Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Gal Pressman | 9254 | 100.00% | 2 | 100.00% |
Total | 9254 | 2 |
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright 2018-2019 Amazon.com, Inc. or its affiliates. All rights reserved. */ #include <linux/vmalloc.h> #include <rdma/ib_addr.h> #include <rdma/ib_umem.h> #include <rdma/ib_user_verbs.h> #include <rdma/ib_verbs.h> #include <rdma/uverbs_ioctl.h> #include "efa.h" #define EFA_MMAP_FLAG_SHIFT 56 #define EFA_MMAP_PAGE_MASK GENMASK(EFA_MMAP_FLAG_SHIFT - 1, 0) #define EFA_MMAP_INVALID U64_MAX enum { EFA_MMAP_DMA_PAGE = 0, EFA_MMAP_IO_WC, EFA_MMAP_IO_NC, }; #define EFA_AENQ_ENABLED_GROUPS \ (BIT(EFA_ADMIN_FATAL_ERROR) | BIT(EFA_ADMIN_WARNING) | \ BIT(EFA_ADMIN_NOTIFICATION) | BIT(EFA_ADMIN_KEEP_ALIVE)) struct efa_mmap_entry { void *obj; u64 address; u64 length; u32 mmap_page; u8 mmap_flag; }; static inline u64 get_mmap_key(const struct efa_mmap_entry *efa) { return ((u64)efa->mmap_flag << EFA_MMAP_FLAG_SHIFT) | ((u64)efa->mmap_page << PAGE_SHIFT); } #define EFA_CHUNK_PAYLOAD_SHIFT 12 #define EFA_CHUNK_PAYLOAD_SIZE BIT(EFA_CHUNK_PAYLOAD_SHIFT) #define EFA_CHUNK_PAYLOAD_PTR_SIZE 8 #define EFA_CHUNK_SHIFT 12 #define EFA_CHUNK_SIZE BIT(EFA_CHUNK_SHIFT) #define EFA_CHUNK_PTR_SIZE sizeof(struct efa_com_ctrl_buff_info) #define EFA_PTRS_PER_CHUNK \ ((EFA_CHUNK_SIZE - EFA_CHUNK_PTR_SIZE) / EFA_CHUNK_PAYLOAD_PTR_SIZE) #define EFA_CHUNK_USED_SIZE \ ((EFA_PTRS_PER_CHUNK * EFA_CHUNK_PAYLOAD_PTR_SIZE) + EFA_CHUNK_PTR_SIZE) #define EFA_SUPPORTED_ACCESS_FLAGS IB_ACCESS_LOCAL_WRITE struct pbl_chunk { dma_addr_t dma_addr; u64 *buf; u32 length; }; struct pbl_chunk_list { struct pbl_chunk *chunks; unsigned int size; }; struct pbl_context { union { struct { dma_addr_t dma_addr; } continuous; struct { u32 pbl_buf_size_in_pages; struct scatterlist *sgl; int sg_dma_cnt; struct pbl_chunk_list chunk_list; } indirect; } phys; u64 *pbl_buf; u32 pbl_buf_size_in_bytes; u8 physically_continuous; }; static inline struct efa_dev *to_edev(struct ib_device *ibdev) { return container_of(ibdev, struct efa_dev, ibdev); } static inline struct efa_ucontext *to_eucontext(struct ib_ucontext *ibucontext) { return container_of(ibucontext, struct efa_ucontext, ibucontext); } static inline struct efa_pd *to_epd(struct ib_pd *ibpd) { return container_of(ibpd, struct efa_pd, ibpd); } static inline struct efa_mr *to_emr(struct ib_mr *ibmr) { return container_of(ibmr, struct efa_mr, ibmr); } static inline struct efa_qp *to_eqp(struct ib_qp *ibqp) { return container_of(ibqp, struct efa_qp, ibqp); } static inline struct efa_cq *to_ecq(struct ib_cq *ibcq) { return container_of(ibcq, struct efa_cq, ibcq); } static inline struct efa_ah *to_eah(struct ib_ah *ibah) { return container_of(ibah, struct efa_ah, ibah); } #define field_avail(x, fld, sz) (offsetof(typeof(x), fld) + \ sizeof(((typeof(x) *)0)->fld) <= (sz)) #define is_reserved_cleared(reserved) \ !memchr_inv(reserved, 0, sizeof(reserved)) static void *efa_zalloc_mapped(struct efa_dev *dev, dma_addr_t *dma_addr, size_t size, enum dma_data_direction dir) { void *addr; addr = alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO); if (!addr) return NULL; *dma_addr = dma_map_single(&dev->pdev->dev, addr, size, dir); if (dma_mapping_error(&dev->pdev->dev, *dma_addr)) { ibdev_err(&dev->ibdev, "Failed to map DMA address\n"); free_pages_exact(addr, size); return NULL; } return addr; } /* * This is only called when the ucontext is destroyed and there can be no * concurrent query via mmap or allocate on the xarray, thus we can be sure no * other thread is using the entry pointer. We also know that all the BAR * pages have either been zap'd or munmaped at this point. Normal pages are * refcounted and will be freed at the proper time. */ static void mmap_entries_remove_free(struct efa_dev *dev, struct efa_ucontext *ucontext) { struct efa_mmap_entry *entry; unsigned long mmap_page; xa_for_each(&ucontext->mmap_xa, mmap_page, entry) { xa_erase(&ucontext->mmap_xa, mmap_page); ibdev_dbg( &dev->ibdev, "mmap: obj[0x%p] key[%#llx] addr[%#llx] len[%#llx] removed\n", entry->obj, get_mmap_key(entry), entry->address, entry->length); if (entry->mmap_flag == EFA_MMAP_DMA_PAGE) /* DMA mapping is already gone, now free the pages */ free_pages_exact(phys_to_virt(entry->address), entry->length); kfree(entry); } } static struct efa_mmap_entry *mmap_entry_get(struct efa_dev *dev, struct efa_ucontext *ucontext, u64 key, u64 len) { struct efa_mmap_entry *entry; u64 mmap_page; mmap_page = (key & EFA_MMAP_PAGE_MASK) >> PAGE_SHIFT; if (mmap_page > U32_MAX) return NULL; entry = xa_load(&ucontext->mmap_xa, mmap_page); if (!entry || get_mmap_key(entry) != key || entry->length != len) return NULL; ibdev_dbg(&dev->ibdev, "mmap: obj[0x%p] key[%#llx] addr[%#llx] len[%#llx] removed\n", entry->obj, key, entry->address, entry->length); return entry; } /* * Note this locking scheme cannot support removal of entries, except during * ucontext destruction when the core code guarentees no concurrency. */ static u64 mmap_entry_insert(struct efa_dev *dev, struct efa_ucontext *ucontext, void *obj, u64 address, u64 length, u8 mmap_flag) { struct efa_mmap_entry *entry; u32 next_mmap_page; int err; entry = kmalloc(sizeof(*entry), GFP_KERNEL); if (!entry) return EFA_MMAP_INVALID; entry->obj = obj; entry->address = address; entry->length = length; entry->mmap_flag = mmap_flag; xa_lock(&ucontext->mmap_xa); if (check_add_overflow(ucontext->mmap_xa_page, (u32)(length >> PAGE_SHIFT), &next_mmap_page)) goto err_unlock; entry->mmap_page = ucontext->mmap_xa_page; ucontext->mmap_xa_page = next_mmap_page; err = __xa_insert(&ucontext->mmap_xa, entry->mmap_page, entry, GFP_KERNEL); if (err) goto err_unlock; xa_unlock(&ucontext->mmap_xa); ibdev_dbg( &dev->ibdev, "mmap: obj[0x%p] addr[%#llx], len[%#llx], key[%#llx] inserted\n", entry->obj, entry->address, entry->length, get_mmap_key(entry)); return get_mmap_key(entry); err_unlock: xa_unlock(&ucontext->mmap_xa); kfree(entry); return EFA_MMAP_INVALID; } int efa_query_device(struct ib_device *ibdev, struct ib_device_attr *props, struct ib_udata *udata) { struct efa_com_get_device_attr_result *dev_attr; struct efa_ibv_ex_query_device_resp resp = {}; struct efa_dev *dev = to_edev(ibdev); int err; if (udata && udata->inlen && !ib_is_udata_cleared(udata, 0, udata->inlen)) { ibdev_dbg(ibdev, "Incompatible ABI params, udata not cleared\n"); return -EINVAL; } dev_attr = &dev->dev_attr; memset(props, 0, sizeof(*props)); props->max_mr_size = dev_attr->max_mr_pages * PAGE_SIZE; props->page_size_cap = dev_attr->page_size_cap; props->vendor_id = dev->pdev->vendor; props->vendor_part_id = dev->pdev->device; props->hw_ver = dev->pdev->subsystem_device; props->max_qp = dev_attr->max_qp; props->max_cq = dev_attr->max_cq; props->max_pd = dev_attr->max_pd; props->max_mr = dev_attr->max_mr; props->max_ah = dev_attr->max_ah; props->max_cqe = dev_attr->max_cq_depth; props->max_qp_wr = min_t(u32, dev_attr->max_sq_depth, dev_attr->max_rq_depth); props->max_send_sge = dev_attr->max_sq_sge; props->max_recv_sge = dev_attr->max_rq_sge; if (udata && udata->outlen) { resp.max_sq_sge = dev_attr->max_sq_sge; resp.max_rq_sge = dev_attr->max_rq_sge; resp.max_sq_wr = dev_attr->max_sq_depth; resp.max_rq_wr = dev_attr->max_rq_depth; err = ib_copy_to_udata(udata, &resp, min(sizeof(resp), udata->outlen)); if (err) { ibdev_dbg(ibdev, "Failed to copy udata for query_device\n"); return err; } } return 0; } int efa_query_port(struct ib_device *ibdev, u8 port, struct ib_port_attr *props) { struct efa_dev *dev = to_edev(ibdev); props->lmc = 1; props->state = IB_PORT_ACTIVE; props->phys_state = 5; props->gid_tbl_len = 1; props->pkey_tbl_len = 1; props->active_speed = IB_SPEED_EDR; props->active_width = IB_WIDTH_4X; props->max_mtu = ib_mtu_int_to_enum(dev->mtu); props->active_mtu = ib_mtu_int_to_enum(dev->mtu); props->max_msg_sz = dev->mtu; props->max_vl_num = 1; return 0; } int efa_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *qp_attr, int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr) { struct efa_dev *dev = to_edev(ibqp->device); struct efa_com_query_qp_params params = {}; struct efa_com_query_qp_result result; struct efa_qp *qp = to_eqp(ibqp); int err; #define EFA_QUERY_QP_SUPP_MASK \ (IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT | \ IB_QP_QKEY | IB_QP_SQ_PSN | IB_QP_CAP) if (qp_attr_mask & ~EFA_QUERY_QP_SUPP_MASK) { ibdev_dbg(&dev->ibdev, "Unsupported qp_attr_mask[%#x] supported[%#x]\n", qp_attr_mask, EFA_QUERY_QP_SUPP_MASK); return -EOPNOTSUPP; } memset(qp_attr, 0, sizeof(*qp_attr)); memset(qp_init_attr, 0, sizeof(*qp_init_attr)); params.qp_handle = qp->qp_handle; err = efa_com_query_qp(&dev->edev, ¶ms, &result); if (err) return err; qp_attr->qp_state = result.qp_state; qp_attr->qkey = result.qkey; qp_attr->sq_psn = result.sq_psn; qp_attr->sq_draining = result.sq_draining; qp_attr->port_num = 1; qp_attr->cap.max_send_wr = qp->max_send_wr; qp_attr->cap.max_recv_wr = qp->max_recv_wr; qp_attr->cap.max_send_sge = qp->max_send_sge; qp_attr->cap.max_recv_sge = qp->max_recv_sge; qp_attr->cap.max_inline_data = qp->max_inline_data; qp_init_attr->qp_type = ibqp->qp_type; qp_init_attr->recv_cq = ibqp->recv_cq; qp_init_attr->send_cq = ibqp->send_cq; qp_init_attr->qp_context = ibqp->qp_context; qp_init_attr->cap = qp_attr->cap; return 0; } int efa_query_gid(struct ib_device *ibdev, u8 port, int index, union ib_gid *gid) { struct efa_dev *dev = to_edev(ibdev); memcpy(gid->raw, dev->addr, sizeof(dev->addr)); return 0; } int efa_query_pkey(struct ib_device *ibdev, u8 port, u16 index, u16 *pkey) { if (index > 0) return -EINVAL; *pkey = 0xffff; return 0; } static int efa_pd_dealloc(struct efa_dev *dev, u16 pdn) { struct efa_com_dealloc_pd_params params = { .pdn = pdn, }; return efa_com_dealloc_pd(&dev->edev, ¶ms); } int efa_alloc_pd(struct ib_pd *ibpd, struct ib_udata *udata) { struct efa_dev *dev = to_edev(ibpd->device); struct efa_ibv_alloc_pd_resp resp = {}; struct efa_com_alloc_pd_result result; struct efa_pd *pd = to_epd(ibpd); int err; if (udata->inlen && !ib_is_udata_cleared(udata, 0, udata->inlen)) { ibdev_dbg(&dev->ibdev, "Incompatible ABI params, udata not cleared\n"); err = -EINVAL; goto err_out; } err = efa_com_alloc_pd(&dev->edev, &result); if (err) goto err_out; pd->pdn = result.pdn; resp.pdn = result.pdn; if (udata->outlen) { err = ib_copy_to_udata(udata, &resp, min(sizeof(resp), udata->outlen)); if (err) { ibdev_dbg(&dev->ibdev, "Failed to copy udata for alloc_pd\n"); goto err_dealloc_pd; } } ibdev_dbg(&dev->ibdev, "Allocated pd[%d]\n", pd->pdn); return 0; err_dealloc_pd: efa_pd_dealloc(dev, result.pdn); err_out: atomic64_inc(&dev->stats.sw_stats.alloc_pd_err); return err; } void efa_dealloc_pd(struct ib_pd *ibpd, struct ib_udata *udata) { struct efa_dev *dev = to_edev(ibpd->device); struct efa_pd *pd = to_epd(ibpd); if (udata->inlen && !ib_is_udata_cleared(udata, 0, udata->inlen)) { ibdev_dbg(&dev->ibdev, "Incompatible ABI params\n"); return; } ibdev_dbg(&dev->ibdev, "Dealloc pd[%d]\n", pd->pdn); efa_pd_dealloc(dev, pd->pdn); } static int efa_destroy_qp_handle(struct efa_dev *dev, u32 