled = true; } } static void tegra_sor_hdmi_disable(struct drm_encoder *encoder) { struct tegra_output *output = encoder_to_output(encoder); struct tegra_dc *dc = to_tegra_dc(encoder->crtc); struct tegra_sor *sor = to_sor(output); u32 value; int err; tegra_sor_audio_unprepare(sor); tegra_sor_hdmi_scdc_stop(sor); err = tegra_sor_detach(sor); if (err < 0) dev_err(sor->dev, "failed to detach SOR: %d\n", err); tegra_sor_writel(sor, 0, SOR_STATE1); tegra_sor_update(sor); /* disable display to SOR clock */ value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); if (!sor->soc->has_nvdisplay) value &= ~(SOR1_TIMING_CYA | SOR_ENABLE(1)); else value &= ~SOR_ENABLE(sor->index); tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); tegra_dc_commit(dc); err = tegra_sor_power_down(sor); if (err < 0) dev_err(sor->dev, "failed to power down SOR: %d\n", err); err = tegra_io_pad_power_disable(sor->pad); if (err < 0) dev_err(sor->dev, "failed to power off I/O pad: %d\n", err); pm_runtime_put(sor->dev); } static void tegra_sor_hdmi_enable(struct drm_encoder *encoder) { struct tegra_output *output = encoder_to_output(encoder); unsigned int h_ref_to_sync = 1, pulse_start, max_ac; struct tegra_dc *dc = to_tegra_dc(encoder->crtc); struct tegra_sor_hdmi_settings *settings; struct tegra_sor *sor = to_sor(output); struct tegra_sor_state *state; struct drm_display_mode *mode; unsigned long rate, pclk; unsigned int div, i; u32 value; int err; state = to_sor_state(output->connector.state); mode = &encoder->crtc->state->adjusted_mode; pclk = mode->clock * 1000; pm_runtime_get_sync(sor->dev); /* switch to safe parent clock */ err = tegra_sor_set_parent_clock(sor, sor->clk_safe); if (err < 0) { dev_err(sor->dev, "failed to set safe parent clock: %d\n", err); return; } div = clk_get_rate(sor->clk) / 1000000 * 4; err = tegra_io_pad_power_enable(sor->pad); if (err < 0) dev_err(sor->dev, "failed to power on I/O pad: %d\n", err); usleep_range(20, 100); value = tegra_sor_readl(sor, sor->soc->regs->pll2); value &= ~SOR_PLL2_BANDGAP_POWERDOWN; tegra_sor_writel(sor, value, sor->soc->regs->pll2); usleep_range(20, 100); value = tegra_sor_readl(sor, sor->soc->regs->pll3); value &= ~SOR_PLL3_PLL_VDD_MODE_3V3; tegra_sor_writel(sor, value, sor->soc->regs->pll3); value = tegra_sor_readl(sor, sor->soc->regs->pll0); value &= ~SOR_PLL0_VCOPD; value &= ~SOR_PLL0_PWR; tegra_sor_writel(sor, value, sor->soc->regs->pll0); value = tegra_sor_readl(sor, sor->soc->regs->pll2); value &= ~SOR_PLL2_SEQ_PLLCAPPD_ENFORCE; tegra_sor_writel(sor, value, sor->soc->regs->pll2); usleep_range(200, 400); value = tegra_sor_readl(sor, sor->soc->regs->pll2); value &= ~SOR_PLL2_POWERDOWN_OVERRIDE; value &= ~SOR_PLL2_PORT_POWERDOWN; tegra_sor_writel(sor, value, sor->soc->regs->pll2); usleep_range(20, 100); value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0); value |= SOR_DP_PADCTL_PD_TXD_3 | SOR_DP_PADCTL_PD_TXD_0 | SOR_DP_PADCTL_PD_TXD_1 | SOR_DP_PADCTL_PD_TXD_2; tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0); while (true) { value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL); if ((value & SOR_LANE_SEQ_CTL_STATE_BUSY) == 0) break; usleep_range(250, 1000); } value = SOR_LANE_SEQ_CTL_TRIGGER | SOR_LANE_SEQ_CTL_SEQUENCE_DOWN | SOR_LANE_SEQ_CTL_POWER_STATE_UP | SOR_LANE_SEQ_CTL_DELAY(5); tegra_sor_writel(sor, value, SOR_LANE_SEQ_CTL); while (true) { value = tegra_sor_readl(sor, SOR_LANE_SEQ_CTL); if ((value & SOR_LANE_SEQ_CTL_TRIGGER) == 0) break; usleep_range(250, 1000); } value = tegra_sor_readl(sor, SOR_CLK_CNTRL); value &= ~SOR_CLK_CNTRL_DP_LINK_SPEED_MASK; value &= ~SOR_CLK_CNTRL_DP_CLK_SEL_MASK; if (mode->clock < 340000) { DRM_DEBUG_KMS("setting 2.7 GHz link