Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thomas Hellstrom | 2205 | 66.12% | 19 | 51.35% |
Jakob Bornecrantz | 498 | 14.93% | 2 | 5.41% |
Christian König | 288 | 8.64% | 3 | 8.11% |
Jérôme Glisse | 276 | 8.28% | 4 | 10.81% |
Roger He | 28 | 0.84% | 2 | 5.41% |
Arvind Yadav | 12 | 0.36% | 1 | 2.70% |
Sinclair Yeh | 9 | 0.27% | 1 | 2.70% |
Ben Skeggs | 7 | 0.21% | 1 | 2.70% |
Rashika Kheria | 4 | 0.12% | 1 | 2.70% |
David Howells | 3 | 0.09% | 1 | 2.70% |
Nicolai Hähnle | 3 | 0.09% | 1 | 2.70% |
Dirk Hohndel | 2 | 0.06% | 1 | 2.70% |
Total | 3335 | 37 |
// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "vmwgfx_drv.h" #include <drm/ttm/ttm_bo_driver.h> #include <drm/ttm/ttm_placement.h> #include <drm/ttm/ttm_page_alloc.h> static const struct ttm_place vram_placement_flags = { .fpfn = 0, .lpfn = 0, .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED }; static const struct ttm_place vram_ne_placement_flags = { .fpfn = 0, .lpfn = 0, .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT }; static const struct ttm_place sys_placement_flags = { .fpfn = 0, .lpfn = 0, .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED }; static const struct ttm_place sys_ne_placement_flags = { .fpfn = 0, .lpfn = 0, .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT }; static const struct ttm_place gmr_placement_flags = { .fpfn = 0, .lpfn = 0, .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED }; static const struct ttm_place gmr_ne_placement_flags = { .fpfn = 0, .lpfn = 0, .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT }; static const struct ttm_place mob_placement_flags = { .fpfn = 0, .lpfn = 0, .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED }; static const struct ttm_place mob_ne_placement_flags = { .fpfn = 0, .lpfn = 0, .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT }; struct ttm_placement vmw_vram_placement = { .num_placement = 1, .placement = &vram_placement_flags, .num_busy_placement = 1, .busy_placement = &vram_placement_flags }; static const struct ttm_place vram_gmr_placement_flags[] = { { .fpfn = 0, .lpfn = 0, .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED }, { .fpfn = 0, .lpfn = 0, .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED } }; static const struct ttm_place gmr_vram_placement_flags[] = { { .fpfn = 0, .lpfn = 0, .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED }, { .fpfn = 0, .lpfn = 0, .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED } }; struct ttm_placement vmw_vram_gmr_placement = { .num_placement = 2, .placement = vram_gmr_placement_flags, .num_busy_placement = 1, .busy_placement = &gmr_placement_flags }; static const struct ttm_place vram_gmr_ne_placement_flags[] = { { .fpfn = 0, .lpfn = 0, .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT }, { .fpfn = 0, .lpfn = 0, .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT } }; struct ttm_placement vmw_vram_gmr_ne_placement = { .num_placement = 2, .placement = vram_gmr_ne_placement_flags, .num_busy_placement = 1, .busy_placement = &gmr_ne_placement_flags }; struct ttm_placement vmw_vram_sys_placement = { .num_placement = 1, .placement = &vram_placement_flags, .num_busy_placement = 1, .busy_placement = &sys_placement_flags }; struct ttm_placement vmw_vram_ne_placement = { .num_placement = 1, .placement = &vram_ne_placement_flags, .num_busy_placement = 1, .busy_placement = &vram_ne_placement_flags }; struct ttm_placement vmw_sys_placement = { .num_placement = 1, .placement = &sys_placement_flags, .num_busy_placement = 1, .busy_placement = &sys_placement_flags }; struct ttm_placement vmw_sys_ne_placement = { .num_placement = 1, .placement = &sys_ne_placement_flags, .num_busy_placement = 1, .busy_placement = &sys_ne_placement_flags }; static const struct ttm_place evictable_placement_flags[] = { { .fpfn = 0, .lpfn = 0, .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED }, { .fpfn = 0, .lpfn = 0, .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED }, { .fpfn = 0, .lpfn = 0, .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED }, { .fpfn = 0, .lpfn = 0, .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED } }; static const struct ttm_place nonfixed_placement_flags[] = { { .fpfn = 0, .lpfn = 0, .