Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kalhan Trisal | 1117 | 44.75% | 1 | 4.00% |
Guenter Roeck | 1090 | 43.67% | 12 | 48.00% |
Josef Gajdusek | 143 | 5.73% | 3 | 12.00% |
Alan Cox | 93 | 3.73% | 1 | 4.00% |
Jekyll Lai | 40 | 1.60% | 1 | 4.00% |
Jean Delvare | 3 | 0.12% | 2 | 8.00% |
Axel Lin | 3 | 0.12% | 2 | 8.00% |
Frans Meulenbroeks | 3 | 0.12% | 1 | 4.00% |
Gustavo A. R. Silva | 2 | 0.08% | 1 | 4.00% |
Thomas Gleixner | 2 | 0.08% | 1 | 4.00% |
Total | 2496 | 25 |
// SPDX-License-Identifier: GPL-2.0-only /* * emc1403.c - SMSC Thermal Driver * * Copyright (C) 2008 Intel Corp * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/sysfs.h> #include <linux/mutex.h> #include <linux/regmap.h> #define THERMAL_PID_REG 0xfd #define THERMAL_SMSC_ID_REG 0xfe #define THERMAL_REVISION_REG 0xff enum emc1403_chip { emc1402, emc1403, emc1404 }; struct thermal_data { struct regmap *regmap; struct mutex mutex; const struct attribute_group *groups[4]; }; static ssize_t temp_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute *sda = to_sensor_dev_attr(attr); struct thermal_data *data = dev_get_drvdata(dev); unsigned int val; int retval; retval = regmap_read(data->regmap, sda->index, &val); if (retval < 0) return retval; return sprintf(buf, "%d000\n", val); } static ssize_t bit_show(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr); struct thermal_data *data = dev_get_drvdata(dev); unsigned int val; int retval; retval = regmap_read(data->regmap, sda->nr, &val); if (retval < 0) return retval; return sprintf(buf, "%d\n", !!(val & sda->index)); } static ssize_t temp_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sda = to_sensor_dev_attr(attr); struct thermal_data *data = dev_get_drvdata(dev); unsigned long val; int retval; if (kstrtoul(buf, 10, &val)) return -EINVAL; retval = regmap_write(data->regmap, sda->index, DIV_ROUND_CLOSEST(val, 1000)); if (retval < 0) return retval; return count; } static ssize_t bit_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute_2 *sda = to_sensor_dev_attr_2(attr); struct thermal_data *data = dev_get_drvdata(dev); unsigned long val; int retval; if (kstrtoul(buf, 10, &val)) return -EINVAL; retval = regmap_update_bits(data->regmap, sda->nr, sda->index, val ? sda->index : 0); if (retval < 0) return retval; return count; } static ssize_t show_hyst_common(struct device *dev, struct device_attribute *attr, char *buf, bool is_min) { struct sensor_device_attribute *sda = to_sensor_dev_attr(attr); struct thermal_data *data = dev_get_drvdata(dev); struct regmap *regmap = data->regmap; unsigned int limit; unsigned int hyst; int retval; retval = regmap_read(regmap, sda->index, &limit); if (retval < 0) return retval; retval = regmap_read(regmap, 0x21, &hyst); if (retval < 0) return retval; return sprintf(buf, "%d000\n", is_min ? limit + hyst : limit - hyst); } static ssize_t hyst_show(struct device *dev, struct device_attribute *attr, char *buf) { return show_hyst_common(dev, attr, buf, false); } static ssize_t min_hyst_show(struct device *dev, struct device_attribute *attr, char *buf) { return show_hyst_common(dev, attr, buf, true); } static ssize_t hyst_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute *sda = to_sensor_dev_attr(attr); struct thermal_data *data = dev_get_drvdata(dev); struct regmap *regmap = data->regmap; unsigned int limit; int retval; int hyst; unsigned long val; if (kstrtoul(buf, 10, &val)) return -EINVAL; mutex_lock(&data->mutex); retval = regmap_read(regmap, sda->index, &limit); if (retval < 0) goto fail; hyst = limit * 1000 - val; hyst = clamp_val(DIV_ROUND_CLOSEST(hyst, 1000), 0, 255); retval = regmap_write(regmap, 0x21, hyst); if (retval == 0) retval = count; fail: mutex_unlock(&data->mutex); return retval; } /* * Sensors. We pass the actual i2c register to the methods. */ static SENSOR_DEVICE_ATTR_RW(temp1_min, temp, 0x06); static SENSOR_DEVICE_ATTR_RW(temp1_max, temp, 0x05); static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp, 0x20); static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0x00); static SENSOR_DEVICE_ATTR_2_RO(temp1_min_alarm, bit, 0x36, 0x01); static SENSOR_DEVICE_ATTR_2_RO(temp1_max_alarm, bit, 0x35, 0x01); static SENSOR_DEVICE_ATTR_2_RO(temp1_crit_alarm, bit, 0x37, 0x01); static SENSOR_DEVICE_ATTR_RO(temp1_min_hyst, min_hyst, 0x06); static SENSOR_DEVICE_ATTR_RO(temp1_max_hyst, hyst, 0x05); static SENSOR_DEVICE_ATTR_RW(temp1_crit_hyst, hyst, 0x20); static SENSOR_DEVICE_ATTR_RW(temp2_min, temp, 0x08); static SENSOR_DEVICE_ATTR_RW(temp2_max, temp, 0x07); static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp, 0x19); static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 0x01); static SENSOR_DEVICE_ATTR_2_RO(temp2_fault, bit, 0x1b, 0x02); static SENSOR_DEVICE_ATTR_2_RO(temp2_min_alarm, bit, 0x36, 0x02); static SENSOR_DEVICE_ATTR_2_RO(temp2_max_alarm, bit, 0x35, 0x02); static SENSOR_DEVICE_ATTR_2_RO(temp2_crit_alarm, bit, 0x37, 0x02); static SENSOR_DEVICE_ATTR_RO(temp2_min_hyst, min_hyst, 0x08); static SENSOR_DEVICE_ATTR_RO(temp2_max_hyst, hyst, 0x07); static SENSOR_DEVICE_ATTR_RO(temp2_crit_hyst, hyst, 0x19); static SENSOR_DEVICE_ATTR_RW(temp3_min, temp, 0x16); static SENSOR_DEVICE_ATTR_RW(temp3_max, temp, 0x15); static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp, 0x1A); static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 0x23); static SENSOR_DEVICE_ATTR_2_RO(temp3_fault, bit, 0x1b, 0x04); static SENSOR_DEVICE_ATTR_2_RO(temp3_min_alarm, bit, 0x36, 0x04); static SENSOR_DEVICE_ATTR_2_RO(temp3_max_alarm, bit, 0x35, 0x04); static SENSOR_DEVICE_ATTR_2_RO(temp3_crit_alarm, bit, 0x37, 0x04); static SENSOR_DEVICE_ATTR_RO(temp3_min_hyst, min_hyst, 0x16); static SENSOR_DEVICE_ATTR_RO(temp3_max_hyst, hyst, 0x15); static SENSOR_DEVICE_ATTR_RO(temp3_crit_hyst, hyst, 0x1A); static SENSOR_DEVICE_ATTR_RW(temp4_min, temp, 0x2D); static SENSOR_DEVICE_ATTR_RW(temp4_max, temp, 0x2C); static SENSOR_DEVICE_ATTR_RW(temp4_crit, temp, 0x30); static SENSOR_DEVICE_ATTR_RO(temp4_input, temp, 0x2A); static SENSOR_DEVICE_ATTR_2_RO(temp4_fault, bit, 0x1b, 0x08); static SENSOR_DEVICE_ATTR_2_RO(temp4_min_alarm, bit, 0x36, 0x08); static SENSOR_DEVICE_ATTR_2_RO(temp4_max_alarm, bit, 0x35, 0x08); static SENSOR_DEVICE_ATTR_2_RO(temp4_crit_alarm, bit, 0x37, 0x08); static SENSOR_DEVICE_ATTR_RO(temp4_min_hyst, min_hyst, 0x2D); static SENSOR_DEVICE_ATTR_RO(temp4_max_hyst, hyst, 0x2C); static SENSOR_DEVICE_ATTR_RO(temp4_crit_hyst, hyst, 0x30); static SENSOR_DEVICE_ATTR_2_RW(power_state, bit, 0x03, 0x40); static struct attribute *emc1402_attrs[] = { &sensor_dev_attr_temp1_min.