Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Eli Cohen | 3542 | 33.32% | 8 | 7.92% |
Sagi Grimberg | 1386 | 13.04% | 7 | 6.93% |
Artemy Kovalyov | 1245 | 11.71% | 9 | 8.91% |
Saeed Mahameed | 704 | 6.62% | 3 | 2.97% |
Noa Osherovich | 686 | 6.45% | 2 | 1.98% |
Haggai Eran | 608 | 5.72% | 8 | 7.92% |
Ariel Levkovich | 565 | 5.31% | 4 | 3.96% |
Matan Barak | 461 | 4.34% | 2 | 1.98% |
Leon Romanovsky | 243 | 2.29% | 12 | 11.88% |
Ilya Lesokhin | 234 | 2.20% | 5 | 4.95% |
Majd Dibbiny | 163 | 1.53% | 3 | 2.97% |
Binoy Jayan | 153 | 1.44% | 1 | 0.99% |
Moni Shoua | 98 | 0.92% | 2 | 1.98% |
Daniel Jurgens | 93 | 0.87% | 1 | 0.99% |
Christoph Hellwig | 79 | 0.74% | 3 | 2.97% |
Jason Gunthorpe | 69 | 0.65% | 3 | 2.97% |
Jann Horn | 50 | 0.47% | 1 | 0.99% |
Moshe Lazer | 44 | 0.41% | 2 | 1.98% |
Bart Van Assche | 37 | 0.35% | 4 | 3.96% |
Arnd Bergmann | 33 | 0.31% | 2 | 1.98% |
Mark Bloch | 25 | 0.24% | 3 | 2.97% |
Maor Gottlieb | 20 | 0.19% | 1 | 0.99% |
Valentine Fatiev | 16 | 0.15% | 1 | 0.99% |
Kees Cook | 14 | 0.13% | 1 | 0.99% |
shamir rabinovitch | 10 | 0.09% | 1 | 0.99% |
Nitzan Carmi | 10 | 0.09% | 1 | 0.99% |
Jack Morgenstein | 8 | 0.08% | 1 | 0.99% |
Greg Kroah-Hartman | 7 | 0.07% | 1 | 0.99% |
Sergey Gorenko | 6 | 0.06% | 1 | 0.99% |
Shachar Raindel | 5 | 0.05% | 1 | 0.99% |
Gal Pressman | 4 | 0.04% | 1 | 0.99% |
Dan Carpenter | 4 | 0.04% | 2 | 1.98% |
Bhaktipriya Shridhar | 3 | 0.03% | 1 | 0.99% |
Doug Ledford | 2 | 0.02% | 1 | 0.99% |
Arvind Yadav | 2 | 0.02% | 1 | 0.99% |
Al Viro | 2 | 0.02% | 1 | 0.99% |
Total | 10631 | 101 |
/* * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/kref.h> #include <linux/random.h> #include <linux/debugfs.h> #include <linux/export.h> #include <linux/delay.h> #include <rdma/ib_umem.h> #include <rdma/ib_umem_odp.h> #include <rdma/ib_verbs.h> #include "mlx5_ib.h" enum { MAX_PENDING_REG_MR = 8, }; #define MLX5_UMR_ALIGN 2048 static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr); static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr); static int mr_cache_max_order(struct mlx5_ib_dev *dev); static int unreg_umr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr); static bool umr_can_modify_entity_size(struct mlx5_ib_dev *dev) { return !MLX5_CAP_GEN(dev->mdev, umr_modify_entity_size_disabled); } static bool umr_can_use_indirect_mkey(struct mlx5_ib_dev *dev) { return !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled); } static bool use_umr(struct mlx5_ib_dev *dev, int order) { return order <= mr_cache_max_order(dev) && umr_can_modify_entity_size(dev); } static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) { int err = mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) /* Wait until all page fault handlers using the mr complete. */ synchronize_srcu(&dev->mr_srcu); return err; } static int order2idx(struct mlx5_ib_dev *dev, int order) { struct mlx5_mr_cache *cache = &dev->cache; if (order < cache->ent[0].order) return 0; else return order - cache->ent[0].order; } static bool use_umr_mtt_update(struct mlx5_ib_mr *mr, u64 start, u64 length) { return ((u64)1 << mr->order) * MLX5_ADAPTER_PAGE_SIZE >= length + (start & (MLX5_ADAPTER_PAGE_SIZE - 1)); } static void update_odp_mr(struct mlx5_ib_mr *mr) { if (is_odp_mr(mr)) { /* * This barrier prevents the compiler from moving the * setting of umem->odp_data->private to point to our * MR, before reg_umr finished, to ensure that the MR * initialization have finished before starting to * handle invalidations. */ smp_wmb(); to_ib_umem_odp(mr->umem)->private = mr; /* * Make sure we will see the new * umem->odp_data->private value in the invalidation * routines, before we can get page faults on the * MR. Page faults can happen once we put the MR in * the tree, below this line. Without the barrier, * there can be a fault handling and an invalidation * before umem->odp_data->private == mr is visible to * the invalidation handler. */ smp_wmb(); } } static void reg_mr_callback(int status, struct mlx5_async_work *context) { struct mlx5_ib_mr *mr = container_of(context, struct mlx5_ib_mr, cb_work); struct mlx5_ib_dev *dev = mr->dev; struct mlx5_mr_cache *cache = &dev->cache; int c = order2idx(dev, mr->order); struct mlx5_cache_ent *ent = &cache->ent[c]; u8 key; unsigned long flags; struct mlx5_mkey_table *table = &dev->mdev->priv.mkey_table; int err; spin_lock_irqsave(&ent->lock, flags); ent->pending--; spin_unlock_irqrestore(&ent->lock, flags); if (status) { mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status); kfree(mr); dev->fill_delay = 1; mod_timer(&dev->delay_timer, jiffies + HZ); return; } mr->mmkey.type = MLX5_MKEY_MR; spin_lock_irqsave(&dev->mdev->priv.mkey_lock, flags); key = dev->mdev->priv.mkey_key++; spin_unlock_irqrestore(&dev->mdev->priv.mkey_lock, flags); mr->mmkey.key = mlx5_idx_to_mkey(MLX5_GET(create_mkey_out, mr->out, mkey_index)) | key; cache->last_add = jiffies; spin_lock_irqsave(&ent->lock, flags); list_add_tail(&mr->list, &ent->head); ent->cur++; ent->size++; spin_unlock_irqrestore(&ent->lock, flags); write_lock_irqsave(&table->lock, flags); err = radix_tree_insert(&table->tree, mlx5_base_mkey(mr->mmkey.key), &mr->mmkey); if (err) pr_err("Error inserting to mkey tree. 0x%x\n", -err); write_unlock_irqrestore(&table->lock, flags); if (!completion_done(&ent->compl)) complete(&ent->compl); } static int add_keys(struct mlx5_ib_dev *dev, int c, int num) { struct mlx5_mr_cache *cache = &dev->cache; struct mlx5_cache_ent *ent = &cache->ent[c]; int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); struct mlx5_ib_mr *mr; void *mkc; u32 *in; int err = 0; int i; in = kzalloc(inlen, GFP_KERNEL); if (!in) return -ENOMEM; mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); for (i = 0; i < num; i++) { if (ent->pending >= MAX_PENDING_REG_MR) { err = -EAGAIN; break; } mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) { err = -ENOMEM; break; } mr->order = ent->order; mr->allocated_from_cache = 1; mr->dev = dev; MLX5_SET(mkc, mkc, free, 1); MLX5_SET(mkc, mkc, umr_en, 1); MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3); MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7); MLX5_SET(mkc, mkc, qpn, 0xffffff); MLX5_SET(mkc, mkc, translations_octword_size, ent->xlt); MLX5_SET(mkc, mkc, log_page_size, ent->page); spin_lock_irq(&ent->lock); ent->pending++; spin_unlock_irq(&ent->lock); err = mlx5_core_create_mkey_cb(dev->mdev, &mr->mmkey, &dev->async_ctx, in, inlen, mr->out, sizeof(mr->out), reg_mr_callback, &mr->cb_work); if (err) { spin_lock_irq(&ent->lock); ent->pending--; spin_unlock_irq(&ent->lock); mlx5_ib_warn(dev, "create mkey failed %d\n", err); kfree(mr); break; } } kfree(in); return err; } static void remove_keys(struct mlx5_ib_dev *dev, int c, int num) { struct mlx5_mr_cache *cache = &dev->cache; struct mlx5_cache_ent *ent = &cache->ent[c]; struct mlx5_ib_mr *tmp_mr; struct mlx5_ib_mr *mr; LIST_HEAD(del_list); int i; for (i = 0; i < num; i++) { spin_lock_irq(&ent->lock); if (list_empty(&ent->head)) { spin_unlock_irq(&ent->lock); break; } mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); list_move(&mr->list, &del_list); ent->cur--; ent->size--; spin_unlock_irq(&ent->lock); mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); } if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) synchronize_srcu(&dev->mr_srcu); list_for_each_entry_safe(mr, tmp_mr, &del_list, list) { list_del(&mr->list); kfree(mr); } } static ssize_t size_write(struct file *filp, const char __user *buf, size_t count, loff_t *pos) { struct mlx5_cache_ent *ent = filp->private_data; struct mlx5_ib_dev *dev = ent->dev; char lbuf[20] = {0}; u32 var; int err; int c; count = min(count, sizeof(lbuf) - 1); if (copy_from_user(lbuf, buf, count)) return -EFAULT; c = order2idx(dev, ent->order); if (sscanf(lbuf, "%u", &var) != 1) return -EINVAL; if (var < ent->limit) return -EINVAL; if (var > ent->size) { do { err = add_keys(dev, c, var - ent->size); if (err && err != -EAGAIN) return err; usleep_range(3000, 5000); } while (err); } else if (var < ent->size) { remove_keys(dev, c, ent->size - var); } return count; } static ssize_t size_read(struct file *filp, char __user *buf, size_t count, loff_t *pos) { struct mlx5_cache_ent *ent = filp->private_data; char lbuf[20]; int err; err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->size); if (err < 0) return err; return simple_read_from_buffer(buf, count, pos, lbuf, err); } static const struct file_operations size_fops = { .owner = THIS_MODULE, .open = simple_open, .write = size_write, .read = size_read, }; static ssize_t limit_write(struct file *filp, const char __user *buf, size_t count, loff_t *pos) { struct mlx5_cache_ent *ent = filp->private_data; struct mlx5_ib_dev *dev = ent->dev; char lbuf[20] = {0}; u32 var; int err; int c; count = min(count, sizeof(lbuf) - 1); if (copy_from_user(lbuf, buf, count)) return -EFAULT; c = order2idx(dev, ent->order); if (sscanf(lbuf, "%u", &var) != 1) return -EINVAL; if (var > ent->size) return -EINVAL; ent->limit = var; if (ent->cur < ent->limit) { err = add_keys(dev, c, 2 * ent->limit - ent->cur); if (err) return err; } return count; } static ssize_t limit_read(struct file *filp, char __user *buf, size_t count, loff_t *pos) { struct mlx5_cache_ent *ent = filp->private_data; char lbuf[20]; int err; err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit); if (err < 0) return err; return simple_read_from_buffer(buf, count, pos, lbuf, err); } static const struct file_operations limit_fops = { .owner = THIS_MODULE, .open = simple_open, .write = limit_write, .read = limit_read, }; static int someone_adding(struct mlx5_mr_cache *cache) { int i; for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { if (cache->ent[i].cur < cache->ent[i].limit) return 1; } return 0; } static void __cache_work_func(struct mlx5_cache_ent *ent) { struct mlx5_ib_dev *dev = ent->dev; struct mlx5_mr_cache *cache = &dev->cache; int i = order2idx(dev, ent->order); int err; if (cache->stopped) return; ent = &dev->cache.ent[i]; if (ent->cur < 2 * ent->limit && !dev->fill_delay) { err = add_keys(dev, i, 1); if (ent->cur < 2 * ent->limit) { if (err == -EAGAIN) { mlx5_ib_dbg(dev, "returned eagain, order %d\n", i + 2); queue_delayed_work(cache->wq, &ent->dwork, msecs_to_jiffies(3)); } else if (err) { mlx5_ib_warn(dev, "command failed order %d, err %d\n", i + 2, err); queue_delayed_work(cache->wq, &ent->dwork, msecs_to_jiffies(1000)); } else { queue_work(cache->wq, &ent->work); } } } else if (ent->cur > 2 * ent->limit) { /* * The remove_keys() logic is performed as garbage collection * task. Such task is intended to be run when no other active * processes are running. * * The need_resched() will return TRUE if there are user tasks * to be activated in near future. * * In such case, we don't execute remove_keys() and postpone * the garbage collection work to try to run in next cycle, * in order to free CPU resources to other tasks. */ if (!need_resched() && !someone_adding(cache) && time_after(jiffies, cache->last_add + 300 * HZ)) { remove_keys(dev, i, 1); if (ent->cur > ent->limit) queue_work(cache->wq, &ent->work); } else { queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ); } } } static void delayed_cache_work_func(struct work_struct *work) { struct mlx5_cache_ent *ent; ent = container_of(work, struct mlx5_cache_ent, dwork.work); __cache_work_func(ent); } static void cache_work_func(struct work_struct *work) { struct mlx5_cache_ent *ent; ent = container_of(work, struct mlx5_cache_ent, work); __cache_work_func(ent); } struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, int