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED }, { .fpfn = 0, .lpfn = 0, .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED }, { .fpfn = 0, .lpfn = 0, .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED } }; struct ttm_placement vmw_evictable_placement = { .num_placement = 4, .placement = evictable_placement_flags, .num_busy_placement = 1, .busy_placement = &sys_placement_flags }; struct ttm_placement vmw_srf_placement = { .num_placement = 1, .num_busy_placement = 2, .placement = &gmr_placement_flags, .busy_placement = gmr_vram_placement_flags }; struct ttm_placement vmw_mob_placement = { .num_placement = 1, .num_busy_placement = 1, .placement = &mob_placement_flags, .busy_placement = &mob_placement_flags }; struct ttm_placement vmw_mob_ne_placement = { .num_placement = 1, .num_busy_placement = 1, .placement = &mob_ne_placement_flags, .busy_placement = &mob_ne_placement_flags }; struct ttm_placement vmw_nonfixed_placement = { .num_placement = 3, .placement = nonfixed_placement_flags, .num_busy_placement = 1, .busy_placement = &sys_placement_flags }; struct vmw_ttm_tt { struct ttm_dma_tt dma_ttm; struct vmw_private *dev_priv; int gmr_id; struct vmw_mob *mob; int mem_type; struct sg_table sgt; struct vmw_sg_table vsgt; uint64_t sg_alloc_size; bool mapped; }; const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt); /** * Helper functions to advance a struct vmw_piter iterator. * * @viter: Pointer to the iterator. * * These functions return false if past the end of the list, * true otherwise. Functions are selected depending on the current * DMA mapping mode. */ static bool __vmw_piter_non_sg_next(struct vmw_piter *viter) { return ++(viter->i) < viter->num_pages; } static bool __vmw_piter_sg_next(struct vmw_piter *viter) { bool ret = __vmw_piter_non_sg_next(viter); return __sg_page_iter_dma_next(&viter->iter) && ret; } /** * Helper functions to return a pointer to the current page. * * @viter: Pointer to the iterator * * These functions return a pointer to the page currently * pointed to by @viter. Functions are selected depending on the * current mapping mode. */ static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter) { return viter->pages[viter->i]; } /** * Helper functions to return the DMA address of the current page. * * @viter: Pointer to the iterator * * These functions return the DMA address of the page currently * pointed to by @viter. Functions are selected depending on the * current mapping mode. */ static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter) { return page_to_phys(viter->pages[viter->i]); } static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter) { return viter->addrs[viter->i]; } static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter) { return sg_page_iter_dma_address(&viter->iter); } /** * vmw_piter_start - Initialize a struct vmw_piter. * * @viter: Pointer to the iterator to initialize * @vsgt: Pointer to a struct vmw_sg_table to initialize from * * Note that we're following the convention of __sg_page_iter_start, so that * the iterator doesn't point to a valid page after initialization; it has * to be advanced one step first. */ void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt, unsigned long p_offset) { viter->i = p_offset - 1; viter->num_pages = vsgt->num_pages; viter->page = &__vmw_piter_non_sg_page; viter->pages = vsgt->pages; switch (vsgt->mode) { case vmw_dma_phys: viter->next = &__vmw_piter_non_sg_next; viter->dma_address = &__vmw_piter_phys_addr; break; case vmw_dma_alloc_coherent: viter->next = &__vmw_piter_non_sg_next; viter->dma_address = &__vmw_piter_dma_addr; viter->addrs = vsgt->addrs; break; case vmw_dma_map_populate: case vmw_dma_map_bind: viter->next = &__vmw_piter_sg_next; viter->dma_address = &__vmw_piter_sg_addr; __sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl, vsgt->sgt->orig_nents, p_offset); break; default: BUG(); } } /** * vmw_ttm_unmap_from_dma - unmap device addresses previsouly mapped for * TTM pages * * @vmw_tt: Pointer to a struct vmw_ttm_backend * * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma. */ static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt) { struct device *dev = vmw_tt->dev_priv->dev->dev; dma_unmap_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.nents, DMA_BIDIRECTIONAL); vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents; } /** * vmw_ttm_map_for_dma - map TTM pages to get device addresses * * @vmw_tt: Pointer to a struct vmw_ttm_backend * * This function is used to get device addresses from the kernel DMA layer. * However, it's violating the DMA API in that when this operation has been * performed, it's illegal for the CPU to write to the pages without first * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is * therefore only legal to call this function if we know that the function * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most * a CPU write buffer flush. */ static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt) { struct device *dev = vmw_tt->dev_priv->dev->dev; int ret; ret = dma_map_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.orig_nents, DMA_BIDIRECTIONAL); if (unlikely(ret == 0)) return -ENOMEM; vmw_tt->sgt.nents = ret; return 0; } /** * vmw_ttm_map_dma - Make sure TTM pages are visible to the device * * @vmw_tt: Pointer to a struct vmw_ttm_tt * * Select the correct function for and make sure the TTM pages are * visible to the device. Allocate storage for the device mappings. * If a mapping has already been performed, indicated by the storage * pointer being non NULL, the function returns success. */ static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt) { struct vmw_private *dev_priv = vmw_tt->dev_priv; struct ttm_mem_global *glob = vmw_mem_glob(dev_priv); struct vmw_sg_table *vsgt = &vmw_tt->vsgt; struct ttm_operation_ctx ctx = { .interruptible = true, .no_wait_gpu = false }; struct vmw_piter iter; dma_addr_t old; int ret = 0; static size_t sgl_size; static size_t sgt_size; if (vmw_tt->mapped) return 0; vsgt->mode = dev_priv->map_mode; vsgt->pages = vmw_tt->dma_ttm.ttm.pages; vsgt->num_pages = vmw_tt->dma_ttm.ttm.num_pages; vsgt->addrs = vmw_tt->dma_ttm.dma_address; vsgt->sgt = &vmw_tt->sgt; switch (dev_priv->map_mode) { case vmw_dma_map_bind: case vmw_dma_map_populate: if (unlikely(!sgl_size)) { sgl_size = ttm_round_pot(sizeof(struct scatterlist)); sgt_size = ttm_round_pot(sizeof(struct sg_table)); } vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages; ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx); if (unlikely(ret != 0)) return ret; ret = __sg_alloc_table_from_pages (&vmw_tt->sgt, vsgt->pages, vsgt->num_pages, 0, (unsigned long) vsgt->num_pages << PAGE_SHIFT, dma_get_max_seg_size(dev_priv->dev->dev), GFP_KERNEL); if (unlikely(ret != 0)) goto out_sg_alloc_fail; if (vsgt->num_pages > vmw_tt->sgt.nents) { uint64_t over_alloc = sgl_size * (vsgt->num_pages - vmw_tt->sgt.nents); ttm_mem_global_free(glob, over_alloc); vmw_tt->sg_alloc_size -= over_alloc; } ret = vmw_ttm_map_for_dma(vmw_tt); if (unlikely(ret != 0)) goto out_map_fail; break; default: break; } old = ~((dma_addr_t) 0); vmw_tt->vsgt.num_regions = 0; for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) { dma_addr_t cur = vmw_piter_dma_addr(&iter); if (cur != old + PAGE_SIZE) vmw_tt->vsgt.num_regions++; old = cur; } vmw_tt->mapped = true; return 0; out_map_fail: sg_free_table(vmw_tt->vsgt.sgt); vmw_tt->vsgt.sgt = NULL; out_sg_alloc_fail: ttm_mem_global_free(glob, vmw_tt->sg_alloc_size); return ret; } /** * vmw_ttm_unmap_dma - Tear down any TTM page device mappings * * @vmw_tt: Pointer to a struct vmw_ttm_tt * * Tear down any previously set up device DMA mappings and free * any storage space allocated for them. If there are no mappings set up, * this function is a NOP. */ static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt) { struct vmw_private *dev_priv = vmw_tt->dev_priv; if (!vmw_tt->vsgt.sgt) return; switch (dev_priv->map_mode) { case vmw_dma_map_bind: case vmw_dma_map_populate: vmw_ttm_unmap_from_dma(vmw_tt); sg_free_table(vmw_tt->vsgt.sgt); vmw_tt->vsgt.sgt = NULL; ttm_mem_global_free(vmw_mem_glob(dev_priv), vmw_tt->sg_alloc_size); break; default: break; } vmw_tt->mapped = false; } /** * vmw_bo_map_dma - Make sure buffer object pages are visible to the device * * @bo: Pointer to a struct ttm_buffer_object * * Wrapper around vmw_ttm_map_dma, that takes a TTM buffer