Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andrew Duggan | 4322 | 77.40% | 3 | 12.00% |
Nick Dyer | 481 | 8.61% | 8 | 32.00% |
Benjamin Tissoires | 469 | 8.40% | 5 | 20.00% |
Björn Andersson | 244 | 4.37% | 1 | 4.00% |
Dmitry Torokhov | 47 | 0.84% | 2 | 8.00% |
Nick Desaulniers | 8 | 0.14% | 1 | 4.00% |
Wei Yongjun | 4 | 0.07% | 2 | 8.00% |
Kees Cook | 4 | 0.07% | 1 | 4.00% |
Pan Bian | 3 | 0.05% | 1 | 4.00% |
Thomas Gleixner | 2 | 0.04% | 1 | 4.00% |
Total | 5584 | 25 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2011-2016 Synaptics Incorporated * Copyright (c) 2011 Unixphere * * This driver provides the core support for a single RMI4-based device. * * The RMI4 specification can be found here (URL split for line length): * * http://www.synaptics.com/sites/default/files/ * 511-000136-01-Rev-E-RMI4-Interfacing-Guide.pdf */ #include <linux/bitmap.h> #include <linux/delay.h> #include <linux/fs.h> #include <linux/irq.h> #include <linux/pm.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/irqdomain.h> #include <uapi/linux/input.h> #include <linux/rmi.h> #include "rmi_bus.h" #include "rmi_driver.h" #define HAS_NONSTANDARD_PDT_MASK 0x40 #define RMI4_MAX_PAGE 0xff #define RMI4_PAGE_SIZE 0x100 #define RMI4_PAGE_MASK 0xFF00 #define RMI_DEVICE_RESET_CMD 0x01 #define DEFAULT_RESET_DELAY_MS 100 void rmi_free_function_list(struct rmi_device *rmi_dev) { struct rmi_function *fn, *tmp; struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Freeing function list\n"); /* Doing it in the reverse order so F01 will be removed last */ list_for_each_entry_safe_reverse(fn, tmp, &data->function_list, node) { list_del(&fn->node); rmi_unregister_function(fn); } devm_kfree(&rmi_dev->dev, data->irq_memory); data->irq_memory = NULL; data->irq_status = NULL; data->fn_irq_bits = NULL; data->current_irq_mask = NULL; data->new_irq_mask = NULL; data->f01_container = NULL; data->f34_container = NULL; } static int reset_one_function(struct rmi_function *fn) { struct rmi_function_handler *fh; int retval = 0; if (!fn || !fn->dev.driver) return 0; fh = to_rmi_function_handler(fn->dev.driver); if (fh->reset) { retval = fh->reset(fn); if (retval < 0) dev_err(&fn->dev, "Reset failed with code %d.\n", retval); } return retval; } static int configure_one_function(struct rmi_function *fn) { struct rmi_function_handler *fh; int retval = 0; if (!fn || !fn->dev.driver) return 0; fh = to_rmi_function_handler(fn->dev.driver); if (fh->config) { retval = fh->config(fn); if (retval < 0) dev_err(&fn->dev, "Config failed with code %d.\n", retval); } return retval; } static int rmi_driver_process_reset_requests(struct rmi_device *rmi_dev) { struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); struct rmi_function *entry; int retval; list_for_each_entry(entry, &data->function_list, node) { retval = reset_one_function(entry); if (retval < 0) return retval; } return 0; } static int rmi_driver_process_config_requests(struct rmi_device *rmi_dev) { struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); struct rmi_function *entry; int retval; list_for_each_entry(entry, &data->function_list, node) { retval = configure_one_function(entry); if (retval < 0) return retval; } return 0; } static int rmi_process_interrupt_requests(struct rmi_device *rmi_dev) { struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); struct device *dev = &rmi_dev->dev; int i; int error; if (!data) return 0; if (!data->attn_data.data) { error = rmi_read_block(rmi_dev, data->f01_container->fd.data_base_addr + 1, data->irq_status, data->num_of_irq_regs); if (error < 0) { dev_err(dev, "Failed to read irqs, code=%d\n", error); return error; } } mutex_lock(&data->irq_mutex); bitmap_and(data->irq_status, data->irq_status, data->current_irq_mask, data->irq_count); /* * At this point, irq_status has all bits that are set in the * interrupt status register and are enabled. */ mutex_unlock(&data->irq_mutex); for_each_set_bit(i, data->irq_status, data->irq_count) handle_nested_irq(irq_find_mapping(data->irqdomain, i)); if (data->input) input_sync(data->input); return 0; } void rmi_set_attn_data(struct rmi_device *rmi_dev, unsigned long irq_status, void *data, size_t size) { struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev); struct rmi4_attn_data attn_data; void *fifo_data; if (!drvdata->enabled) return; fifo_data = kmemdup(data, size, GFP_ATOMIC); if (!fifo_data) return; attn_data.irq_status = irq_status; attn_data.size = size; attn_data.data = fifo_data; kfifo_put(&drvdata->attn_fifo, attn_data); } EXPORT_SYMBOL_GPL(rmi_set_attn_data); static irqreturn_t rmi_irq_fn(int irq, void *dev_id) { struct rmi_device *rmi_dev = dev_id; struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev); struct rmi4_attn_data attn_data = {0}; int ret, count; count = kfifo_get(&drvdata->attn_fifo, &attn_data); if (count) { *(drvdata->irq_status) = attn_data.irq_status; drvdata->attn_data = attn_data; } ret = rmi_process_interrupt_requests(rmi_dev); if (ret) rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Failed