entry) { struct mlx5_mr_cache *cache = &dev->cache; struct mlx5_cache_ent *ent; struct mlx5_ib_mr *mr; int err; if (entry < 0 || entry >= MAX_MR_CACHE_ENTRIES) { mlx5_ib_err(dev, "cache entry %d is out of range\n", entry); return NULL; } ent = &cache->ent[entry]; while (1) { spin_lock_irq(&ent->lock); if (list_empty(&ent->head)) { spin_unlock_irq(&ent->lock); err = add_keys(dev, entry, 1); if (err && err != -EAGAIN) return ERR_PTR(err); wait_for_completion(&ent->compl); } else { mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); list_del(&mr->list); ent->cur--; spin_unlock_irq(&ent->lock); if (ent->cur < ent->limit) queue_work(cache->wq, &ent->work); return mr; } } } static struct mlx5_ib_mr *alloc_cached_mr(struct mlx5_ib_dev *dev, int order) { struct mlx5_mr_cache *cache = &dev->cache; struct mlx5_ib_mr *mr = NULL; struct mlx5_cache_ent *ent; int last_umr_cache_entry; int c; int i; c = order2idx(dev, order); last_umr_cache_entry = order2idx(dev, mr_cache_max_order(dev)); if (c < 0 || c > last_umr_cache_entry) { mlx5_ib_warn(dev, "order %d, cache index %d\n", order, c); return NULL; } for (i = c; i <= last_umr_cache_entry; i++) { ent = &cache->ent[i]; mlx5_ib_dbg(dev, "order %d, cache index %d\n", ent->order, i); spin_lock_irq(&ent->lock); if (!list_empty(&ent->head)) { mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); list_del(&mr->list); ent->cur--; spin_unlock_irq(&ent->lock); if (ent->cur < ent->limit) queue_work(cache->wq, &ent->work); break; } spin_unlock_irq(&ent->lock); queue_work(cache->wq, &ent->work); } if (!mr) cache->ent[c].miss++; return mr; } void mlx5_mr_cache_free(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) { struct mlx5_mr_cache *cache = &dev->cache; struct mlx5_cache_ent *ent; int shrink = 0; int c; if (!mr->allocated_from_cache) return; c = order2idx(dev, mr->order); if (c < 0 || c >= MAX_MR_CACHE_ENTRIES) { mlx5_ib_warn(dev, "order %d, cache index %d\n", mr->order, c); return; } if (unreg_umr(dev, mr)) return; ent = &cache->ent[c]; spin_lock_irq(&ent->lock); list_add_tail(&mr->list, &ent->head); ent->cur++; if (ent->cur > 2 * ent->limit) shrink = 1; spin_unlock_irq(&ent->lock); if (shrink) queue_work(cache->wq, &ent->work); } static void clean_keys(struct mlx5_ib_dev *dev, int c) { struct mlx5_mr_cache *cache = &dev->cache; struct mlx5_cache_ent *ent = &cache->ent[c]; struct mlx5_ib_mr *tmp_mr; struct mlx5_ib_mr *mr; LIST_HEAD(del_list); cancel_delayed_work(&ent->dwork); while (1) { spin_lock_irq(&ent->lock); if (list_empty(&ent->head)) { spin_unlock_irq(&ent->lock); break; } mr = list_first_entry(&ent->head, struct mlx5_ib_mr, list); list_move(&mr->list, &del_list); ent->cur--; ent->size--; spin_unlock_irq(&ent->lock); mlx5_core_destroy_mkey(dev->mdev, &mr->mmkey); } #ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING synchronize_srcu(&dev->mr_srcu); #endif list_for_each_entry_safe(mr, tmp_mr, &del_list, list) { list_del(&mr->list); kfree(mr); } } static void mlx5_mr_cache_debugfs_cleanup(struct mlx5_ib_dev *dev) { if (!mlx5_debugfs_root || dev->is_rep) return; debugfs_remove_recursive(dev->cache.root); dev->cache.root = NULL; } static void mlx5_mr_cache_debugfs_init(struct mlx5_ib_dev *dev) { struct mlx5_mr_cache *cache = &dev->cache; struct mlx5_cache_ent *ent; struct dentry *dir; int i; if (!mlx5_debugfs_root || dev->is_rep) return; cache->root = debugfs_create_dir("mr_cache", dev->mdev->priv.dbg_root); for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { ent = &cache->ent[i]; sprintf(ent->name, "%d", ent->order); dir = debugfs_create_dir(ent->name, cache->root); debugfs_create_file("size", 0600, dir, ent, &size_fops); debugfs_create_file("limit", 0600, dir, ent, &limit_fops); debugfs_create_u32("cur", 0400, dir, &ent->cur); debugfs_create_u32("miss", 0600, dir, &ent->miss); } } static void delay_time_func(struct timer_list *t) { struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer); dev->fill_delay = 0; } int mlx5_mr_cache_init(struct mlx5_ib_dev *dev) { struct mlx5_mr_cache *cache = &dev->cache; struct mlx5_cache_ent *ent; int i; mutex_init(&dev->slow_path_mutex); cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM); if (!cache->wq) { mlx5_ib_warn(dev, "failed to create work queue\n"); return -ENOMEM; } mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx); timer_setup(&dev->delay_timer, delay_time_func, 0); for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) { ent = &cache->ent[i]; INIT_LIST_HEAD(&ent->head); spin_lock_init(&ent->lock); ent->order = i + 2; ent->dev = dev; ent->limit = 0; init_completion(&ent->compl); INIT_WORK(&ent->work, cache_work_func); INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func); if (i > MR_CACHE_LAST_STD_ENTRY) { mlx5_odp_init_mr_cache_entry(ent); continue; } if (ent->order > mr_cache_max_order(dev)) continue; ent->page = PAGE_SHIFT; ent->xlt = (1 << ent->order) * sizeof(struct mlx5_mtt) / MLX5_IB_UMR_OCTOWORD; ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; if ((dev->mdev->profile->mask & MLX5_PROF_MASK_MR_CACHE) && !dev->is_rep && mlx5_core_is_pf(dev->mdev)) ent->limit = dev->mdev->profile->mr_cache[i].limit; else ent->limit = 0; queue_work(cache->wq, &ent->work); } mlx5_mr_cache_debugfs_init(dev); return 0; } int mlx5_mr_cache_cleanup(struct mlx5_ib_dev *dev) { int i; if (!dev->cache.wq) return 0; dev->cache.stopped = 1; flush_workqueue(dev->cache.wq); mlx5_mr_cache_debugfs_cleanup(dev); mlx5_cmd_cleanup_async_ctx(&dev->async_ctx); for (i = 0; i < MAX_MR_CACHE_ENTRIES; i++) clean_keys(dev, i); destroy_workqueue(dev->cache.wq); del_timer_sync(&dev->delay_timer); return 0; } struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc) { struct mlx5_ib_dev *dev = to_mdev(pd->device); int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); struct