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp1_min_hyst.dev_attr.attr, &sensor_dev_attr_temp1_max_hyst.dev_attr.attr, &sensor_dev_attr_temp1_crit_hyst.dev_attr.attr, &sensor_dev_attr_temp2_min.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp2_crit.dev_attr.attr, &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp2_min_hyst.dev_attr.attr, &sensor_dev_attr_temp2_max_hyst.dev_attr.attr, &sensor_dev_attr_temp2_crit_hyst.dev_attr.attr, &sensor_dev_attr_power_state.dev_attr.attr, NULL }; static const struct attribute_group emc1402_group = { .attrs = emc1402_attrs, }; static struct attribute *emc1403_attrs[] = { &sensor_dev_attr_temp1_min_alarm.dev_attr.attr, &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp2_fault.dev_attr.attr, &sensor_dev_attr_temp2_min_alarm.dev_attr.attr, &sensor_dev_attr_temp2_max_alarm.dev_attr.attr, &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp3_min.dev_attr.attr, &sensor_dev_attr_temp3_max.dev_attr.attr, &sensor_dev_attr_temp3_crit.dev_attr.attr, &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp3_fault.dev_attr.attr, &sensor_dev_attr_temp3_min_alarm.dev_attr.attr, &sensor_dev_attr_temp3_max_alarm.dev_attr.attr, &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp3_min_hyst.dev_attr.attr, &sensor_dev_attr_temp3_max_hyst.dev_attr.attr, &sensor_dev_attr_temp3_crit_hyst.dev_attr.attr, NULL }; static const struct attribute_group emc1403_group = { .attrs = emc1403_attrs, }; static struct attribute *emc1404_attrs[] = { &sensor_dev_attr_temp4_min.dev_attr.attr, &sensor_dev_attr_temp4_max.dev_attr.attr, &sensor_dev_attr_temp4_crit.dev_attr.attr, &sensor_dev_attr_temp4_input.dev_attr.attr, &sensor_dev_attr_temp4_fault.dev_attr.attr, &sensor_dev_attr_temp4_min_alarm.dev_attr.attr, &sensor_dev_attr_temp4_max_alarm.dev_attr.attr, &sensor_dev_attr_temp4_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp4_min_hyst.dev_attr.attr, &sensor_dev_attr_temp4_max_hyst.dev_attr.attr, &sensor_dev_attr_temp4_crit_hyst.dev_attr.attr, NULL }; static const struct attribute_group emc1404_group = { .attrs = emc1404_attrs, }; /* * EMC14x2 uses a different register and different bits to report alarm and * fault status. For simplicity, provide a separate attribute group for this * chip series. * Since we can not re-use the same attribute names, create a separate attribute * array. */ static struct sensor_device_attribute_2 emc1402_alarms[] = { SENSOR_ATTR_2_RO(temp1_min_alarm, bit, 0x02, 0x20), SENSOR_ATTR_2_RO(temp1_max_alarm, bit, 0x02, 0x40), SENSOR_ATTR_2_RO(temp1_crit_alarm, bit, 0x02, 0x01), SENSOR_ATTR_2_RO(temp2_fault, bit, 0x02, 0x04), SENSOR_ATTR_2_RO(temp2_min_alarm, bit, 0x02, 0x08), SENSOR_ATTR_2_RO(temp2_max_alarm, bit, 0x02, 0x10), SENSOR_ATTR_2_RO(temp2_crit_alarm, bit, 0x02, 0x02), }; static struct attribute *emc1402_alarm_attrs[] = { &emc1402_alarms[0].dev_attr.attr, &emc1402_alarms[1].dev_attr.attr, &emc1402_alarms[2].dev_attr.attr, &emc1402_alarms[3].dev_attr.attr, &emc1402_alarms[4].dev_attr.attr, &emc1402_alarms[5].dev_attr.attr, &emc1402_alarms[6].dev_attr.attr, NULL, }; static const struct attribute_group emc1402_alarm_group = { .attrs = emc1402_alarm_attrs, }; static int emc1403_detect(struct i2c_client *client, struct i2c_board_info *info) { int id; /* Check if thermal chip is SMSC and EMC1403 or