qp_handle) { struct efa_com_destroy_qp_params params = { .qp_handle = qp_handle }; return efa_com_destroy_qp(&dev->edev, ¶ms); } int efa_destroy_qp(struct ib_qp *ibqp, struct ib_udata *udata) { struct efa_dev *dev = to_edev(ibqp->pd->device); struct efa_qp *qp = to_eqp(ibqp); int err; if (udata->inlen && !ib_is_udata_cleared(udata, 0, udata->inlen)) { ibdev_dbg(&dev->ibdev, "Incompatible ABI params\n"); return -EINVAL; } ibdev_dbg(&dev->ibdev, "Destroy qp[%u]\n", ibqp->qp_num); err = efa_destroy_qp_handle(dev, qp->qp_handle); if (err) return err; if (qp->rq_cpu_addr) { ibdev_dbg(&dev->ibdev, "qp->cpu_addr[0x%p] freed: size[%lu], dma[%pad]\n", qp->rq_cpu_addr, qp->rq_size, &qp->rq_dma_addr); dma_unmap_single(&dev->pdev->dev, qp->rq_dma_addr, qp->rq_size, DMA_TO_DEVICE); } kfree(qp); return 0; } static int qp_mmap_entries_setup(struct efa_qp *qp, struct efa_dev *dev, struct efa_ucontext *ucontext, struct efa_com_create_qp_params *params, struct efa_ibv_create_qp_resp *resp) { /* * Once an entry is inserted it might be mmapped, hence cannot be * cleaned up until dealloc_ucontext. */ resp->sq_db_mmap_key = mmap_entry_insert(dev, ucontext, qp, dev->db_bar_addr + resp->sq_db_offset, PAGE_SIZE, EFA_MMAP_IO_NC); if (resp->sq_db_mmap_key == EFA_MMAP_INVALID) return -ENOMEM; resp->sq_db_offset &= ~PAGE_MASK; resp->llq_desc_mmap_key = mmap_entry_insert(dev, ucontext, qp, dev->mem_bar_addr + resp->llq_desc_offset, PAGE_ALIGN(params->sq_ring_size_in_bytes + (resp->llq_desc_offset & ~PAGE_MASK)), EFA_MMAP_IO_WC); if (resp->llq_desc_mmap_key == EFA_MMAP_INVALID) return -ENOMEM; resp->llq_desc_offset &= ~PAGE_MASK; if (qp->rq_size) { resp->rq_db_mmap_key = mmap_entry_insert(dev, ucontext, qp, dev->db_bar_addr + resp->rq_db_offset, PAGE_SIZE, EFA_MMAP_IO_NC); if (resp->rq_db_mmap_key == EFA_MMAP_INVALID) return -ENOMEM; resp->rq_db_offset &= ~PAGE_MASK; resp->rq_mmap_key = mmap_entry_insert(dev, ucontext, qp, virt_to_phys(qp->rq_cpu_addr), qp->rq_size, EFA_MMAP_DMA_PAGE); if (resp->rq_mmap_key == EFA_MMAP_INVALID) return -ENOMEM; resp->rq_mmap_size = qp->rq_size; } return 0; } static int efa_qp_validate_cap(struct efa_dev *dev, struct ib_qp_init_attr *init_attr) { if (init_attr->cap.max_send_wr > dev->dev_attr.max_sq_depth) { ibdev_dbg(&dev->ibdev, "qp: requested send wr[%u] exceeds the max[%u]\n", init_attr->cap.max_send_wr, dev->dev_attr.max_sq_depth); return -EINVAL; } if (init_attr->cap.max_recv_wr > dev->dev_attr.max_rq_depth) { ibdev_dbg(&dev->ibdev, "qp: requested receive wr[%u] exceeds the max[%u]\n", init_attr->cap.max_recv_wr, dev->dev_attr.max_rq_depth); return -EINVAL; } if (init_attr->cap.max_send_sge > dev->dev_attr.max_sq_sge) { ibdev_dbg(&dev->ibdev, "qp: requested sge send[%u] exceeds the max[%u]\n", init_attr->cap.max_send_sge, dev->dev_attr.max_sq_sge); return -EINVAL; } if (init_attr->cap.max_recv_sge > dev->dev_attr.max_rq_sge) { ibdev_dbg(&dev->ibdev, "qp: requested sge recv[%u] exceeds the max[%u]\n", init_attr->cap.max_recv_sge, dev->dev_attr.max_rq_sge); return -EINVAL; } if (init_attr->cap.max_inline_data > dev->dev_attr.inline_buf_size) { ibdev_dbg(&dev->ibdev, "qp: requested inline data[%u] exceeds the max[%u]\n", init_attr->cap.max_inline_data, dev->dev_attr.inline_buf_size); return -EINVAL; } return 0; } static int efa_qp_validate_attr(struct efa_dev *dev, struct ib_qp_init_attr *init_attr) { if (init_attr->qp_type != IB_QPT_DRIVER && init_attr->qp_type != IB_QPT_UD) { ibdev_dbg(&dev->ibdev, "Unsupported qp type %d\n", init_attr->qp_type); return -EOPNOTSUPP; } if (init_attr->srq) { ibdev_dbg(&dev->ibdev, "SRQ is not supported\n"); return -EOPNOTSUPP; } if (init_attr->create_flags) { ibdev_dbg(&dev->ibdev, "Unsupported create flags\n"); return -EOPNOTSUPP; } return 0; } struct ib_qp *efa_create_qp(struct ib_pd *ibpd, struct ib_qp_init_attr *init_attr, struct ib_udata *udata) { struct efa_com_create_qp_params create_qp_params = {}; struct efa_com_create_qp_result create_qp_resp; struct efa_dev *dev = to_edev(ibpd->device); struct efa_ibv_create_qp_resp resp = {}; struct efa_ibv_create_qp cmd = {}; bool rq_entry_inserted = false; struct efa_ucontext *ucontext; struct efa_qp *qp; int err; ucontext = rdma_udata_to_drv_context(udata, struct efa_ucontext, ibucontext); err = efa_qp_validate_cap(dev, init_attr); if (err) goto err_out; err = efa_qp_validate_attr(dev, init_attr); if (err) goto err_out; if (!field_avail(cmd, driver_qp_type, udata->inlen)) { ibdev_dbg(&dev->ibdev, "Incompatible ABI params, no input udata\n"); err = -EINVAL; goto err_out; } if (udata->inlen > sizeof(cmd) && !ib_is_udata_cleared(udata, sizeof(cmd), udata->inlen - sizeof(cmd))) { ibdev_dbg(&dev->ibdev, "Incompatible ABI params, unknown fields in udata\n"); err = -EINVAL; goto err_out; } err = ib_copy_from_udata(&cmd, udata, min(sizeof(cmd), udata->inlen)); if (err) { ibdev_dbg(&dev->ibdev, "Cannot copy udata for create_qp\n"); goto err_out; } if (cmd.comp_mask) { ibdev_dbg(&dev->ibdev, "Incompatible ABI params, unknown fields in udata\n"); err = -EINVAL; goto err_out; } qp = kzalloc(sizeof(*qp), GFP_KERNEL); if (!qp) { err = -ENOMEM; goto err_out; } create_qp_params.uarn = ucontext->uarn; create_qp_params.pd = to_epd(ibpd)->pdn; if (init_attr->qp_type == IB_QPT_UD) { create_qp_params.qp_type = EFA_ADMIN_QP_TYPE_UD; } else if (cmd.driver_qp_type == EFA_QP_DRIVER_TYPE_SRD) { create_qp_params.qp_type = EFA_ADMIN_QP_TYPE_SRD; } else { ibdev_dbg(&dev->ibdev, "Unsupported qp type %d driver qp type %d\n", init_attr->qp_type, cmd.driver_qp_type); err = -EOPNOTSUPP; goto