mlx5_core_dev *mdev = dev->mdev; struct mlx5_ib_mr *mr; void *mkc; u32 *in; int err; mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); in = kzalloc(inlen, GFP_KERNEL); if (!in) { err = -ENOMEM; goto err_free; } mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA); MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC)); MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE)); MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ)); MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE)); MLX5_SET(mkc, mkc, lr, 1); MLX5_SET(mkc, mkc, length64, 1); MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); MLX5_SET(mkc, mkc, qpn, 0xffffff); MLX5_SET64(mkc, mkc, start_addr, 0); err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen); if (err) goto err_in; kfree(in); mr->mmkey.type = MLX5_MKEY_MR; mr->ibmr.lkey = mr->mmkey.key; mr->ibmr.rkey = mr->mmkey.key; mr->umem = NULL; return &mr->ibmr; err_in: kfree(in); err_free: kfree(mr); return ERR_PTR(err); } static int get_octo_len(u64 addr, u64 len, int page_shift) { u64 page_size = 1ULL << page_shift; u64 offset; int npages; offset = addr & (page_size - 1); npages = ALIGN(len + offset, page_size) >> page_shift; return (npages + 1) / 2; } static int mr_cache_max_order(struct mlx5_ib_dev *dev) { if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) return MR_CACHE_LAST_STD_ENTRY + 2; return MLX5_MAX_UMR_SHIFT; } static int mr_umem_get(struct mlx5_ib_dev *dev, struct ib_udata *udata, u64 start, u64 length, int access_flags, struct ib_umem **umem, int *npages, int *page_shift, int *ncont, int *order) { struct ib_umem *u; int err; *umem = NULL; u = ib_umem_get(udata, start, length, access_flags, 0); err = PTR_ERR_OR_ZERO(u); if (err) { mlx5_ib_dbg(dev, "umem get failed (%d)\n", err); return err; } mlx5_ib_cont_pages(u, start, MLX5_MKEY_PAGE_SHIFT_MASK, npages, page_shift, ncont, order); if (!*npages) { mlx5_ib_warn(dev, "avoid zero region\n"); ib_umem_release(u); return -EINVAL; } *umem = u; mlx5_ib_dbg(dev, "npages %d, ncont %d, order %d, page_shift %d\n", *npages, *ncont, *order, *page_shift); return 0; } static void mlx5_ib_umr_done(struct ib_cq *cq, struct ib_wc *wc) { struct mlx5_ib_umr_context *context = container_of(wc->wr_cqe, struct mlx5_ib_umr_context, cqe); context->status = wc->status; complete(&context->done); } static inline void mlx5_ib_init_umr_context(struct mlx5_ib_umr_context *context) { context->cqe.done = mlx5_ib_umr_done; context->status = -1; init_completion(&context->done); } static int mlx5_ib_post_send_wait(struct mlx5_ib_dev *dev, struct mlx5_umr_wr *umrwr) { struct umr_common *umrc = &dev->umrc; const struct ib_send_wr *bad; int err; struct mlx5_ib_umr_context umr_context; mlx5_ib_init_umr_context(&umr_context); umrwr->wr.wr_cqe = &umr_context.cqe; down(&umrc->sem); err = ib_post_send(umrc->qp, &umrwr->wr, &bad); if (err) { mlx5_ib_warn(dev, "UMR post send failed, err %d\n", err); } else { wait_for_completion(&umr_context.done); if (umr_context.status != IB_WC_SUCCESS) { mlx5_ib_warn(dev, "reg umr failed (%u)\n", umr_context.status); err = -EFAULT; } } up(&umrc->sem); return err; } static struct mlx5_ib_mr *alloc_mr_from_cache( struct ib_pd *pd, struct ib_umem *umem, u64 virt_addr, u64 len, int npages, int page_shift, int order, int access_flags) { struct mlx5_ib_dev *dev = to_mdev(pd->device); struct mlx5_ib_mr *mr; int err = 0; int i; for (i = 0; i < 1; i++) { mr = alloc_cached_mr(dev, order); if (mr) break; err = add_keys(dev, order2idx(dev, order), 1); if (err && err != -EAGAIN) { mlx5_ib_warn(dev, "add_keys failed, err %d\n", err); break; } } if (!mr) return ERR_PTR(-EAGAIN); mr->ibmr.pd = pd; mr->umem = umem; mr->access_flags = access_flags; mr->desc_size = sizeof(struct mlx5_mtt); mr->mmkey.iova = virt_addr; mr->mmkey.size = len; mr->mmkey.pd = to_mpd(pd)->pdn; return mr; } static inline int populate_xlt(struct mlx5_ib_mr *mr, int idx, int npages, void *xlt, int page_shift, size_t size, int flags) { struct mlx5_ib_dev *dev = mr->dev; struct ib_umem *umem = mr->umem; if (flags & MLX5_IB_UPD_XLT_INDIRECT) { if (!umr_can_use_indirect_mkey(dev)) return -EPERM; mlx5_odp_populate_klm(xlt, idx, npages, mr, flags); return npages; } npages = min_t(size_t, npages, ib_umem_num_pages(umem) - idx); if (!(flags & MLX5_IB_UPD_XLT_ZAP)) { __mlx5_ib_populate_pas(dev, umem, page_shift, idx, npages, xlt, MLX5_IB_MTT_PRESENT); /* Clear padding after the pages * brought from the umem. */ memset(xlt + (npages * sizeof(struct mlx5_mtt)), 0, size - npages * sizeof(struct mlx5_mtt)); } return npages; } #define MLX5_MAX_UMR_CHUNK ((1 << (MLX5_MAX_UMR_SHIFT + 4)) - \ MLX5_UMR_MTT_ALIGNMENT) #define MLX5_SPARE_UMR_CHUNK 0x10000 int mlx5_ib_update_xlt(struct mlx5_ib_mr *mr, u64 idx, int npages, int page_shift, int flags) { struct mlx5_ib_dev *dev = mr->dev; struct device *ddev = dev->ib_dev.dev.parent; int size; void *xlt; dma_addr_t dma; struct mlx5_umr_wr wr; struct ib_sge sg; int err = 0; int desc_size = (flags & MLX5_IB_UPD_XLT_INDIRECT) ? sizeof(struct mlx5_klm) : sizeof(struct mlx5_mtt); const int page_align = MLX5_UMR_MTT_ALIGNMENT / desc_size; const int page_mask = page_align - 1; size_t pages_mapped = 0; size_t pages_to_map = 0; size_t pages_iter = 0; gfp_t gfp; bool use_emergency_page = false; if ((flags & MLX5_IB_UPD_XLT_INDIRECT) && !umr_can_use_indirect_mkey(dev)) return -EPERM; /* UMR copies MTTs in units of MLX5_UMR_MTT_ALIGNMENT bytes, * so we need to align the offset and length accordingly */ if (idx & page_mask) { npages += idx & page_mask; idx &= ~page_mask; } gfp = flags & MLX5_IB_UPD_XLT_ATOMIC ? GFP_ATOMIC : GFP_KERNEL; gfp |= __GFP_ZERO | __GFP_NOWARN; pages_to_map = ALIGN(npages, page_align); size = desc_size * pages_to_map; size = min_t(int, size, MLX5_MAX_UMR_CHUNK); xlt = (void *)__get_free_pages(gfp, get_order(size)); if (!xlt && size > MLX5_SPARE_UMR_CHUNK) { mlx5_ib_dbg(dev, "Failed to allocate %d bytes of order %d. fallback to spare UMR allocation od %d bytes\n", size, get_order(size), MLX5_SPARE_UMR_CHUNK); size = MLX5_SPARE_UMR_CHUNK; xlt = (void *)__get_free_pages(gfp, get_order(size)); } if (!xlt) { mlx5_ib_warn(dev, "Using XLT emergency buffer\n"); xlt = (void *)mlx5_ib_get_xlt_emergency_page(); size = PAGE_SIZE; memset(xlt, 0, size); use_emergency_page = true; } pages_iter = size / desc_size; dma = dma_map_single(ddev, xlt, size, DMA_TO_DEVICE); if (dma_mapping_error(ddev, dma)) { mlx5_ib_err(dev, "unable to map DMA during XLT update.