EMC1423 */ id = i2c_smbus_read_byte_data(client, THERMAL_SMSC_ID_REG); if (id != 0x5d) return -ENODEV; id = i2c_smbus_read_byte_data(client, THERMAL_PID_REG); switch (id) { case 0x20: strlcpy(info->type, "emc1402", I2C_NAME_SIZE); break; case 0x21: strlcpy(info->type, "emc1403", I2C_NAME_SIZE); break; case 0x22: strlcpy(info->type, "emc1422", I2C_NAME_SIZE); break; case 0x23: strlcpy(info->type, "emc1423", I2C_NAME_SIZE); break; case 0x25: strlcpy(info->type, "emc1404", I2C_NAME_SIZE); break; case 0x27: strlcpy(info->type, "emc1424", I2C_NAME_SIZE); break; default: return -ENODEV; } id = i2c_smbus_read_byte_data(client, THERMAL_REVISION_REG); if (id < 0x01 || id > 0x04) return -ENODEV; return 0; } static bool emc1403_regmap_is_volatile(struct device *dev, unsigned int reg) { switch (reg) { case 0x00: /* internal diode high byte */ case 0x01: /* external diode 1 high byte */ case 0x02: /* status */ case 0x10: /* external diode 1 low byte */ case 0x1b: /* external diode fault */ case 0x23: /* external diode 2 high byte */ case 0x24: /* external diode 2 low byte */ case 0x29: /* internal diode low byte */ case 0x2a: /* externl diode 3 high byte */ case 0x2b: /* external diode 3 low byte */ case 0x35: /* high limit status */ case 0x36: /* low limit status */ case 0x37: /* therm limit status */ return true; default: return false; } } static const struct regmap_config emc1403_regmap_config = { .reg_bits = 8, .val_bits = 8, .cache_type = REGCACHE_RBTREE, .volatile_reg = emc1403_regmap_is_volatile, }; static int emc1403_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct thermal_data *data; struct device *hwmon_dev; data = devm_kzalloc(&client->dev, sizeof(struct thermal_data), GFP_KERNEL); if (data == NULL) return -ENOMEM; data->regmap = devm_regmap_init_i2c(client, &emc1403_regmap_config); if (IS_ERR(data->regmap)) return PTR_ERR(data->regmap); mutex_init(&data->mutex); switch (id->driver_data) { case emc1404: data->groups[2] = &emc1404_group; /* fall through */ case emc1403: data->groups[1] = &emc1403_group; /* fall through */ case emc1402: data->groups[0] = &emc1402_group; } if (id->driver_data == emc1402) data->groups[1] = &emc1402_alarm_group; hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev, client->name, data, data->groups); if (IS_ERR(hwmon_dev)) return PTR_ERR(hwmon_dev); dev_info(&client->dev, "%s Thermal chip found\n", id->name); return 0; } static const unsigned short emc1403_address_list[] = { 0x18, 0x1c, 0x29, 0x4c, 0x4d, 0x5c, I2C_CLIENT_END }; /* Last digit of chip name indicates number of channels */ static const struct i2c_device_id emc1403_idtable[] = { { "emc1402", emc1402 }, { "emc1403", emc1403 }, { "emc1404", emc1404 }, { "emc1412", emc1402 }, { "emc1413", emc1403 }, { "emc1414", emc1404 }, { "emc1422", emc1402 }, { "emc1423", emc1403 }, { "emc1424", emc1404 }, { } }; MODULE_DEVICE_TABLE(i2c, emc1403_idtable); static struct i2c_driver sensor_emc1403 = { .class = I2C_CLASS_HWMON, .driver = { .name = "emc1403", }, .detect = emc1403_detect, .probe = emc1403_probe, .id_table = emc1403_idtable, .address_list = emc1403_address_list, }; module_i2c_driver(sensor_emc1403); MODULE_AUTHOR("Kalhan Trisal <kalhan.trisal@intel.com"); MODULE_DESCRIPTION("emc1403 Thermal Driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1