err_free_qp; } ibdev_dbg(&dev->ibdev, "Create QP: qp type %d driver qp type %#x\n", init_attr->qp_type, cmd.driver_qp_type); create_qp_params.send_cq_idx = to_ecq(init_attr->send_cq)->cq_idx; create_qp_params.recv_cq_idx = to_ecq(init_attr->recv_cq)->cq_idx; create_qp_params.sq_depth = init_attr->cap.max_send_wr; create_qp_params.sq_ring_size_in_bytes = cmd.sq_ring_size; create_qp_params.rq_depth = init_attr->cap.max_recv_wr; create_qp_params.rq_ring_size_in_bytes = cmd.rq_ring_size; qp->rq_size = PAGE_ALIGN(create_qp_params.rq_ring_size_in_bytes); if (qp->rq_size) { qp->rq_cpu_addr = efa_zalloc_mapped(dev, &qp->rq_dma_addr, qp->rq_size, DMA_TO_DEVICE); if (!qp->rq_cpu_addr) { err = -ENOMEM; goto err_free_qp; } ibdev_dbg(&dev->ibdev, "qp->cpu_addr[0x%p] allocated: size[%lu], dma[%pad]\n", qp->rq_cpu_addr, qp->rq_size, &qp->rq_dma_addr); create_qp_params.rq_base_addr = qp->rq_dma_addr; } err = efa_com_create_qp(&dev->edev, &create_qp_params, &create_qp_resp); if (err) goto err_free_mapped; resp.sq_db_offset = create_qp_resp.sq_db_offset; resp.rq_db_offset = create_qp_resp.rq_db_offset; resp.llq_desc_offset = create_qp_resp.llq_descriptors_offset; resp.send_sub_cq_idx = create_qp_resp.send_sub_cq_idx; resp.recv_sub_cq_idx = create_qp_resp.recv_sub_cq_idx; err = qp_mmap_entries_setup(qp, dev, ucontext, &create_qp_params, &resp); if (err) goto err_destroy_qp; rq_entry_inserted = true; qp->qp_handle = create_qp_resp.qp_handle; qp->ibqp.qp_num = create_qp_resp.qp_num; qp->ibqp.qp_type = init_attr->qp_type; qp->max_send_wr = init_attr->cap.max_send_wr; qp->max_recv_wr = init_attr->cap.max_recv_wr; qp->max_send_sge = init_attr->cap.max_send_sge; qp->max_recv_sge = init_attr->cap.max_recv_sge; qp->max_inline_data = init_attr->cap.max_inline_data; if (udata->outlen) { err = ib_copy_to_udata(udata, &resp, min(sizeof(resp), udata->outlen)); if (err) { ibdev_dbg(&dev->ibdev, "Failed to copy udata for qp[%u]\n", create_qp_resp.qp_num); goto err_destroy_qp; } } ibdev_dbg(&dev->ibdev, "Created qp[%d]\n", qp->ibqp.qp_num); return &qp->ibqp; err_destroy_qp: efa_destroy_qp_handle(dev, create_qp_resp.qp_handle); err_free_mapped: if (qp->rq_size) { dma_unmap_single(&dev->pdev->dev, qp->rq_dma_addr, qp->rq_size, DMA_TO_DEVICE); if (!rq_entry_inserted) free_pages_exact(qp->rq_cpu_addr, qp->rq_size); } err_free_qp: kfree(qp); err_out: atomic64_inc(&dev->stats.sw_stats.create_qp_err); return ERR_PTR(err); } static int efa_modify_qp_validate(struct efa_dev *dev, struct efa_qp *qp, struct ib_qp_attr *qp_attr, int qp_attr_mask, enum ib_qp_state cur_state, enum ib_qp_state new_state) { #define EFA_MODIFY_QP_SUPP_MASK \ (IB_QP_STATE | IB_QP_CUR_STATE | IB_QP_EN_SQD_ASYNC_NOTIFY | \ IB_QP_PKEY_INDEX | IB_QP_PORT | IB_QP_QKEY | IB_QP_SQ_PSN) if (qp_attr_mask & ~EFA_MODIFY_QP_SUPP_MASK) { ibdev_dbg(&dev->ibdev, "Unsupported qp_attr_mask[%#x] supported[%#x]\n", qp_attr_mask, EFA_MODIFY_QP_SUPP_MASK); return -EOPNOTSUPP; } if (!ib_modify_qp_is_ok(cur_state, new_state, IB_QPT_UD, qp_attr_mask)) { ibdev_dbg(&dev->ibdev, "Invalid modify QP parameters\n"); return -EINVAL; } if ((qp_attr_mask & IB_QP_PORT) && qp_attr->port_num != 1) { ibdev_dbg(&dev->ibdev, "Can't change port num\n"); return -EOPNOTSUPP; } if ((qp_attr_mask & IB_QP_PKEY_INDEX) && qp_attr->pkey_index) { ibdev_dbg(&dev->ibdev, "Can't change pkey index\n"); return -EOPNOTSUPP; } return 0; } int efa_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *qp_attr, int qp_attr_mask, struct ib_udata *udata) { struct efa_dev *dev = to_edev(ibqp->device); struct efa_com_modify_qp_params params = {}; struct efa_qp *qp = to_eqp(ibqp); enum ib_qp_state cur_state; enum ib_qp_state new_state; int err; if (udata->inlen && !ib_is_udata_cleared(udata, 0, udata->inlen)) { ibdev_dbg(&dev->ibdev, "Incompatible ABI params, udata not cleared\n"); return -EINVAL; } cur_state = qp_attr_mask & IB_QP_CUR_STATE ? qp_attr->cur_qp_state : qp->state; new_state = qp_attr_mask & IB_QP_STATE ? qp_attr->qp_state : cur_state; err = efa_modify_qp_validate(dev, qp, qp_attr, qp_attr_mask, cur_state, new_state); if (err) return err; params.qp_handle = qp->qp_handle; if (qp_attr_mask & IB_QP_STATE) { params.modify_mask |= BIT(EFA_ADMIN_QP_STATE_BIT) | BIT(EFA_ADMIN_CUR_QP_STATE_BIT); params.cur_qp_state = qp_attr->cur_qp_state; params.qp_state = qp_attr->qp_state; } if (qp_attr_mask & IB_QP_EN_SQD_ASYNC_NOTIFY) { params.modify_mask |= BIT(EFA_ADMIN_SQ_DRAINED_ASYNC_NOTIFY_BIT); params.sq_drained_async_notify = qp_attr->en_sqd_async_notify; } if (qp_attr_mask & IB_QP_QKEY) { params.modify_mask |= BIT(EFA_ADMIN_QKEY_BIT); params.qkey = qp_attr->qkey; } if (qp_attr_mask & IB_QP_SQ_PSN) { params.modify_mask |= BIT(EFA_ADMIN_SQ_PSN_BIT); params.sq_psn = qp_attr->sq_psn; } err = efa_com_modify_qp(&dev->edev, ¶ms); if (err) return err; qp->state = new_state; return 0; } static int efa_destroy_cq_idx(struct efa_dev *dev, int cq_idx) { struct efa_com_destroy_cq_params params = { .cq_idx = cq_idx }; return efa_com_destroy_cq(&dev->edev, ¶ms); } int efa_destroy_cq(struct ib_cq *ibcq, struct ib_udata *udata) { struct efa_dev *dev = to_edev(ibcq->device); struct efa_cq *cq = to_ecq(ibcq); int err; if (udata->inlen && !ib_is_udata_cleared(udata, 0, udata->inlen)) { ibdev_dbg(&dev->ibdev, "Incompatible ABI params\n"); return -EINVAL; } ibdev_dbg(&dev->ibdev, "Destroy cq[%d] virt[0x%p] freed: size[%lu], dma[%pad]\n", cq->cq_idx, cq->cpu_addr, cq->size, &cq->dma_addr); err = efa_destroy_cq_idx(dev, cq->cq_idx); if (err) return err; dma_unmap_single(&dev->pdev->dev, cq->dma_addr, cq->size, DMA_FROM_DEVICE); kfree(cq); return 