speed\n"); value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G2_70; } else { DRM_DEBUG_KMS("setting 5.4 GHz link speed\n"); value |= SOR_CLK_CNTRL_DP_LINK_SPEED_G5_40; } value |= SOR_CLK_CNTRL_DP_CLK_SEL_SINGLE_PCLK; tegra_sor_writel(sor, value, SOR_CLK_CNTRL); /* SOR pad PLL stabilization time */ usleep_range(250, 1000); value = tegra_sor_readl(sor, SOR_DP_LINKCTL0); value &= ~SOR_DP_LINKCTL_LANE_COUNT_MASK; value |= SOR_DP_LINKCTL_LANE_COUNT(4); tegra_sor_writel(sor, value, SOR_DP_LINKCTL0); value = tegra_sor_readl(sor, SOR_DP_SPARE0); value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE; value &= ~SOR_DP_SPARE_PANEL_INTERNAL; value &= ~SOR_DP_SPARE_SEQ_ENABLE; value &= ~SOR_DP_SPARE_MACRO_SOR_CLK; tegra_sor_writel(sor, value, SOR_DP_SPARE0); value = SOR_SEQ_CTL_PU_PC(0) | SOR_SEQ_CTL_PU_PC_ALT(0) | SOR_SEQ_CTL_PD_PC(8) | SOR_SEQ_CTL_PD_PC_ALT(8); tegra_sor_writel(sor, value, SOR_SEQ_CTL); value = SOR_SEQ_INST_DRIVE_PWM_OUT_LO | SOR_SEQ_INST_HALT | SOR_SEQ_INST_WAIT_VSYNC | SOR_SEQ_INST_WAIT(1); tegra_sor_writel(sor, value, SOR_SEQ_INST(0)); tegra_sor_writel(sor, value, SOR_SEQ_INST(8)); if (!sor->soc->has_nvdisplay) { /* program the reference clock */ value = SOR_REFCLK_DIV_INT(div) | SOR_REFCLK_DIV_FRAC(div); tegra_sor_writel(sor, value, SOR_REFCLK); } /* XXX not in TRM */ for (value = 0, i = 0; i < 5; i++) value |= SOR_XBAR_CTRL_LINK0_XSEL(i, sor->xbar_cfg[i]) | SOR_XBAR_CTRL_LINK1_XSEL(i, i); tegra_sor_writel(sor, 0x00000000, SOR_XBAR_POL); tegra_sor_writel(sor, value, SOR_XBAR_CTRL); /* switch to parent clock */ err = clk_set_parent(sor->clk, sor->clk_parent); if (err < 0) { dev_err(sor->dev, "failed to set parent clock: %d\n", err); return; } err = tegra_sor_set_parent_clock(sor, sor->clk_pad); if (err < 0) { dev_err(sor->dev, "failed to set pad clock: %d\n", err); return; } /* adjust clock rate for HDMI 2.0 modes */ rate = clk_get_rate(sor->clk_parent); if (mode->clock >= 340000) rate /= 2; DRM_DEBUG_KMS("setting clock to %lu Hz, mode: %lu Hz\n", rate, pclk); clk_set_rate(sor->clk, rate); if (!sor->soc->has_nvdisplay) { value = SOR_INPUT_CONTROL_HDMI_SRC_SELECT(dc->pipe); /* XXX is this the proper check? */ if (mode->clock < 75000) value |= SOR_INPUT_CONTROL_ARM_VIDEO_RANGE_LIMITED; tegra_sor_writel(sor, value, SOR_INPUT_CONTROL); } max_ac = ((mode->htotal - mode->hdisplay) - SOR_REKEY - 18) / 32; value = SOR_HDMI_CTRL_ENABLE | SOR_HDMI_CTRL_MAX_AC_PACKET(max_ac) | SOR_HDMI_CTRL_AUDIO_LAYOUT | SOR_HDMI_CTRL_REKEY(SOR_REKEY); tegra_sor_writel(sor, value, SOR_HDMI_CTRL); if (!dc->soc->has_nvdisplay) { /* H_PULSE2 setup */ pulse_start = h_ref_to_sync + (mode->hsync_end - mode->hsync_start) + (mode->htotal - mode->hsync_end) - 10; value = PULSE_LAST_END_A | PULSE_QUAL_VACTIVE | PULSE_POLARITY_HIGH | PULSE_MODE_NORMAL; tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_CONTROL); value = PULSE_END(pulse_start + 8) | PULSE_START(pulse_start); tegra_dc_writel(dc, value, DC_DISP_H_PULSE2_POSITION_A); value = tegra_dc_readl(dc, DC_DISP_DISP_SIGNAL_OPTIONS0); value |= H_PULSE2_ENABLE; tegra_dc_writel(dc, value, DC_DISP_DISP_SIGNAL_OPTIONS0); } /* infoframe setup */ err = tegra_sor_hdmi_setup_avi_infoframe(sor, mode); if (err < 0) dev_err(sor->dev, "failed to setup AVI infoframe: %d\n", err); /* XXX HDMI audio support not implemented yet */ tegra_sor_hdmi_disable_audio_infoframe(sor); /* use single TMDS protocol */ value = tegra_sor_readl(sor, SOR_STATE1); value &= ~SOR_STATE_ASY_PROTOCOL_MASK; value |= SOR_STATE_ASY_PROTOCOL_SINGLE_TMDS_A; tegra_sor_writel(sor, value, SOR_STATE1); /* power up pad calibration */ value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0); value &= ~SOR_DP_PADCTL_PAD_CAL_PD; tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0); /* production