\n"); err = -ENOMEM; goto free_xlt; } sg.addr = dma; sg.lkey = dev->umrc.pd->local_dma_lkey; memset(&wr, 0, sizeof(wr)); wr.wr.send_flags = MLX5_IB_SEND_UMR_UPDATE_XLT; if (!(flags & MLX5_IB_UPD_XLT_ENABLE)) wr.wr.send_flags |= MLX5_IB_SEND_UMR_FAIL_IF_FREE; wr.wr.sg_list = &sg; wr.wr.num_sge = 1; wr.wr.opcode = MLX5_IB_WR_UMR; wr.pd = mr->ibmr.pd; wr.mkey = mr->mmkey.key; wr.length = mr->mmkey.size; wr.virt_addr = mr->mmkey.iova; wr.access_flags = mr->access_flags; wr.page_shift = page_shift; for (pages_mapped = 0; pages_mapped < pages_to_map && !err; pages_mapped += pages_iter, idx += pages_iter) { npages = min_t(int, pages_iter, pages_to_map - pages_mapped); dma_sync_single_for_cpu(ddev, dma, size, DMA_TO_DEVICE); npages = populate_xlt(mr, idx, npages, xlt, page_shift, size, flags); dma_sync_single_for_device(ddev, dma, size, DMA_TO_DEVICE); sg.length = ALIGN(npages * desc_size, MLX5_UMR_MTT_ALIGNMENT); if (pages_mapped + pages_iter >= pages_to_map) { if (flags & MLX5_IB_UPD_XLT_ENABLE) wr.wr.send_flags |= MLX5_IB_SEND_UMR_ENABLE_MR | MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS | MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; if (flags & MLX5_IB_UPD_XLT_PD || flags & MLX5_IB_UPD_XLT_ACCESS) wr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; if (flags & MLX5_IB_UPD_XLT_ADDR) wr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_TRANSLATION; } wr.offset = idx * desc_size; wr.xlt_size = sg.length; err = mlx5_ib_post_send_wait(dev, &wr); } dma_unmap_single(ddev, dma, size, DMA_TO_DEVICE); free_xlt: if (use_emergency_page) mlx5_ib_put_xlt_emergency_page(); else free_pages((unsigned long)xlt, get_order(size)); return err; } /* * If ibmr is NULL it will be allocated by reg_create. * Else, the given ibmr will be used. */ static struct mlx5_ib_mr *reg_create(struct ib_mr *ibmr, struct ib_pd *pd, u64 virt_addr, u64 length, struct ib_umem *umem, int npages, int page_shift, int access_flags, bool populate) { struct mlx5_ib_dev *dev = to_mdev(pd->device); struct mlx5_ib_mr *mr; __be64 *pas; void *mkc; int inlen; u32 *in; int err; bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg)); mr = ibmr ? to_mmr(ibmr) : kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); mr->ibmr.pd = pd; mr->access_flags = access_flags; inlen = MLX5_ST_SZ_BYTES(create_mkey_in); if (populate) inlen += sizeof(*pas) * roundup(npages, 2); in = kvzalloc(inlen, GFP_KERNEL); if (!in) { err = -ENOMEM; goto err_1; } pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt); if (populate && !(access_flags & IB_ACCESS_ON_DEMAND)) mlx5_ib_populate_pas(dev, umem, page_shift, pas, pg_cap ? MLX5_IB_MTT_PRESENT : 0); /* The pg_access bit allows setting the access flags * in the page list submitted with the command. */ MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap)); mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, free, !populate); MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT); MLX5_SET(mkc, mkc, a, !!(access_flags & IB_ACCESS_REMOTE_ATOMIC)); MLX5_SET(mkc, mkc, rw, !!(access_flags & IB_ACCESS_REMOTE_WRITE)); MLX5_SET(mkc, mkc, rr, !!(access_flags & IB_ACCESS_REMOTE_READ)); MLX5_SET(mkc, mkc, lw, !!(access_flags & IB_ACCESS_LOCAL_WRITE)); MLX5_SET(mkc, mkc, lr, 1); MLX5_SET(mkc, mkc, umr_en, 1); MLX5_SET64(mkc, mkc, start_addr, virt_addr); MLX5_SET64(mkc, mkc, len, length); MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); MLX5_SET(mkc, mkc, bsf_octword_size, 0); MLX5_SET(mkc, mkc, translations_octword_size, get_octo_len(virt_addr, length, page_shift)); MLX5_SET(mkc, mkc, log_page_size, page_shift); MLX5_SET(mkc, mkc, qpn, 0xffffff); if (populate) { MLX5_SET(create_mkey_in, in, translations_octword_actual_size, get_octo_len(virt_addr, length, page_shift)); } err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen); if (err) { mlx5_ib_warn(dev, "create mkey failed\n"); goto err_2; } mr->mmkey.type = MLX5_MKEY_MR; mr->desc_size = sizeof(struct mlx5_mtt); mr->dev = dev; kvfree(in); mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key); return mr; err_2: kvfree(in); err_1: if (!ibmr) kfree(mr); return ERR_PTR(err); } static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr, int npages, u64 length, int access_flags) { mr->npages = npages; atomic_add(npages, &dev->mdev->priv.reg_pages); mr->ibmr.lkey = mr->mmkey.key; mr->ibmr.rkey = mr->mmkey.key; mr->ibmr.length = length; mr->access_flags = access_flags; } static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr, u64 length, int acc, int mode) { struct mlx5_ib_dev *dev = to_mdev(pd->device); int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); struct mlx5_core_dev *mdev = dev->mdev; struct mlx5_ib_mr *mr; void *mkc; u32 *in; int err; mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); in = kzalloc(inlen, GFP_KERNEL); if (!in) { err = -ENOMEM; goto err_free; } mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3); MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7); MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC)); MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE)); MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ)); MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE)); MLX5_SET(mkc, mkc, lr, 