0; } static int cq_mmap_entries_setup(struct efa_dev *dev, struct efa_cq *cq, struct efa_ibv_create_cq_resp *resp) { resp->q_mmap_size = cq->size; resp->q_mmap_key = mmap_entry_insert(dev, cq->ucontext, cq, virt_to_phys(cq->cpu_addr), cq->size, EFA_MMAP_DMA_PAGE); if (resp->q_mmap_key == EFA_MMAP_INVALID) return -ENOMEM; return 0; } static struct ib_cq *do_create_cq(struct ib_device *ibdev, int entries, int vector, struct ib_ucontext *ibucontext, struct ib_udata *udata) { struct efa_ibv_create_cq_resp resp = {}; struct efa_com_create_cq_params params; struct efa_com_create_cq_result result; struct efa_dev *dev = to_edev(ibdev); struct efa_ibv_create_cq cmd = {}; bool cq_entry_inserted = false; struct efa_cq *cq; int err; ibdev_dbg(ibdev, "create_cq entries %d\n", entries); if (entries < 1 || entries > dev->dev_attr.max_cq_depth) { ibdev_dbg(ibdev, "cq: requested entries[%u] non-positive or greater than max[%u]\n", entries, dev->dev_attr.max_cq_depth); err = -EINVAL; goto err_out; } if (!field_avail(cmd, num_sub_cqs, udata->inlen)) { ibdev_dbg(ibdev, "Incompatible ABI params, no input udata\n"); err = -EINVAL; goto err_out; } if (udata->inlen > sizeof(cmd) && !ib_is_udata_cleared(udata, sizeof(cmd), udata->inlen - sizeof(cmd))) { ibdev_dbg(ibdev, "Incompatible ABI params, unknown fields in udata\n"); err = -EINVAL; goto err_out; } err = ib_copy_from_udata(&cmd, udata, min(sizeof(cmd), udata->inlen)); if (err) { ibdev_dbg(ibdev, "Cannot copy udata for create_cq\n"); goto err_out; } if (cmd.comp_mask || !is_reserved_cleared(cmd.reserved_50)) { ibdev_dbg(ibdev, "Incompatible ABI params, unknown fields in udata\n"); err = -EINVAL; goto err_out; } if (!cmd.cq_entry_size) { ibdev_dbg(ibdev, "Invalid entry size [%u]\n", cmd.cq_entry_size); err = -EINVAL; goto err_out; } if (cmd.num_sub_cqs != dev->dev_attr.sub_cqs_per_cq) { ibdev_dbg(ibdev, "Invalid number of sub cqs[%u] expected[%u]\n", cmd.num_sub_cqs, dev->dev_attr.sub_cqs_per_cq); err = -EINVAL; goto err_out; } cq = kzalloc(sizeof(*cq), GFP_KERNEL); if (!cq) { err = -ENOMEM; goto err_out; } cq->ucontext = to_eucontext(ibucontext); cq->size = PAGE_ALIGN(cmd.cq_entry_size * entries * cmd.num_sub_cqs); cq->cpu_addr = efa_zalloc_mapped(dev, &cq->dma_addr, cq->size, DMA_FROM_DEVICE); if (!cq->cpu_addr) { err = -ENOMEM; goto err_free_cq; } params.uarn = cq->ucontext->uarn; params.cq_depth = entries; params.dma_addr = cq->dma_addr; params.entry_size_in_bytes = cmd.cq_entry_size; params.num_sub_cqs = cmd.num_sub_cqs; err = efa_com_create_cq(&dev->edev, ¶ms, &result); if (err) goto err_free_mapped; resp.cq_idx = result.cq_idx; cq->cq_idx = result.cq_idx; cq->ibcq.cqe = result.actual_depth; WARN_ON_ONCE(entries != result.actual_depth); err = cq_mmap_entries_setup(dev, cq, &resp); if (err) { ibdev_dbg(ibdev, "Could not setup cq[%u] mmap entries\n", cq->cq_idx); goto err_destroy_cq; } cq_entry_inserted = true; if (udata->outlen) { err = ib_copy_to_udata(udata, &resp, min(sizeof(resp), udata->outlen)); if (err) { ibdev_dbg(ibdev, "Failed to copy udata for create_cq\n"); goto err_destroy_cq; } } ibdev_dbg(ibdev, "Created cq[%d], cq depth[%u]. dma[%pad] virt[0x%p]\n", cq->cq_idx, result.actual_depth, &cq->dma_addr, cq->cpu_addr); return &cq->ibcq; err_destroy_cq: efa_destroy_cq_idx(dev, cq->cq_idx); err_free_mapped: dma_unmap_single(&dev->pdev->dev, cq->dma_addr, cq->size, DMA_FROM_DEVICE); if (!cq_entry_inserted) free_pages_exact(cq->cpu_addr, cq->size); err_free_cq: kfree(cq); err_out: atomic64_inc(&dev->stats.sw_stats.create_cq_err); return ERR_PTR(err); } struct ib_cq *efa_create_cq(struct ib_device *ibdev, const struct ib_cq_init_attr *attr, struct ib_udata *udata) { struct efa_ucontext *ucontext = rdma_udata_to_drv_context(udata, struct efa_ucontext, ibucontext); return do_create_cq(ibdev, attr->cqe, attr->comp_vector, &ucontext->ibucontext, udata); } static int umem_to_page_list(struct efa_dev *dev, struct ib_umem *umem, u64 *page_list, u32 hp_cnt, u8 hp_shift) { u32 pages_in_hp = BIT(hp_shift - PAGE_SHIFT); struct sg_dma_page_iter sg_iter; unsigned int page_idx = 0; unsigned int hp_idx = 0; ibdev_dbg(&dev->ibdev, "hp_cnt[%u], pages_in_hp[%u]\n", hp_cnt, pages_in_hp); for_each_sg_dma_page(umem->sg_head.sgl, &sg_iter, umem->nmap, 0) { if (page_idx % pages_in_hp == 0) { page_list[hp_idx] = sg_page_iter_dma_address(&sg_iter); hp_idx++; } page_idx++; } return 0; } static struct scatterlist *efa_vmalloc_buf_to_sg(u64 *buf, int page_cnt) { struct scatterlist *sglist; struct page *pg; int i; sglist = kcalloc(page_cnt, sizeof(*sglist), GFP_KERNEL); if (!sglist) return NULL; sg_init_table(sglist, page_cnt); for (i = 0; i < page_cnt; i++) { pg = vmalloc_to_page(buf); if (!pg) goto err; sg_set_page(&sglist[i], pg, PAGE_SIZE, 0); buf += PAGE_SIZE / sizeof(*buf); } return sglist; err: kfree(sglist); return NULL; } /* * create a chunk list of physical pages dma addresses from the supplied * scatter gather list */ static int pbl_chunk_list_create(struct efa_dev *dev, struct pbl_context *pbl) { unsigned int entry, payloads_in_sg, chunk_list_size, chunk_idx, payload_idx; struct pbl_chunk_list *chunk_list = &pbl->phys.indirect.chunk_list; int page_cnt = pbl->phys.indirect.pbl_buf_size_in_pages; struct scatterlist *pages_sgl = pbl->phys.indirect.sgl; int sg_dma_cnt = pbl->phys.indirect.sg_dma_cnt; struct efa_com_ctrl_buff_info *ctrl_buf; u64 *cur_chunk_buf, *prev_chunk_buf; struct scatterlist *sg; dma_addr_t dma_addr; int i; /* allocate a chunk list that consists of 4KB chunks */ chunk_list_size = DIV_ROUND_UP(page_cnt, EFA_PTRS_PER_CHUNK); chunk_list->size = chunk_list_size; chunk_list->chunks = kcalloc(chunk_list_size, sizeof(*chunk_list->chunks), GFP_KERNEL); if (!chunk_list->chunks) return -ENOMEM; ibdev_dbg(&dev->ibdev, "chunk_list_size[%u] - pages[%u]\n", chunk_list_size, page_cnt); /* allocate chunk buffers: */ for (i = 0; i < chunk_list_size; i++) { chunk_list->chunks[i].buf = kzalloc(EFA_CHUNK_SIZE, GFP_KERNEL); if (!chunk_list->chunks[i].buf) goto chunk_list_dealloc; chunk_list->chunks[i].length = EFA_CHUNK_USED_SIZE; } chunk_list->chunks[chunk_list_size - 1].length = ((page_cnt % EFA_PTRS_PER_CHUNK) * EFA_CHUNK_PAYLOAD_PTR_SIZE) + EFA_CHUNK_PTR_SIZE; /* fill the dma addresses of sg list pages to chunks: */ chunk_idx = 0; payload_idx = 0; cur_chunk_buf = chunk_list->chunks[0].buf; for_each_sg(pages_sgl, sg, sg_dma_cnt, entry) { payloads_in_sg = sg_dma_len(sg) >> EFA_CHUNK_PAYLOAD_SHIFT; for (i = 0; i < payloads_in_sg; i++) { cur_chunk_buf[payload_idx++] = (sg_dma_address(sg) & ~(EFA_CHUNK_PAYLOAD_SIZE - 1)) + (EFA_CHUNK_PAYLOAD_SIZE * i); if (payload_idx == EFA_PTRS_PER_CHUNK) { chunk_idx++; cur_chunk_buf = chunk_list->chunks[chunk_idx].buf; payload_idx = 0; } } } /* map chunks to dma and fill chunks next ptrs */ for (i = chunk_list_size - 1; i >= 0; i--) { dma_addr = dma_map_single(&dev->pdev->dev, chunk_list->chunks[i].buf, chunk_list->chunks[i].length, DMA_TO_DEVICE); if (dma_mapping_error(&dev->pdev->dev, dma_addr)) { ibdev_err(&dev->ibdev, "chunk[%u] dma_map_failed\n", i); goto chunk_list_unmap; } chunk_list->chunks[i].dma_addr = dma_addr; ibdev_dbg(&dev->ibdev, "chunk[%u] mapped at [%pad]\n", i, &dma_addr); if (!i) break; prev_chunk_buf = chunk_list->chunks[i - 1].buf; ctrl_buf = (struct efa_com_ctrl_buff_info *) &prev_chunk_buf[EFA_PTRS_PER_CHUNK]; ctrl_buf->length = chunk_list->chunks[i].length; efa_com_set_dma_addr(dma_addr, &ctrl_buf->address.mem_addr_high, &ctrl_buf->address.mem_addr_low); } return 0; chunk_list_unmap: for (; i < chunk_list_size; i++) { dma_unmap_single(&dev->pdev->dev, chunk_list->chunks[i].dma_addr, chunk_list->chunks[i].length, DMA_TO_DEVICE); } chunk_list_dealloc: for (i = 0; i < chunk_list_size; i++) kfree(chunk_list->chunks[i].buf); kfree(chunk_list->chunks); return -ENOMEM; } static void pbl_chunk_list_destroy(struct efa_dev *dev, struct pbl_context *pbl) { struct pbl_chunk_list *chunk_list = &pbl->phys.indirect.chunk_list; int i; for (i = 0; i < chunk_list->size; i++) { dma_unmap_single(&dev->pdev->dev, chunk_list->chunks[i].dma_addr, chunk_list->chunks[i].length, DMA_TO_DEVICE); kfree(chunk_list->chunks[i].buf); } kfree(chunk_list->chunks); } /* initialize pbl continuous mode: map pbl buffer to a dma address. */ static int pbl_continuous_initialize(struct efa_dev *dev, struct pbl_context *pbl) { dma_addr_t dma_addr; dma_addr = dma_map_single(&dev->pdev->dev, pbl->pbl_buf, pbl->pbl_buf_size_in_bytes, DMA_TO_DEVICE); if (dma_mapping_error(&dev->pdev->dev, dma_addr)) { ibdev_err(&dev->ibdev, "Unable to map pbl to DMA address\n"); return -ENOMEM; } pbl->phys.continuous.dma_addr = dma_addr; ibdev_dbg(&dev->ibdev, "pbl continuous - dma_addr = %pad, size[%u]\n", &dma_addr, pbl->pbl_buf_size_in_bytes); return 0; } /* * initialize pbl indirect mode: * create a chunk list out of the dma addresses of the physical pages of * pbl buffer. */ static int pbl_indirect_initialize(struct efa_dev *dev, struct pbl_context *pbl) { u32 size_in_pages = DIV_ROUND_UP(pbl->pbl_buf_size_in_bytes, PAGE_SIZE); struct scatterlist *sgl; int sg_dma_cnt, err; BUILD_BUG_ON(EFA_CHUNK_PAYLOAD_SIZE > PAGE_SIZE); sgl = efa_vmalloc_buf_to_sg(pbl->pbl_buf, size_in_pages); if (!sgl) return -ENOMEM; sg_dma_cnt = dma_map_sg(&dev->pdev->dev, sgl, size_in_pages, DMA_TO_DEVICE); if (!sg_dma_cnt) { err = -EINVAL; goto err_map; } pbl->phys.indirect.pbl_buf_size_in_pages = size_in_pages; pbl->phys.indirect.sgl = sgl; pbl->phys.indirect.sg_dma_cnt = sg_dma_cnt; err = pbl_chunk_list_create(dev, pbl); if (err) { ibdev_dbg(&dev->ibdev, "chunk_list creation failed[%d]\n", err); goto err_chunk; } ibdev_dbg(&dev->ibdev, "pbl indirect - size[%u], chunks[%u]\n", pbl->pbl_buf_size_in_bytes, pbl->phys.indirect.chunk_list.size); return 0; err_chunk: dma_unmap_sg(&dev->pdev->dev, sgl, size_in_pages, DMA_TO_DEVICE); err_map: kfree(sgl); return err; } static void pbl_indirect_terminate(struct efa_dev *dev, struct pbl_context *pbl) { pbl_chunk_list_destroy(dev, pbl); dma_unmap_sg(&dev->pdev->dev, pbl->phys.indirect.sgl, pbl->phys.indirect.pbl_buf_size_in_pages, DMA_TO_DEVICE); kfree(pbl->phys.indirect.sgl); } /* create a page buffer list from a mapped user memory region */ static int pbl_create(struct efa_dev *dev, struct pbl_context *pbl, struct ib_umem *umem, int hp_cnt, u8 hp_shift) { int err; pbl->pbl_buf_size_in_bytes = hp_cnt * EFA_CHUNK_PAYLOAD_PTR_SIZE; pbl->pbl_buf = kzalloc(pbl->pbl_buf_size_in_bytes, GFP_KERNEL | __GFP_NOWARN); if (pbl->pbl_buf) { pbl->physically_continuous = 1; err = umem_to_page_list(dev, umem, pbl->pbl_buf, hp_cnt, hp_shift); if (err) goto err_continuous; err = pbl_continuous_initialize(dev, pbl); if (err) goto err_continuous; } else { pbl->physically_continuous = 0; pbl->pbl_buf = vzalloc(pbl->pbl_buf_size_in_bytes); if (!pbl->pbl_buf) return -ENOMEM; err = umem_to_page_list(dev, umem, pbl->pbl_buf, hp_cnt, hp_shift); if (err) goto err_indirect; err = pbl_indirect_initialize(dev, pbl); if (err) goto err_indirect; } ibdev_dbg(&dev->ibdev, "user_pbl_created: user_pages[%u], continuous[%u]\n", hp_cnt, pbl->physically_continuous); return 0; err_continuous: kfree(pbl->pbl_buf); return