settings */ settings = tegra_sor_hdmi_find_settings(sor, mode->clock * 1000); if (!settings) { dev_err(sor->dev, "no settings for pixel clock %d Hz\n", mode->clock * 1000); return; } value = tegra_sor_readl(sor, sor->soc->regs->pll0); value &= ~SOR_PLL0_ICHPMP_MASK; value &= ~SOR_PLL0_FILTER_MASK; value &= ~SOR_PLL0_VCOCAP_MASK; value |= SOR_PLL0_ICHPMP(settings->ichpmp); value |= SOR_PLL0_FILTER(settings->filter); value |= SOR_PLL0_VCOCAP(settings->vcocap); tegra_sor_writel(sor, value, sor->soc->regs->pll0); /* XXX not in TRM */ value = tegra_sor_readl(sor, sor->soc->regs->pll1); value &= ~SOR_PLL1_LOADADJ_MASK; value &= ~SOR_PLL1_TMDS_TERMADJ_MASK; value |= SOR_PLL1_LOADADJ(settings->loadadj); value |= SOR_PLL1_TMDS_TERMADJ(settings->tmds_termadj); value |= SOR_PLL1_TMDS_TERM; tegra_sor_writel(sor, value, sor->soc->regs->pll1); value = tegra_sor_readl(sor, sor->soc->regs->pll3); value &= ~SOR_PLL3_BG_TEMP_COEF_MASK; value &= ~SOR_PLL3_BG_VREF_LEVEL_MASK; value &= ~SOR_PLL3_AVDD10_LEVEL_MASK; value &= ~SOR_PLL3_AVDD14_LEVEL_MASK; value |= SOR_PLL3_BG_TEMP_COEF(settings->bg_temp_coef); value |= SOR_PLL3_BG_VREF_LEVEL(settings->bg_vref_level); value |= SOR_PLL3_AVDD10_LEVEL(settings->avdd10_level); value |= SOR_PLL3_AVDD14_LEVEL(settings->avdd14_level); tegra_sor_writel(sor, value, sor->soc->regs->pll3); value = settings->drive_current[3] << 24 | settings->drive_current[2] << 16 | settings->drive_current[1] << 8 | settings->drive_current[0] << 0; tegra_sor_writel(sor, value, SOR_LANE_DRIVE_CURRENT0); value = settings->preemphasis[3] << 24 | settings->preemphasis[2] << 16 | settings->preemphasis[1] << 8 | settings->preemphasis[0] << 0; tegra_sor_writel(sor, value, SOR_LANE_PREEMPHASIS0); value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0); value &= ~SOR_DP_PADCTL_TX_PU_MASK; value |= SOR_DP_PADCTL_TX_PU_ENABLE; value |= SOR_DP_PADCTL_TX_PU(settings->tx_pu_value); tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0); value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl2); value &= ~SOR_DP_PADCTL_SPAREPLL_MASK; value |= SOR_DP_PADCTL_SPAREPLL(settings->sparepll); tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl2); /* power down pad calibration */ value = tegra_sor_readl(sor, sor->soc->regs->dp_padctl0); value |= SOR_DP_PADCTL_PAD_CAL_PD; tegra_sor_writel(sor, value, sor->soc->regs->dp_padctl0); if (!dc->soc->has_nvdisplay) { /* miscellaneous display controller settings */ value = VSYNC_H_POSITION(1); tegra_dc_writel(dc, value, DC_DISP_DISP_TIMING_OPTIONS); } value = tegra_dc_readl(dc, DC_DISP_DISP_COLOR_CONTROL); value &= ~DITHER_CONTROL_MASK; value &= ~BASE_COLOR_SIZE_MASK; switch (state->bpc) { case 6: value |= BASE_COLOR_SIZE_666; break; case 8: value |= BASE_COLOR_SIZE_888; break; case 10: value |= BASE_COLOR_SIZE_101010; break; case 12: value |= BASE_COLOR_SIZE_121212; break; default: WARN(1, "%u bits-per-color not supported\n", state->bpc); value |= BASE_COLOR_SIZE_888; break; } tegra_dc_writel(dc, value, DC_DISP_DISP_COLOR_CONTROL); /* XXX set display head owner */ value = tegra_sor_readl(sor, SOR_STATE1); value &= ~SOR_STATE_ASY_OWNER_MASK; value |= SOR_STATE_ASY_OWNER(1 + dc->pipe); tegra_sor_writel(sor, value, SOR_STATE1); err = tegra_sor_power_up(sor, 250); if (err < 0) dev_err(sor->dev, "failed to power up SOR: %d\n", err); /* configure dynamic range of output */ value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe); value &= ~SOR_HEAD_STATE_RANGECOMPRESS_MASK; value &= ~SOR_HEAD_STATE_DYNRANGE_MASK; tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe); /* configure colorspace */ value = tegra_sor_readl(sor, sor->soc->regs->head_state0 + dc->pipe); value &= ~SOR_HEAD_STATE_COLORSPACE_MASK; value |= SOR_HEAD_STATE_COLORSPACE_RGB; tegra_sor_writel(sor, value, sor->soc->regs->head_state0 + dc->pipe); tegra_sor_mode_set(sor, mode, state); tegra_sor_update(sor); /* program preamble timing in SOR (XXX) */ value = tegra_sor_readl(sor, SOR_DP_SPARE0); value &= ~SOR_DP_SPARE_DISP_VIDEO_PREAMBLE; tegra_sor_writel(sor, value, SOR_DP_SPARE0); err = tegra_sor_attach(sor); if (err < 0) dev_err(sor->dev, "failed to attach SOR: %d\n", err); /* enable display to SOR clock and generate HDMI preamble */ value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS); if (!sor->soc->has_nvdisplay) value |= SOR_ENABLE(1) | SOR1_TIMING_CYA; else value |= SOR_ENABLE(sor->index); tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS); if (dc->soc->has_nvdisplay) { value = tegra_dc_readl(dc, DC_DISP_CORE_SOR_SET_CONTROL(sor->index)); value &= ~PROTOCOL_MASK; value |= PROTOCOL_SINGLE_TMDS_A; tegra_dc_writel(dc, value, DC_DISP_CORE_SOR_SET_CONTROL(sor->index)); } tegra_dc_commit(dc); err = tegra_sor_wakeup(sor); if (err < 0) dev_err(sor->dev, "failed to wakeup SOR: %d\n", err); tegra_sor_hdmi_scdc_start(sor); tegra_sor_audio_prepare(sor); } static const struct drm_encoder_helper_funcs tegra_sor_hdmi_helpers = { .disable = tegra_sor_hdmi_disable, .enable = tegra_sor_hdmi_enable, .atomic_check = tegra_sor_encoder_atomic_check, }; static int tegra_sor_init(struct host1x_client *client) { struct drm_device *drm = dev_get_drvdata(client->parent); const struct drm_encoder_helper_funcs *helpers = NULL; struct tegra_sor *sor = host1x_client_to_sor(client); int connector = DRM_MODE_CONNECTOR_Unknown; int encoder = DRM_MODE_ENCODER_NONE; u32 value; int err; if (!sor->aux) { if (sor->soc->supports_hdmi) { connector = DRM_MODE_CONNECTOR_HDMIA; encoder = DRM_MODE_ENCODER_TMDS; helpers = &tegra_sor_hdmi_helpers; } else if (sor->soc->supports_lvds) { connector = DRM_MODE_CONNECTOR_LVDS; encoder = DRM_MODE_ENCODER_LVDS; } } else { if (sor->soc->supports_edp) { connector = DRM_MODE_CONNECTOR_eDP; encoder = DRM_MODE_ENCODER_TMDS; helpers = &tegra_sor_edp_helpers; } else if (sor->soc->supports_dp) { connector = DRM_MODE_CONNECTOR_DisplayPort; encoder = DRM_MODE_ENCODER_TMDS; } } sor->output.dev = sor->dev; drm_connector_init(drm, &sor->output.connector, &tegra_sor_connector_funcs, connector); drm_connector_helper_add(&sor->output.connector, &tegra_sor_connector_helper_funcs); sor->output.connector.dpms = DRM_MODE_DPMS_OFF; drm_encoder_init(drm, &sor->output.encoder, &tegra_sor_encoder_funcs, encoder, NULL); drm_encoder_helper_add(&sor->output.encoder, helpers); drm_connector_attach_encoder(&sor->output.connector, &sor->output.encoder); drm_connector_register(&sor->output.connector); err = tegra_output_init(drm, &sor->output); if (err < 0) { dev_err(client->dev, "failed to initialize output: %d\n", err); return err; } tegra_output_find_possible_crtcs(&sor->output, drm); if (sor->aux) { err = drm_dp_aux_attach(sor->aux, &sor->output); if (err < 0) { dev_err(sor->dev, "failed to attach DP: %d\n", err); return err; } } /* * XXX: Remove this reset once proper hand-over from firmware to * kernel is possible. */ if (sor->rst) { err = reset_control_acquire(sor->rst); if (err < 0) { dev_err(sor->dev, "failed to acquire SOR reset: %d\n", err); return err; } err = reset_control_assert(sor->rst); if (err < 0) { dev_err(sor->dev, "failed to assert SOR reset: %d\n", err); return err; } } err = clk_prepare_enable(sor->clk); if (err < 0) { dev_err(sor->dev, "failed to enable clock: %d\n", err); return err; } usleep_range(1000, 3000); if (sor->rst) { err = reset_control_deassert(sor->rst); if (err < 0) { dev_err(sor->dev, "failed to deassert SOR reset: %d\n", err); return err; } reset_control_release(sor->rst); } err = clk_prepare_enable(sor->clk_safe); if (err < 0) return err; err = clk_prepare_enable(sor->clk_dp); if (err < 0) return err; /* * Enable and unmask the HDA codec SCRATCH0 register interrupt. This * is used for interoperability between the HDA codec driver and the * HDMI/DP driver. */ value = SOR_INT_CODEC_SCRATCH1 | SOR_INT_CODEC_SCRATCH0; tegra_sor_writel(sor, value, SOR_INT_ENABLE); tegra_sor_writel(sor, value, SOR_INT_MASK); return 0; } static int tegra_sor_exit(struct host1x_client *client) { struct tegra_sor *sor = host1x_client_to_sor(client); int err; tegra_sor_writel(sor, 0, SOR_INT_MASK); tegra_sor_writel(sor, 0, SOR_INT_ENABLE); tegra_output_exit(&sor->output); if (sor->aux) { err = drm_dp_aux_detach(sor->aux); if (err < 0) { dev_err(sor->dev, "failed to detach DP: %d\n", err); return err; } } clk_disable_unprepare(sor->clk_safe); clk_disable_unprepare(sor->clk_dp); clk_disable_unprepare(sor->clk); return 0; } static const struct host1x_client_ops sor_client_ops = { .init = tegra_sor_init, .exit = tegra_sor_exit, }; static const struct tegra_sor_ops tegra_sor_edp_ops = { .name = "eDP", }; static int tegra_sor_hdmi_probe(struct tegra_sor *sor) { int err; sor->avdd_io_supply = devm_regulator_get(sor->dev, "avdd-io"); if (IS_ERR(sor->avdd_io_supply)) { dev_err(sor->dev, "cannot get AVDD I/O supply: %ld\n", PTR_ERR(sor->avdd_io_supply)); return PTR_ERR(sor->avdd_io_supply); } err = regulator_enable(sor->avdd_io_supply); if (err < 0) { dev_err(sor->dev, "failed to enable AVDD I/O supply: %d\n", err); return err; } sor->vdd_pll_supply = devm_regulator_get(sor->dev, "vdd-pll"); if (IS_ERR(sor->vdd_pll_supply)) { dev_err(sor->dev, "cannot get VDD PLL supply: %ld\n", PTR_ERR(sor->vdd_pll_supply)); return PTR_ERR(sor->vdd_pll_supply); } err = regulator_enable(sor->vdd_pll_supply); if (err < 0) { dev_err(sor->dev, "failed to enable VDD PLL supply: %d\n", err); return err; } sor->hdmi_supply = devm_regulator_get(sor->dev, "hdmi"); if (IS_ERR(sor->hdmi_supply)) { dev_err(sor->dev, "cannot get HDMI supply: %ld\n", PTR_ERR(sor->hdmi_supply)); return PTR_ERR(sor->hdmi_supply); } err = regulator_enable(sor->hdmi_supply); if (err < 0) { dev_err(sor->dev, "failed to enable HDMI supply: %d\n", err); return err; } INIT_DELAYED_WORK(&sor->scdc, tegra_sor_hdmi_scdc_work); return 0; } static int tegra_sor_hdmi_remove(struct tegra_sor *sor) { regulator_disable(sor->hdmi_supply); regulator_disable(sor->vdd_pll_supply); regulator_disable(sor->avdd_io_supply); return 0; } static const struct tegra_sor_ops tegra_sor_hdmi_ops = { .name = "HDMI", .probe = tegra_sor_hdmi_probe, .remove = tegra_sor_hdmi_remove, }; static const u8 tegra124_sor_xbar_cfg[5] = { 0, 1, 2, 3, 4 }; static const struct tegra_sor_regs tegra124_sor_regs = { .head_state0 = 0x05, .head_state1 = 0x07, .head_state2 = 0x09, .head_state3 = 0x0b, .head_state4 = 0x0d, .head_state5 = 0x0f, .pll0 = 0x17, .pll1 = 0x18, .pll2 = 0x19, .pll3 = 0x1a, .dp_padctl0 = 0x5c, .dp_padctl2 = 0x73, }; static const struct tegra_sor_soc tegra124_sor = { .supports_edp = true, .supports_lvds = true, .supports_hdmi = false, .supports_dp = false, .regs = &tegra124_sor_regs, .has_nvdisplay = false, .xbar_cfg = tegra124_sor_xbar_cfg, }; static const struct tegra_sor_regs tegra210_sor_regs = { .head_state0 = 0x05, .head_state1 = 0x07, .head_state2 = 0x09, .head_state3 = 0x0b, .head_state4 = 0x0d, .head_state5 = 0x0f, .pll0 = 0x17, .pll1 = 0x18, .pll2 = 0x19, .pll3 = 0x1a, .dp_padctl0 = 0x5c, .dp_padctl2 = 0x73, }; static const struct tegra_sor_soc tegra210_sor = { .supports_edp = true, .supports_lvds = false, .supports_hdmi = false, .supports_dp = false, .regs = &tegra210_sor_regs, .has_nvdisplay = false, .xbar_cfg = tegra124_sor_xbar_cfg, }; static