1); MLX5_SET64(mkc, mkc, len, length); MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); MLX5_SET(mkc, mkc, qpn, 0xffffff); MLX5_SET64(mkc, mkc, start_addr, start_addr); err = mlx5_core_create_mkey(mdev, &mr->mmkey, in, inlen); if (err) goto err_in; kfree(in); mr->umem = NULL; set_mr_fields(dev, mr, 0, length, acc); return &mr->ibmr; err_in: kfree(in); err_free: kfree(mr); return ERR_PTR(err); } int mlx5_ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, u32 flags, struct ib_sge *sg_list, u32 num_sge, struct uverbs_attr_bundle *attrs) { if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH && advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE) return -EOPNOTSUPP; return mlx5_ib_advise_mr_prefetch(pd, advice, flags, sg_list, num_sge); } struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm, struct ib_dm_mr_attr *attr, struct uverbs_attr_bundle *attrs) { struct mlx5_ib_dm *mdm = to_mdm(dm); struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev; u64 start_addr = mdm->dev_addr + attr->offset; int mode; switch (mdm->type) { case MLX5_IB_UAPI_DM_TYPE_MEMIC: if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS) return ERR_PTR(-EINVAL); mode = MLX5_MKC_ACCESS_MODE_MEMIC; start_addr -= pci_resource_start(dev->pdev, 0); break; case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM: case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM: if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS) return ERR_PTR(-EINVAL); mode = MLX5_MKC_ACCESS_MODE_SW_ICM; break; default: return ERR_PTR(-EINVAL); } return mlx5_ib_get_dm_mr(pd, start_addr, attr->length, attr->access_flags, mode); } struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, u64 virt_addr, int access_flags, struct ib_udata *udata) { struct mlx5_ib_dev *dev = to_mdev(pd->device); struct mlx5_ib_mr *mr = NULL; bool populate_mtts = false; struct ib_umem *umem; int page_shift; int npages; int ncont; int order; int err; if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM)) return ERR_PTR(-EOPNOTSUPP); mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n", start, virt_addr, length, access_flags); if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && !start && length == U64_MAX) { if (!(access_flags & IB_ACCESS_ON_DEMAND) || !(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) return ERR_PTR(-EINVAL); mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), udata, access_flags); if (IS_ERR(mr)) return ERR_CAST(mr); return &mr->ibmr; } err = mr_umem_get(dev, udata, start, length, access_flags, &umem, &npages, &page_shift, &ncont, &order); if (err < 0) return ERR_PTR(err); if (use_umr(dev, order)) { mr = alloc_mr_from_cache(pd, umem, virt_addr, length, ncont, page_shift, order, access_flags); if (PTR_ERR(mr) == -EAGAIN) { mlx5_ib_dbg(dev, "cache empty for order %d\n", order); mr = NULL; } populate_mtts = false; } else if (!MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) { if (access_flags & IB_ACCESS_ON_DEMAND) { err = -EINVAL; pr_err("Got MR registration for ODP MR > 512MB, not supported for Connect-IB\n"); goto error; } populate_mtts = true; } if (!mr) { if (!umr_can_modify_entity_size(dev)) populate_mtts = true; mutex_lock(&dev->slow_path_mutex); mr = reg_create(NULL, pd, virt_addr, length, umem, ncont, page_shift, access_flags, populate_mtts); mutex_unlock(&dev->slow_path_mutex); } if (IS_ERR(mr)) { err = PTR_ERR(mr); goto error; } mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); mr->umem = umem; set_mr_fields(dev, mr, npages, length, access_flags); update_odp_mr(mr); if (!populate_mtts) { int update_xlt_flags = MLX5_IB_UPD_XLT_ENABLE; if (access_flags & IB_ACCESS_ON_DEMAND) update_xlt_flags |= MLX5_IB_UPD_XLT_ZAP; err = mlx5_ib_update_xlt(mr, 0, ncont, page_shift, update_xlt_flags); if (err) { dereg_mr(dev, mr); return ERR_PTR(err); } } if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) { mr->live = 1; atomic_set(&mr->num_pending_prefetch, 0); } return &mr->ibmr; error: ib_umem_release(umem); return ERR_PTR(err); } static int unreg_umr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) { struct mlx5_core_dev *mdev = dev->mdev; struct mlx5_umr_wr umrwr = {}; if (mdev->state == MLX5_DEVICE_STATE_INTERNAL_ERROR) return 0; umrwr.wr.send_flags = MLX5_IB_SEND_UMR_DISABLE_MR | MLX5_IB_SEND_UMR_FAIL_IF_FREE; umrwr.wr.opcode = MLX5_IB_WR_UMR; umrwr.mkey = mr->mmkey.key; return mlx5_ib_post_send_wait(dev, &umrwr); } static int rereg_umr(struct ib_pd *pd, struct mlx5_ib_mr *mr, int access_flags, int flags) { struct mlx5_ib_dev *dev = to_mdev(pd->device); struct mlx5_umr_wr umrwr = {}; int err; umrwr.wr.send_flags = MLX5_IB_SEND_UMR_FAIL_IF_FREE; umrwr.wr.opcode = MLX5_IB_WR_UMR; umrwr.mkey = mr->mmkey.key; if (flags & IB_MR_REREG_PD || flags & IB_MR_REREG_ACCESS) { umrwr.pd = pd; umrwr.access_flags = access_flags; umrwr.wr.send_flags |= MLX5_IB_SEND_UMR_UPDATE_PD_ACCESS; } err = mlx5_ib_post_send_wait(dev, &umrwr); return err; } int mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start, u64 length, u64 virt_addr, int new_access_flags, struct ib_pd *new_pd, struct ib_udata *udata) { struct mlx5_ib_dev *dev = to_mdev(ib_mr->device); struct mlx5_ib_mr *mr = to_mmr(ib_mr); struct ib_pd *pd = (flags & IB_MR_REREG_PD) ? new_pd : ib_mr->pd; int access_flags = flags & IB_MR_REREG_ACCESS ? new_access_flags : mr->access_flags; int page_shift = 0; int upd_flags = 0; int npages = 0; int ncont = 0; int order = 0; u64 addr, len; int err; mlx5_ib_dbg(dev, "start 0x%llx, virt_addr 0x%llx, length 0x%llx, access_flags 0x%x\n", start, virt_addr, length, access_flags); atomic_sub(mr->npages, &dev->mdev->priv.reg_pages); if (!mr->umem) return -EINVAL; if (flags & IB_MR_REREG_TRANS) { addr = virt_addr; len = length; } else { addr = mr->umem->address; len = mr->umem->length; } if (flags != IB_MR_REREG_PD) { /* * Replace umem. This needs to be done whether or not UMR is * used. */ flags |= IB_MR_REREG_TRANS; ib_umem_release(mr->umem); mr->umem = NULL; err = mr_umem_get(dev, udata, addr, len, access_flags, &mr->umem, &npages, &page_shift, &ncont, &order); if (err) goto err; } if (flags & IB_MR_REREG_TRANS && !use_umr_mtt_update(mr, addr, len)) { /* * UMR can't be used - MKey needs to be replaced. */ if (mr->allocated_from_cache) err = unreg_umr(dev, mr); else err = destroy_mkey(dev, mr); if (err) goto err; mr = reg_create(ib_mr, pd, addr, len, mr->umem, ncont, page_shift, access_flags, true); if (IS_ERR(mr)) { err = PTR_ERR(mr); mr = to_mmr(ib_mr); goto err; } mr->allocated_from_cache = 0; if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) mr->live = 1; } else { /* * Send a UMR WQE */ mr->ibmr.pd = pd; mr->access_flags = access_flags; mr->mmkey.iova = addr; mr->mmkey.size = len; mr->mmkey.pd = to_mpd(pd)->pdn; if (flags & IB_MR_REREG_TRANS) { upd_flags = MLX5_IB_UPD_XLT_ADDR; if (flags & IB_MR_REREG_PD) upd_flags |= MLX5_IB_UPD_XLT_PD; if (flags & IB_MR_REREG_ACCESS) upd_flags |= MLX5_IB_UPD_XLT_ACCESS; err = mlx5_ib_update_xlt(mr, 0, npages, page_shift, upd_flags); } else { err = rereg_umr(pd, mr, access_flags, flags); } if (err) goto err; } set_mr_fields(dev, mr, npages, len, access_flags); update_odp_mr(mr); return 0; err: if (mr->umem) { ib_umem_release(mr->umem); mr->umem = NULL; } clean_mr(dev, mr); return err; } static int mlx5_alloc_priv_descs(struct ib_device *device, struct mlx5_ib_mr *mr, int ndescs, int desc_size) { int size = ndescs * desc_size; int add_size; int ret; add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0); mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL); if (!mr->descs_alloc) return -ENOMEM; mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN); mr->desc_map = dma_map_single(device->dev.parent, mr->descs, size, DMA_TO_DEVICE); if (dma_mapping_error(device->dev.parent, mr->desc_map)) { ret = -ENOMEM; goto err; } return 0; err: kfree(mr->descs_alloc); return ret; } static void mlx5_free_priv_descs(struct mlx5_ib_mr *mr) { if (mr->descs) { struct ib_device *device = mr->ibmr.device; int size = mr->max_descs * mr->desc_size; dma_unmap_single(device->dev.parent, mr->desc_map, size, DMA_TO_DEVICE); kfree(mr->descs_alloc); mr->descs = NULL; } } static void clean_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) { int allocated_from_cache = mr->allocated_from_cache; if (mr->sig) { if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx)) mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", mr->sig->psv_memory.psv_idx); if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", mr->sig->psv_wire.psv_idx); kfree(mr->sig); mr->sig = NULL; } mlx5_free_priv_descs(mr); if (!allocated_from_cache) destroy_mkey(dev, mr); } static void dereg_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) { int npages = mr->npages; struct ib_umem *umem = mr->umem; if (is_odp_mr(mr)) { struct ib_umem_odp *umem_odp = to_ib_umem_odp(umem); /* Prevent new page faults and * prefetch requests from succeeding */ mr->live = 0; /* dequeue pending prefetch requests for the mr */ if (atomic_read(&mr->num_pending_prefetch)) flush_workqueue(system_unbound_wq); WARN_ON(atomic_read(&mr->num_pending_prefetch)); /* Wait for all running page-fault handlers to finish. */ synchronize_srcu(&dev->mr_srcu); /* Destroy all page mappings */ if (umem_odp->page_list) mlx5_ib_invalidate_range(umem_odp, ib_umem_start(umem), ib_umem_end(umem)); else mlx5_ib_free_implicit_mr(mr); /* * We kill the umem before the MR for ODP, * so that there will not be any invalidations in * flight, looking at the *mr struct. */ ib_umem_release(umem); atomic_sub(npages, &dev->mdev->priv.reg_pages); /* Avoid double-freeing the umem. */ umem = NULL; } clean_mr(dev, mr); /* * We should unregister the DMA address from the HCA before * remove the DMA mapping. */ mlx5_mr_cache_free(dev, mr); if (umem) { ib_umem_release(umem); atomic_sub(npages, &dev->mdev->priv.reg_pages); } if (!mr->allocated_from_cache) kfree(mr); } int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) { dereg_mr(to_mdev(ibmr->device), to_mmr(ibmr)); return 0; } struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, u32 max_num_sg, struct ib_udata *udata) { struct mlx5_ib_dev *dev = to_mdev(pd->device); int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); int ndescs = ALIGN(max_num_sg, 4); struct mlx5_ib_mr *mr; void *mkc; u32 *in; int err; mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); in = kzalloc(inlen, GFP_KERNEL); if (!in) { err = -ENOMEM; goto err_free; } mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, free, 1); MLX5_SET(mkc, mkc, translations_octword_size, ndescs); MLX5_SET(mkc, mkc, qpn, 0xffffff); MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); if (mr_type == IB_MR_TYPE_MEM_REG) { mr->access_mode = MLX5_MKC_ACCESS_MODE_MTT; MLX5_SET(mkc, mkc, log_page_size, PAGE_SHIFT); err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, sizeof(struct mlx5_mtt)); if (err) goto err_free_in; mr->desc_size = sizeof(struct mlx5_mtt); mr->max_descs = ndescs; } else if (mr_type == IB_MR_TYPE_SG_GAPS) { mr->access_mode = MLX5_MKC_ACCESS_MODE_KLMS; err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, sizeof(struct mlx5_klm)); if (err) goto err_free_in; mr->desc_size = sizeof(struct mlx5_klm); mr->max_descs = ndescs; } else if (mr_type == IB_MR_TYPE_SIGNATURE) { u32 psv_index[2]; MLX5_SET(mkc, mkc, bsf_en, 1); MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE); mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL); if (!mr->sig) { err = -ENOMEM; goto err_free_in; } /* create