object pointer * instead of a pointer to a struct vmw_ttm_backend as argument. * Note that the buffer object must be either pinned or reserved before * calling this function. */ int vmw_bo_map_dma(struct ttm_buffer_object *bo) { struct vmw_ttm_tt *vmw_tt = container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm); return vmw_ttm_map_dma(vmw_tt); } /** * vmw_bo_unmap_dma - Make sure buffer object pages are visible to the device * * @bo: Pointer to a struct ttm_buffer_object * * Wrapper around vmw_ttm_unmap_dma, that takes a TTM buffer object pointer * instead of a pointer to a struct vmw_ttm_backend as argument. */ void vmw_bo_unmap_dma(struct ttm_buffer_object *bo) { struct vmw_ttm_tt *vmw_tt = container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm); vmw_ttm_unmap_dma(vmw_tt); } /** * vmw_bo_sg_table - Return a struct vmw_sg_table object for a * TTM buffer object * * @bo: Pointer to a struct ttm_buffer_object * * Returns a pointer to a struct vmw_sg_table object. The object should * not be freed after use. * Note that for the device addresses to be valid, the buffer object must * either be reserved or pinned. */ const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo) { struct vmw_ttm_tt *vmw_tt = container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm); return &vmw_tt->vsgt; } static int vmw_ttm_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem) { struct vmw_ttm_tt *vmw_be = container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm); int ret; ret = vmw_ttm_map_dma(vmw_be); if (unlikely(ret != 0)) return ret; vmw_be->gmr_id = bo_mem->start; vmw_be->mem_type = bo_mem->mem_type; switch (bo_mem->mem_type) { case VMW_PL_GMR: return vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt, ttm->num_pages, vmw_be->gmr_id); case VMW_PL_MOB: if (unlikely(vmw_be->mob == NULL)) { vmw_be->mob = vmw_mob_create(ttm->num_pages); if (unlikely(vmw_be->mob == NULL)) return -ENOMEM; } return vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob, &vmw_be->vsgt, ttm->num_pages, vmw_be->gmr_id); default: BUG(); } return 0; } static int vmw_ttm_unbind(struct ttm_tt *ttm) { struct vmw_ttm_tt *vmw_be = container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm); switch (vmw_be->mem_type) { case VMW_PL_GMR: vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id); break; case VMW_PL_MOB: vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob); break; default: BUG(); } if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind) vmw_ttm_unmap_dma(vmw_be); return 0; } static void vmw_ttm_destroy(struct ttm_tt *ttm) { struct vmw_ttm_tt *vmw_be = container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm); vmw_ttm_unmap_dma(vmw_be); if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent) ttm_dma_tt_fini(&vmw_be->dma_ttm); else ttm_tt_fini(ttm); if (vmw_be->mob) vmw_mob_destroy(vmw_be->mob); kfree(vmw_be); } static int vmw_ttm_populate(struct ttm_tt *ttm, struct ttm_operation_ctx *ctx) { struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm); struct vmw_private *dev_priv = vmw_tt->dev_priv; struct ttm_mem_global *glob = vmw_mem_glob(dev_priv); int ret; if (ttm->state != tt_unpopulated) return 0; if (dev_priv->map_mode == vmw_dma_alloc_coherent) { size_t size = ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t)); ret = ttm_mem_global_alloc(glob, size, ctx); if (unlikely(ret != 0)) return ret; ret = ttm_dma_populate(&vmw_tt->dma_ttm, dev_priv->dev->dev, ctx); if (unlikely(ret != 0)) ttm_mem_global_free(glob, size); } else ret = ttm_pool_populate(ttm, ctx); return ret; } static void vmw_ttm_unpopulate(struct ttm_tt *ttm) { struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm); struct vmw_private *dev_priv = vmw_tt->dev_priv; struct ttm_mem_global *glob = vmw_mem_glob(dev_priv); if (vmw_tt->mob) { vmw_mob_destroy(vmw_tt->mob); vmw_tt->mob = NULL; } vmw_ttm_unmap_dma(vmw_tt); if (dev_priv->map_mode == vmw_dma_alloc_coherent) { size_t size = ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t)); ttm_dma_unpopulate(&vmw_tt->dma_ttm, dev_priv->dev->dev); ttm_mem_global_free(glob, size); } else ttm_pool_unpopulate(ttm); } static struct ttm_backend_func vmw_ttm_func = { .bind = vmw_ttm_bind, .unbind = vmw_ttm_unbind, .destroy = vmw_ttm_destroy, }; static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags) { struct vmw_ttm_tt *vmw_be; int ret; vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL); if (!vmw_be) return NULL; vmw_be->dma_ttm.ttm.func = &vmw_ttm_func; vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev); vmw_be->mob = NULL; if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent) ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bo, page_flags); else ret = ttm_tt_init(&vmw_be->dma_ttm.ttm, bo, page_flags); if (unlikely(ret != 0)) goto out_no_init; return &vmw_be->dma_ttm.ttm; out_no_init: kfree(vmw_be); return NULL; } static int vmw_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags) { return 0; } static int vmw_init_mem_type(struct ttm_bo_device *bdev, uint32_t type, struct ttm_mem_type_manager *man) { switch (type) { case TTM_PL_SYSTEM: /* System memory */ man->flags = TTM_MEMTYPE_FLAG_MAPPABLE; man->available_caching = TTM_PL_FLAG_CACHED; man->default_caching = TTM_PL_FLAG_CACHED; break; case TTM_PL_VRAM: /* "On-card" video ram */ man->func = &ttm_bo_manager_func; man->gpu_offset = 0; man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_MAPPABLE; man->available_caching = TTM_PL_FLAG_CACHED; man->default_caching = TTM_PL_FLAG_CACHED; break; case VMW_PL_GMR: case VMW_PL_MOB: /* * "Guest Memory Regions" is an aperture like feature with * one slot per bo. There is an upper limit of the number of * slots as well as the bo size. */ man->func = &vmw_gmrid_manager_func; man->gpu_offset = 0; man->flags = TTM_MEMTYPE_FLAG_CMA | TTM_MEMTYPE_FLAG_MAPPABLE; man->available_caching = TTM_PL_FLAG_CACHED; man->default_caching = TTM_PL_FLAG_CACHED; break; default: DRM_ERROR("Unsupported memory type %u\n", (unsigned)type); return -EINVAL; } return 0; } static void vmw_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *placement) { *placement = vmw_sys_placement; } static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp) { struct ttm_object_file *tfile = vmw_fpriv((struct drm_file *)filp->private_data)->tfile; return vmw_user_bo_verify_access(bo, tfile); } static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) { struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type]; struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev); mem->bus.addr = NULL; mem->bus.is_iomem = false; mem->bus.offset = 0; mem->bus.size = mem->num_pages << PAGE_SHIFT; mem->bus.base = 0; if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE)) return -EINVAL; switch (mem->mem_type) { case TTM_PL_SYSTEM: case VMW_PL_GMR: case VMW_PL_MOB: return 0; case TTM_PL_VRAM: mem->bus.offset = mem->start << PAGE_SHIFT; mem->bus.base = dev_priv->vram_start; mem->bus.is_iomem = true; break; default: return -EINVAL; } return 0; } static void vmw_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem) { } static int vmw_ttm_fault_reserve_notify(struct ttm_buffer_object *bo) { return 0; } /** * vmw_move_notify - TTM move_notify_callback * * @bo: The TTM buffer object about to move. * @mem: The struct ttm_mem_reg indicating to what memory * region the move is taking place. * * Calls move_notify for all subsystems needing it. * (currently only resources). */ static void vmw_move_notify(struct ttm_buffer_object *bo, bool evict, struct ttm_mem_reg *mem) { vmw_bo_move_notify(bo, mem); vmw_query_move_notify(bo, mem); } /** * vmw_swap_notify - TTM move_notify_callback * * @bo: The TTM buffer object about to be swapped out. */ static void vmw_swap_notify(struct ttm_buffer_object *bo) { vmw_bo_swap_notify(bo); (void) ttm_bo_wait(bo, false, false); } struct ttm_bo_driver vmw_bo_driver = { .ttm_tt_create = &vmw_ttm_tt_create, .ttm_tt_populate = &vmw_ttm_populate, .ttm_tt_unpopulate = &vmw_ttm_unpopulate, .invalidate_caches = vmw_invalidate_caches, .init_mem_type = vmw_init_mem_type, .eviction_valuable = ttm_bo_eviction_valuable, .evict_flags = vmw_evict_flags, .move = NULL, .verify_access = vmw_verify_access, .move_notify = vmw_move_notify, .swap_notify = vmw_swap_notify, .fault_reserve_notify = &vmw_ttm_fault_reserve_notify, .io_mem_reserve = &vmw_ttm_io_mem_reserve, .io_mem_free = &vmw_ttm_io_mem_free, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1