const u8 tegra210_sor_xbar_cfg[5] = { 2, 1, 0, 3, 4 }; static const struct tegra_sor_soc tegra210_sor1 = { .supports_edp = false, .supports_lvds = false, .supports_hdmi = true, .supports_dp = true, .regs = &tegra210_sor_regs, .has_nvdisplay = false, .num_settings = ARRAY_SIZE(tegra210_sor_hdmi_defaults), .settings = tegra210_sor_hdmi_defaults, .xbar_cfg = tegra210_sor_xbar_cfg, }; static const struct tegra_sor_regs tegra186_sor_regs = { .head_state0 = 0x151, .head_state1 = 0x154, .head_state2 = 0x157, .head_state3 = 0x15a, .head_state4 = 0x15d, .head_state5 = 0x160, .pll0 = 0x163, .pll1 = 0x164, .pll2 = 0x165, .pll3 = 0x166, .dp_padctl0 = 0x168, .dp_padctl2 = 0x16a, }; static const struct tegra_sor_soc tegra186_sor = { .supports_edp = false, .supports_lvds = false, .supports_hdmi = false, .supports_dp = true, .regs = &tegra186_sor_regs, .has_nvdisplay = true, .xbar_cfg = tegra124_sor_xbar_cfg, }; static const struct tegra_sor_soc tegra186_sor1 = { .supports_edp = false, .supports_lvds = false, .supports_hdmi = true, .supports_dp = true, .regs = &tegra186_sor_regs, .has_nvdisplay = true, .num_settings = ARRAY_SIZE(tegra186_sor_hdmi_defaults), .settings = tegra186_sor_hdmi_defaults, .xbar_cfg = tegra124_sor_xbar_cfg, }; static const struct tegra_sor_regs tegra194_sor_regs = { .head_state0 = 0x151, .head_state1 = 0x155, .head_state2 = 0x159, .head_state3 = 0x15d, .head_state4 = 0x161, .head_state5 = 0x165, .pll0 = 0x169, .pll1 = 0x16a, .pll2 = 0x16b, .pll3 = 0x16c, .dp_padctl0 = 0x16e, .dp_padctl2 = 0x16f, }; static const struct tegra_sor_soc tegra194_sor = { .supports_edp = true, .supports_lvds = false, .supports_hdmi = true, .supports_dp = true, .regs = &tegra194_sor_regs, .has_nvdisplay = true, .num_settings = ARRAY_SIZE(tegra194_sor_hdmi_defaults), .settings = tegra194_sor_hdmi_defaults, .xbar_cfg = tegra210_sor_xbar_cfg, }; static const struct of_device_id tegra_sor_of_match[] = { { .compatible = "nvidia,tegra194-sor", .data = &tegra194_sor }, { .compatible = "nvidia,tegra186-sor1", .data = &tegra186_sor1 }, { .compatible = "nvidia,tegra186-sor", .data = &tegra186_sor }, { .compatible = "nvidia,tegra210-sor1", .data = &tegra210_sor1 }, { .compatible = "nvidia,tegra210-sor", .data = &tegra210_sor }, { .compatible = "nvidia,tegra124-sor", .data = &tegra124_sor }, { }, }; MODULE_DEVICE_TABLE(of, tegra_sor_of_match); static int tegra_sor_parse_dt(struct tegra_sor *sor) { struct device_node *np = sor->dev->of_node; u32 xbar_cfg[5]; unsigned int i; u32 value; int err; if (sor->soc->has_nvdisplay) { err = of_property_read_u32(np, "nvidia,interface", &value); if (err < 0) return err; sor->index = value; /* * override the default that we already set for Tegra210 and * earlier */ sor->pad = TEGRA_IO_PAD_HDMI_DP0 + sor->index; } err = of_property_read_u32_array(np, "nvidia,xbar-cfg", xbar_cfg, 5); if (err < 0) { /* fall back to default per-SoC XBAR configuration */ for (i = 0; i < 5; i++) sor->xbar_cfg[i] = sor->soc->xbar_cfg[i]; } else { /* copy cells to SOR XBAR configuration */ for (i = 0; i < 5; i++) sor->xbar_cfg[i] = xbar_cfg[i]; } return 0; } static irqreturn_t tegra_sor_irq(int irq, void *data) { struct tegra_sor *sor = data; u32 value; value = tegra_sor_readl(sor, SOR_INT_STATUS); tegra_sor_writel(sor, value, SOR_INT_STATUS); if (value & SOR_INT_CODEC_SCRATCH0) { value = tegra_sor_readl(sor, SOR_AUDIO_HDA_CODEC_SCRATCH0); if (value & SOR_AUDIO_HDA_CODEC_SCRATCH0_VALID) { unsigned int format; format = value & SOR_AUDIO_HDA_CODEC_SCRATCH0_FMT_MASK; tegra_hda_parse_format(format, &sor->format); tegra_sor_hdmi_audio_enable(sor); } else { tegra_sor_hdmi_audio_disable(sor); } } return IRQ_HANDLED; } static int tegra_sor_probe(struct platform_device *pdev) { struct