mem & wire PSVs */ err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index); if (err) goto err_free_sig; mr->access_mode = MLX5_MKC_ACCESS_MODE_KLMS; mr->sig->psv_memory.psv_idx = psv_index[0]; mr->sig->psv_wire.psv_idx = psv_index[1]; mr->sig->sig_status_checked = true; mr->sig->sig_err_exists = false; /* Next UMR, Arm SIGERR */ ++mr->sig->sigerr_count; } else { mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type); err = -EINVAL; goto err_free_in; } MLX5_SET(mkc, mkc, access_mode_1_0, mr->access_mode & 0x3); MLX5_SET(mkc, mkc, access_mode_4_2, (mr->access_mode >> 2) & 0x7); MLX5_SET(mkc, mkc, umr_en, 1); mr->ibmr.device = pd->device; err = mlx5_core_create_mkey(dev->mdev, &mr->mmkey, in, inlen); if (err) goto err_destroy_psv; mr->mmkey.type = MLX5_MKEY_MR; mr->ibmr.lkey = mr->mmkey.key; mr->ibmr.rkey = mr->mmkey.key; mr->umem = NULL; kfree(in); return &mr->ibmr; err_destroy_psv: if (mr->sig) { if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx)) mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", mr->sig->psv_memory.psv_idx); if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", mr->sig->psv_wire.psv_idx); } mlx5_free_priv_descs(mr); err_free_sig: kfree(mr->sig); err_free_in: kfree(in); err_free: kfree(mr); return ERR_PTR(err); } struct ib_mw *mlx5_ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type, struct ib_udata *udata) { struct mlx5_ib_dev *dev = to_mdev(pd->device); int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); struct mlx5_ib_mw *mw = NULL; u32 *in = NULL; void *mkc; int ndescs; int err; struct mlx5_ib_alloc_mw req = {}; struct { __u32 comp_mask; __u32 response_length; } resp = {}; err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req))); if (err) return ERR_PTR(err); if (req.comp_mask || req.reserved1 || req.reserved2) return ERR_PTR(-EOPNOTSUPP); if (udata->inlen > sizeof(req) && !ib_is_udata_cleared(udata, sizeof(req), udata->inlen - sizeof(req))) return ERR_PTR(-EOPNOTSUPP); ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4); mw = kzalloc(sizeof(*mw), GFP_KERNEL); in = kzalloc(inlen, GFP_KERNEL); if (!mw || !in) { err = -ENOMEM; goto free; } mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, free, 1); MLX5_SET(mkc, mkc, translations_octword_size, ndescs); MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); MLX5_SET(mkc, mkc, umr_en, 1); MLX5_SET(mkc, mkc, lr, 1); MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS); MLX5_SET(mkc, mkc, en_rinval, !!((type == IB_MW_TYPE_2))); MLX5_SET(mkc, mkc, qpn, 0xffffff); err = mlx5_core_create_mkey(dev->mdev, &mw->mmkey, in, inlen); if (err) goto free; mw->mmkey.type = MLX5_MKEY_MW; mw->ibmw.rkey = mw->mmkey.key; mw->ndescs = ndescs; resp.response_length = min(offsetof(typeof(resp), response_length) + sizeof(resp.response_length), udata->outlen); if (resp.response_length) { err = ib_copy_to_udata(udata, &resp, resp.response_length); if (err) { mlx5_core_destroy_mkey(dev->mdev, &mw->mmkey); goto free; } } kfree(in); return &mw->ibmw; free: kfree(mw); kfree(in); return ERR_PTR(err); } int mlx5_ib_dealloc_mw(struct ib_mw *mw) { struct mlx5_ib_mw *mmw = to_mmw(mw); int err; err = mlx5_core_destroy_mkey((to_mdev(mw->device))->mdev, &mmw->mmkey); if (!err) kfree(mmw); return err; } int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask, struct ib_mr_status *mr_status) { struct mlx5_ib_mr *mmr = to_mmr(ibmr); int ret = 0; if (check_mask & ~IB_MR_CHECK_SIG_STATUS) { pr_err("Invalid status check mask\n"); ret = -EINVAL; goto done; } mr_status->fail_status = 0; if (check_mask & IB_MR_CHECK_SIG_STATUS) { if (!mmr->sig) { ret = -EINVAL; pr_err("signature status check requested on a non-signature enabled MR\n"); goto done; } mmr->sig->sig_status_checked = true; if (!mmr->sig->sig_err_exists) goto done; if (ibmr->lkey == mmr->sig->err_item.key) memcpy(&mr_status->sig_err, &mmr->sig->err_item, sizeof(mr_status->sig_err)); else { mr_status->sig_err.err_type = IB_SIG_BAD_GUARD; mr_status->sig_err.sig_err_offset = 0; mr_status->sig_err.key = mmr->sig->err_item.key; } mmr->sig->sig_err_exists = false; mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS; } done: return ret; } static int mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr, struct scatterlist *sgl, unsigned short sg_nents, unsigned int *sg_offset_p) { struct scatterlist *sg = sgl; struct mlx5_klm *klms = mr->descs; unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; u32 lkey = mr->ibmr.pd->local_dma_lkey; int i; mr->ibmr.iova = sg_dma_address(sg) + sg_offset; mr->ibmr.length = 0; for_each_sg(sgl, sg, sg_nents, i) { if (unlikely(i >= mr->max_descs)) break; klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset); klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset); klms[i].key = cpu_to_be32(lkey); mr->ibmr.length += sg_dma_len(sg) - sg_offset; sg_offset = 0; } mr->ndescs = i; if (sg_offset_p) *sg_offset_p = sg_offset; return i; } static int mlx5_set_page(struct ib_mr *ibmr, u64 addr) { struct mlx5_ib_mr *mr = to_mmr(ibmr); __be64 *descs; if (unlikely(mr->ndescs == mr->max_descs)) return -ENOMEM; descs = mr->descs; descs[mr->ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); return 0; } int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, unsigned int *sg_offset) { struct mlx5_ib_mr *mr = to_mmr(ibmr); int n; mr->ndescs = 0; ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map, mr->desc_size * mr->max_descs, DMA_TO_DEVICE); if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS) n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset); else n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx5_set_page); ib_dma_sync_single_for_device(ibmr->device, mr->desc_map, mr->desc_size * mr->max_descs, DMA_TO_DEVICE); return n; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1