err; err_indirect: vfree(pbl->pbl_buf); return err; } static void pbl_destroy(struct efa_dev *dev, struct pbl_context *pbl) { if (pbl->physically_continuous) { dma_unmap_single(&dev->pdev->dev, pbl->phys.continuous.dma_addr, pbl->pbl_buf_size_in_bytes, DMA_TO_DEVICE); kfree(pbl->pbl_buf); } else { pbl_indirect_terminate(dev, pbl); vfree(pbl->pbl_buf); } } static int efa_create_inline_pbl(struct efa_dev *dev, struct efa_mr *mr, struct efa_com_reg_mr_params *params) { int err; params->inline_pbl = 1; err = umem_to_page_list(dev, mr->umem, params->pbl.inline_pbl_array, params->page_num, params->page_shift); if (err) return err; ibdev_dbg(&dev->ibdev, "inline_pbl_array - pages[%u]\n", params->page_num); return 0; } static int efa_create_pbl(struct efa_dev *dev, struct pbl_context *pbl, struct efa_mr *mr, struct efa_com_reg_mr_params *params) { int err; err = pbl_create(dev, pbl, mr->umem, params->page_num, params->page_shift); if (err) { ibdev_dbg(&dev->ibdev, "Failed to create pbl[%d]\n", err); return err; } params->inline_pbl = 0; params->indirect = !pbl->physically_continuous; if (pbl->physically_continuous) { params->pbl.pbl.length = pbl->pbl_buf_size_in_bytes; efa_com_set_dma_addr(pbl->phys.continuous.dma_addr, ¶ms->pbl.pbl.address.mem_addr_high, ¶ms->pbl.pbl.address.mem_addr_low); } else { params->pbl.pbl.length = pbl->phys.indirect.chunk_list.chunks[0].length; efa_com_set_dma_addr(pbl->phys.indirect.chunk_list.chunks[0].dma_addr, ¶ms->pbl.pbl.address.mem_addr_high, ¶ms->pbl.pbl.address.mem_addr_low); } return 0; } static void efa_cont_pages(struct ib_umem *umem, u64 addr, unsigned long max_page_shift, int *count, u8 *shift, u32 *ncont) { struct scatterlist *sg; u64 base = ~0, p = 0; unsigned long tmp; unsigned long m; u64 len, pfn; int i = 0; int entry; addr = addr >> PAGE_SHIFT; tmp = (unsigned long)addr; m = find_first_bit(&tmp, BITS_PER_LONG); if (max_page_shift) m = min_t(unsigned long, max_page_shift - PAGE_SHIFT, m); for_each_sg(umem->sg_head.sgl, sg, umem->nmap, entry) { len = DIV_ROUND_UP(sg_dma_len(sg), PAGE_SIZE); pfn = sg_dma_address(sg) >> PAGE_SHIFT; if (base + p != pfn) { /* * If either the offset or the new * base are unaligned update m */ tmp = (unsigned long)(pfn | p); if (!IS_ALIGNED(tmp, 1 << m)) m = find_first_bit(&tmp, BITS_PER_LONG); base = pfn; p = 0; } p += len; i += len; } if (i) { m = min_t(unsigned long, ilog2(roundup_pow_of_two(i)), m); *ncont = DIV_ROUND_UP(i, (1 << m)); } else { m = 0; *ncont = 0; } *shift = PAGE_SHIFT + m; *count = i; } struct ib_mr *efa_reg_mr(struct ib_pd *ibpd, u64 start, u64 length, u64 virt_addr, int access_flags, struct ib_udata *udata) { struct efa_dev *dev = to_edev(ibpd->device); struct efa_com_reg_mr_params params = {}; struct efa_com_reg_mr_result result = {}; unsigned long max_page_shift; struct pbl_context pbl; struct efa_mr *mr; int inline_size; int npages; int err; if (udata->inlen && !ib_is_udata_cleared(udata, 0, sizeof(udata->inlen))) { ibdev_dbg(&dev->ibdev, "Incompatible ABI params, udata not cleared\n"); err = -EINVAL; goto err_out; } if (access_flags & ~EFA_SUPPORTED_ACCESS_FLAGS) { ibdev_dbg(&dev->ibdev, "Unsupported access flags[%#x], supported[%#x]\n", access_flags, EFA_SUPPORTED_ACCESS_FLAGS); err = -EOPNOTSUPP; goto err_out; } mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) { err = -ENOMEM; goto err_out; } mr->umem = ib_umem_get(udata, start, length, access_flags, 0); if (IS_ERR(mr->umem)) { err = PTR_ERR(mr->umem); ibdev_dbg(&dev->ibdev, "Failed to pin and map user space memory[%d]\n", err); goto err_free; } params.pd = to_epd(ibpd)->pdn; params.iova = virt_addr; params.mr_length_in_bytes = length; params.permissions = access_flags & 0x1; max_page_shift = fls64(dev->dev_attr.page_size_cap); efa_cont_pages(mr->umem, start, max_page_shift, &npages, ¶ms.page_shift, ¶ms.page_num); ibdev_dbg(&dev->ibdev, "start %#llx length %#llx npages %d params.page_shift %u params.page_num %u\n", start, length, npages, params.page_shift, params.page_num); inline_size = ARRAY_SIZE(params.pbl.inline_pbl_array); if (params.page_num <= inline_size) { err = efa_create_inline_pbl(dev, mr, ¶ms); if (err) goto err_unmap; err = efa_com_register_mr(&dev->edev, ¶ms, &result); if (err) goto err_unmap; } else { err = efa_create_pbl(dev, &pbl, mr, ¶ms); if (err) goto err_unmap; err = efa_com_register_mr(&dev->edev, ¶ms, &result); pbl_destroy(dev, &pbl); if (err) goto err_unmap; } mr->ibmr.lkey = result.l_key; mr->ibmr.rkey = result.r_key; mr->ibmr.length = length; ibdev_dbg(&dev->ibdev, "Registered mr[%d]\n", mr->ibmr.lkey); return &mr->ibmr; err_unmap: ib_umem_release(mr->umem); err_free: kfree(mr); err_out: atomic64_inc(&dev->stats.sw_stats.reg_mr_err); return ERR_PTR(err); } int efa_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) { struct efa_dev *dev = to_edev(ibmr->device); struct efa_com_dereg_mr_params params; struct efa_mr *mr = to_emr(ibmr); int err; if (udata->inlen && !ib_is_udata_cleared(udata, 0, udata->inlen)) { ibdev_dbg(&dev->ibdev, "Incompatible ABI params\n"); return -EINVAL; } ibdev_dbg(&dev->ibdev, "Deregister mr[%d]\n", ibmr->lkey); if (mr->umem) { params.l_key = mr->ibmr.lkey; err = efa_com_dereg_mr(&dev->edev, ¶ms); if (err) return err; ib_umem_release(mr->umem); } kfree(mr); return 0; } int efa_get_port_immutable(struct ib_device *ibdev, u8 port_num, struct ib_port_immutable *immutable) { struct ib_port_attr attr; int err; err = ib_query_port(ibdev, port_num, &attr); if (err) { ibdev_dbg(ibdev, "Couldn't query port err[%d]\n", err); return err; } immutable->pkey_tbl_len = attr.pkey_tbl_len; immutable->gid_tbl_len = attr.gid_tbl_len; return 0; } static int efa_dealloc_uar(struct efa_dev *dev, u16 uarn) { struct efa_com_dealloc_uar_params params = { .uarn = uarn, }; return efa_com_dealloc_uar(&dev->edev, ¶ms); } int efa_alloc_ucontext(struct ib_ucontext *ibucontext, struct ib_udata *udata) { struct efa_ucontext *ucontext = to_eucontext(ibucontext); struct efa_dev *dev = to_edev(ibucontext->device); struct efa_ibv_alloc_ucontext_resp resp = {}; struct efa_com_alloc_uar_result result; int err; /* * it's fine if the driver does not know all request fields, * we will ack input fields in our response. */ err = efa_com_alloc_uar(&dev->edev, &result); if (err) goto err_out; ucontext->uarn = result.uarn; xa_init(&ucontext->mmap_xa); resp.cmds_supp_udata_mask |= EFA_USER_CMDS_SUPP_UDATA_QUERY_DEVICE; resp.cmds_supp_udata_mask |= EFA_USER_CMDS_SUPP_UDATA_CREATE_AH; resp.sub_cqs_per_cq = dev->dev_attr.sub_cqs_per_cq; resp.inline_buf_size = dev->dev_attr.inline_buf_size; resp.max_llq_size = dev->dev_attr.max_llq_size; if (udata && udata->outlen) { err = ib_copy_to_udata(udata, &resp, min(sizeof(resp), udata->outlen)); if (err) goto err_dealloc_uar; } return 0; err_dealloc_uar: efa_dealloc_uar(dev, result.uarn); err_out: atomic64_inc(&dev->stats.sw_stats.alloc_ucontext_err); return err; } void efa_dealloc_ucontext(struct ib_ucontext *ibucontext) { struct efa_ucontext *ucontext = to_eucontext(ibucontext); struct efa_dev *dev = to_edev(ibucontext->device); mmap_entries_remove_free(dev, ucontext); efa_dealloc_uar(dev, ucontext->uarn); } static int __efa_mmap(struct efa_dev *dev, struct efa_ucontext *ucontext, struct vm_area_struct *vma, u64 key, u64 length) { struct efa_mmap_entry *entry; unsigned long va; u64 pfn; int err; entry = mmap_entry_get(dev, ucontext, key, length); if (!entry) { ibdev_dbg(&dev->ibdev, "key[%#llx] does not have valid entry\n", key); return -EINVAL; } ibdev_dbg(&dev->ibdev, "Mapping address[%#llx], length[%#llx], mmap_flag[%d]\n", entry->address, length, entry->mmap_flag); pfn = entry->address >> PAGE_SHIFT; switch (entry->mmap_flag) { case EFA_MMAP_IO_NC: err = rdma_user_mmap_io(&ucontext->ibucontext, vma, pfn, length, pgprot_noncached(vma->vm_page_prot)); break; case EFA_MMAP_IO_WC: err = rdma_user_mmap_io(&ucontext->ibucontext, vma, pfn, length, pgprot_writecombine(vma->vm_page_prot)); break; case EFA_MMAP_DMA_PAGE: for (va = vma->vm_start; va < vma->vm_end; va += PAGE_SIZE, pfn++) { err = vm_insert_page(vma, va, pfn_to_page(pfn)); if (err) break; } break; default: err = -EINVAL; } if (err) ibdev_dbg( &dev->ibdev, "Couldn't mmap address[%#llx] length[%#llx] mmap_flag[%d] err[%d]\n", entry->address, length, entry->mmap_flag, err); return err; } int efa_mmap(struct ib_ucontext *ibucontext, struct vm_area_struct *vma) { struct efa_ucontext *ucontext = to_eucontext(ibucontext); struct efa_dev *dev = to_edev(ibucontext->device); u64 length = vma->vm_end - vma->vm_start; u64 key = vma->vm_pgoff << PAGE_SHIFT; ibdev_dbg(&dev->ibdev, "start %#lx, end %#lx, length = %#llx, key = %#llx\n", vma->vm_start, vma->vm_end, length, key); if (length % PAGE_SIZE != 0 || !(vma->vm_flags & VM_SHARED)) { ibdev_dbg(&dev->ibdev, "length[%#llx] is not page size aligned[%#lx] or VM_SHARED is not set [%#lx]\n", length, PAGE_SIZE, vma->vm_flags); return -EINVAL; } if (vma->vm_flags & VM_EXEC) { ibdev_dbg(&dev->ibdev, "Mapping executable pages is not permitted\n"); return -EPERM; } return __efa_mmap(dev, ucontext, vma, key, length); } static int efa_ah_destroy(struct efa_dev *dev, struct efa_ah *ah) { struct efa_com_destroy_ah_params params = { .ah = ah->ah, .pdn = to_epd(ah->ibah.pd)->pdn, }; return efa_com_destroy_ah(&dev->edev, ¶ms); } int efa_create_ah(struct ib_ah *ibah, struct rdma_ah_attr *ah_attr, u32 flags, struct ib_udata *udata) { struct efa_dev *dev = to_edev(ibah->device); struct efa_com_create_ah_params params = {}; struct efa_ibv_create_ah_resp resp = {}; struct efa_com_create_ah_result result; struct efa_ah *ah = to_eah(ibah); int err; if (!(flags & RDMA_CREATE_AH_SLEEPABLE)) { ibdev_dbg(&dev->ibdev, "Create address handle is not supported in atomic context\n"); err = -EOPNOTSUPP; goto err_out; } if (udata->inlen && !ib_is_udata_cleared(udata, 0, udata->inlen)) { ibdev_dbg(&dev->ibdev, "Incompatible ABI params\n"); err = -EINVAL; goto err_out; } memcpy(params.dest_addr, ah_attr->grh.dgid.raw, sizeof(params.dest_addr)); params.pdn = to_epd(ibah->pd)->pdn; err = efa_com_create_ah(&dev->edev, ¶ms, &result); if (err) goto err_out; memcpy(ah->id, ah_attr->grh.dgid.raw, sizeof(ah->id)); ah->ah = result.ah; resp.efa_address_handle = result.ah; if (udata->outlen) { err = ib_copy_to_udata(udata, &resp, min(sizeof(resp), udata->outlen)); if (err) { ibdev_dbg(&dev->ibdev, "Failed to copy udata for create_ah response\n"); goto err_destroy_ah; } } ibdev_dbg(&dev->ibdev, "Created ah[%d]\n", ah->ah); return 0; err_destroy_ah: efa_ah_destroy(dev, ah); err_out: atomic64_inc(&dev->stats.sw_stats.create_ah_err); return err; } void efa_destroy_ah(struct ib_ah *ibah, u32 flags) { struct efa_dev *dev = to_edev(ibah->pd->device); struct efa_ah *ah = to_eah(ibah); ibdev_dbg(&dev->ibdev, "Destroy ah[%d]\n", ah->ah); if (!(flags & RDMA_DESTROY_AH_SLEEPABLE)) { ibdev_dbg(&dev->ibdev, "Destroy address handle is not supported in atomic context\n"); return; } efa_ah_destroy(dev, ah); } enum rdma_link_layer efa_port_link_layer(struct ib_device *ibdev, u8 port_num) { return IB_LINK_LAYER_UNSPECIFIED; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1