device_node *np; struct tegra_sor *sor; struct resource *regs; int err; sor = devm_kzalloc(&pdev->dev, sizeof(*sor), GFP_KERNEL); if (!sor) return -ENOMEM; sor->soc = of_device_get_match_data(&pdev->dev); sor->output.dev = sor->dev = &pdev->dev; sor->settings = devm_kmemdup(&pdev->dev, sor->soc->settings, sor->soc->num_settings * sizeof(*sor->settings), GFP_KERNEL); if (!sor->settings) return -ENOMEM; sor->num_settings = sor->soc->num_settings; np = of_parse_phandle(pdev->dev.of_node, "nvidia,dpaux", 0); if (np) { sor->aux = drm_dp_aux_find_by_of_node(np); of_node_put(np); if (!sor->aux) return -EPROBE_DEFER; } if (!sor->aux) { if (sor->soc->supports_hdmi) { sor->ops = &tegra_sor_hdmi_ops; sor->pad = TEGRA_IO_PAD_HDMI; } else if (sor->soc->supports_lvds) { dev_err(&pdev->dev, "LVDS not supported yet\n"); return -ENODEV; } else { dev_err(&pdev->dev, "unknown (non-DP) support\n"); return -ENODEV; } } else { if (sor->soc->supports_edp) { sor->ops = &tegra_sor_edp_ops; sor->pad = TEGRA_IO_PAD_LVDS; } else if (sor->soc->supports_dp) { dev_err(&pdev->dev, "DisplayPort not supported yet\n"); return -ENODEV; } else { dev_err(&pdev->dev, "unknown (DP) support\n"); return -ENODEV; } } err = tegra_sor_parse_dt(sor); if (err < 0) return err; err = tegra_output_probe(&sor->output); if (err < 0) { dev_err(&pdev->dev, "failed to probe output: %d\n", err); return err; } if (sor->ops && sor->ops->probe) { err = sor->ops->probe(sor); if (err < 0) { dev_err(&pdev->dev, "failed to probe %s: %d\n", sor->ops->name, err); goto output; } } regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); sor->regs = devm_ioremap_resource(&pdev->dev, regs); if (IS_ERR(sor->regs)) { err = PTR_ERR(sor->regs); goto remove; } err = platform_get_irq(pdev, 0); if (err < 0) { dev_err(&pdev->dev, "failed to get IRQ: %d\n", err); goto remove; } sor->irq = err; err = devm_request_irq(sor->dev, sor->irq, tegra_sor_irq, 0, dev_name(sor->dev), sor); if (err < 0) { dev_err(&pdev->dev, "failed to request IRQ: %d\n", err); goto remove; } sor->rst = devm_reset_control_get_exclusive_released(&pdev->dev, "sor"); if (IS_ERR(sor->rst)) { err = PTR_ERR(sor->rst); if (err != -EBUSY || WARN_ON(!pdev->dev.pm_domain)) { dev_err(&pdev->dev, "failed to get reset control: %d\n", err); goto remove; } /* * At this point, the reset control is most likely being used * by the generic power domain implementation. With any luck * the power domain will have taken care of resetting the SOR * and we don't have to do anything. */ sor->rst = NULL; } sor->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(sor->clk)) { err = PTR_ERR(sor->clk); dev_err(&pdev->dev, "failed to get module clock: %d\n", err); goto remove; } if (sor->soc->supports_hdmi || sor->soc->supports_dp) { struct device_node *np = pdev->dev.of_node; const char *name; /* * For backwards compatibility with Tegra210 device trees, * fall back to the old clock name "source" if the new "out" * clock is not available. */ if (of_property_match_string(np, "clock-names", "out") < 0) name = "source"; else name = "out"; sor->clk_out = devm_clk_get(&pdev->dev, name); if (IS_ERR(sor->clk_out)) { err = PTR_ERR(sor->clk_out); dev_err(sor->dev, "failed to get %s clock: %d\n", name, err); goto remove; } } else { /* fall back to the module clock on SOR0 (eDP/LVDS only) */ sor->clk_out = sor->clk; } sor->clk_parent = devm_clk_get(&pdev->dev, "parent"); if (IS_ERR(sor->clk_parent)) { err = PTR_ERR(sor->clk_parent); dev_err(&pdev->dev, "failed to get parent clock: %d\n", err); goto remove; } sor->clk_safe = devm_clk_get(&pdev->dev, "safe"); if (IS_ERR(sor->clk_safe)) { err = PTR_ERR(sor->clk_safe); dev_err(&pdev->dev, "failed to get safe clock: %d\n", err); goto remove; } sor->clk_dp = devm_clk_get(&pdev->dev, "dp"); if (IS_ERR(sor->clk_dp)) { err = PTR_ERR(sor->clk_dp); dev_err(&pdev->dev, "failed to get DP clock: %d\n", err); goto remove; } /* * Starting with Tegra186, the BPMP provides an implementation for * the pad output clock, so we have to look it up from device tree. */ sor->clk_pad = devm_clk_get(&pdev->dev, "pad"); if (IS_ERR(sor->clk_pad)) { if (sor->clk_pad != ERR_PTR(-ENOENT)) { err = PTR_ERR(sor->clk_pad); goto remove; } /* * If the pad output clock is not available, then we assume * we're on Tegra210 or earlier and have to provide our own * implementation. */ sor->clk_pad = NULL; } /* * The bootloader may have set up the SOR such that it's module clock * is sourced by one of the display PLLs. However, that doesn't work * without properly having set up other bits of the SOR. */ err = clk_set_parent(sor->clk_out, sor->clk_safe); if (err < 0) { dev_err(&pdev->dev, "failed to use safe clock: %d\n", err); goto remove; } platform_set_drvdata(pdev, sor); pm_runtime_enable(&pdev->dev); /* * On Tegra210 and earlier, provide our own implementation for the * pad output clock. */ if (!sor->clk_pad) { err = pm_runtime_get_sync(&pdev->dev); if (err < 0) { dev_err(&pdev->dev, "failed to get runtime PM: %d\n", err); goto remove; } sor->clk_pad = tegra_clk_sor_pad_register(sor, "sor1_pad_clkout"); pm_runtime_put(&pdev->dev); } if (IS_ERR(sor->clk_pad)) { err = PTR_ERR(sor->clk_pad); dev_err(&pdev->dev, "failed to register SOR pad clock: %d\n", err); goto remove; } INIT_LIST_HEAD(&sor->client.list); sor->client.ops = &sor_client_ops; sor->client.dev = &pdev->dev; err = host1x_client_register(&sor->client); if (err < 0) { dev_err(&pdev->dev, "failed to register host1x client: %d\n", err); goto remove; } return 0; remove: if (sor->ops && sor->ops->remove) sor->ops->remove(sor); output: tegra_output_remove(&sor->output); return err; } static int tegra_sor_remove(struct platform_device *pdev) { struct tegra_sor *sor = platform_get_drvdata(pdev); int err; pm_runtime_disable(&pdev->dev); err = host1x_client_unregister(&sor->client); if (err < 0) { dev_err(&pdev->dev, "failed to unregister host1x client: %d\n", err); return err; } if (sor->ops && sor->ops->remove) { err = sor->ops->remove(sor); if (err < 0) dev_err(&pdev->dev, "failed to remove SOR: %d\n", err); } tegra_output_remove(&sor->output); return 0; } #ifdef CONFIG_PM static int tegra_sor_suspend(struct device *dev) { struct tegra_sor *sor = dev_get_drvdata(dev); int err; if (sor->rst) { err = reset_control_assert(sor->rst); if (err < 0) { dev_err(dev, "failed to assert reset: %d\n", err); return err; } reset_control_release(sor->rst); } usleep_range(1000, 2000); clk_disable_unprepare(sor->clk); return 0; } static int tegra_sor_resume(struct device *dev) { struct tegra_sor *sor = dev_get_drvdata(dev); int err; err = clk_prepare_enable(sor->clk); if (err < 0) { dev_err(dev, "failed to enable clock: %d\n", err); return err; } usleep_range(1000, 2000); if (sor->rst) { err = reset_control_acquire(sor->rst); if (err < 0) { dev_err(dev, "failed to acquire reset: %d\n", err); clk_disable_unprepare(sor->clk); return err; } err = reset_control_deassert(sor->rst); if (err < 0) { dev_err(dev, "failed to deassert reset: %d\n", err); reset_control_release(sor->rst); clk_disable_unprepare(sor->clk); return err; } } return 0; } #endif static const struct dev_pm_ops tegra_sor_pm_ops = { SET_RUNTIME_PM_OPS(tegra_sor_suspend, tegra_sor_resume, NULL) }; struct platform_driver tegra_sor_driver = { .driver = { .name = "tegra-sor", .of_match_table = tegra_sor_of_match, .pm = &tegra_sor_pm_ops, }, .probe = tegra_sor_probe, .remove = tegra_sor_remove, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1