to process interrupt request: %d\n", ret); if (count) { kfree(attn_data.data); attn_data.data = NULL; } if (!kfifo_is_empty(&drvdata->attn_fifo)) return rmi_irq_fn(irq, dev_id); return IRQ_HANDLED; } static int rmi_irq_init(struct rmi_device *rmi_dev) { struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev); struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); int irq_flags = irq_get_trigger_type(pdata->irq); int ret; if (!irq_flags) irq_flags = IRQF_TRIGGER_LOW; ret = devm_request_threaded_irq(&rmi_dev->dev, pdata->irq, NULL, rmi_irq_fn, irq_flags | IRQF_ONESHOT, dev_driver_string(rmi_dev->xport->dev), rmi_dev); if (ret < 0) { dev_err(&rmi_dev->dev, "Failed to register interrupt %d\n", pdata->irq); return ret; } data->enabled = true; return 0; } struct rmi_function *rmi_find_function(struct rmi_device *rmi_dev, u8 number) { struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); struct rmi_function *entry; list_for_each_entry(entry, &data->function_list, node) { if (entry->fd.function_number == number) return entry; } return NULL; } static int suspend_one_function(struct rmi_function *fn) { struct rmi_function_handler *fh; int retval = 0; if (!fn || !fn->dev.driver) return 0; fh = to_rmi_function_handler(fn->dev.driver); if (fh->suspend) { retval = fh->suspend(fn); if (retval < 0) dev_err(&fn->dev, "Suspend failed with code %d.\n", retval); } return retval; } static int rmi_suspend_functions(struct rmi_device *rmi_dev) { struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); struct rmi_function *entry; int retval; list_for_each_entry(entry, &data->function_list, node) { retval = suspend_one_function(entry); if (retval < 0) return retval; } return 0; } static int resume_one_function(struct rmi_function *fn) { struct rmi_function_handler *fh; int retval = 0; if (!fn || !fn->dev.driver) return 0; fh = to_rmi_function_handler(fn->dev.driver); if (fh->resume) { retval = fh->resume(fn); if (retval < 0) dev_err(&fn->dev, "Resume failed with code %d.\n", retval); } return retval; } static int rmi_resume_functions(struct rmi_device *rmi_dev) { struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); struct rmi_function *entry; int retval; list_for_each_entry(entry, &data->function_list, node) { retval = resume_one_function(entry); if (retval < 0) return retval; } return 0; } int rmi_enable_sensor(struct rmi_device *rmi_dev) { int retval = 0; retval = rmi_driver_process_config_requests(rmi_dev); if (retval < 0) return retval; return rmi_process_interrupt_requests(rmi_dev); } /** * rmi_driver_set_input_params - set input device id and other data. * * @rmi_dev: Pointer to an RMI device * @input: Pointer to input device * */ static int rmi_driver_set_input_params(struct rmi_device *rmi_dev, struct input_dev *input) { input->name = SYNAPTICS_INPUT_DEVICE_NAME; input->id.vendor = SYNAPTICS_VENDOR_ID; input->id.bustype = BUS_RMI; return 0; } static void rmi_driver_set_input_name(struct rmi_device *rmi_dev, struct input_dev *input) { struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); const char *device_name = rmi_f01_get_product_ID(data->f01_container); char *name; name = devm_kasprintf(&rmi_dev->dev, GFP_KERNEL, "Synaptics %s", device_name); if (!name) return; input->name = name; } static int rmi_driver_set_irq_bits(struct rmi_device *rmi_dev, unsigned long *mask) { int error = 0; struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); struct device *dev = &rmi_dev->dev; mutex_lock(&data->irq_mutex); bitmap_or(data->new_irq_mask, data->current_irq_mask, mask, data->irq_count); error = rmi_write_block(rmi_dev, data->f01_container->fd.control_base_addr + 1, data->new_irq_mask, data->num_of_irq_regs); if (error < 0) { dev_err(dev, "%s: Failed to change enabled interrupts!", __func__); goto error_unlock; } bitmap_copy(data->current_irq_mask, data->new_irq_mask, data->num_of_irq_regs); error_unlock: mutex_unlock(&data->irq_mutex); return error; } static int rmi_driver_clear_irq_bits(struct rmi_device *rmi_dev, unsigned long *mask) { int error = 0; struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); struct device *dev = &rmi_dev->dev; mutex_lock(&data->irq_mutex); bitmap_andnot(data->new_irq_mask, data->current_irq_mask, mask, data->irq_count); error = rmi_write_block(rmi_dev, data->f01_container->fd.control_base_addr + 1, data->new_irq_mask, data->num_of_irq_regs); if (error < 0) { dev_err(dev, "%s: Failed to change enabled interrupts!", __func__); goto error_unlock; } bitmap_copy(data->current_irq_mask, data->new_irq_mask, data->num_of_irq_regs); error_unlock: mutex_unlock(&data->irq_mutex); return error; } static int rmi_driver_reset_handler(struct rmi_device *rmi_dev) { struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); int error; /* * Can get called before the driver is fully ready to deal with * this situation. */ if (!data || !data->f01_container) { dev_warn(&rmi_dev->dev, "Not ready to handle reset yet!\n"); return 0; } error = rmi_read_block(rmi_dev, data->f01_container->fd.control_base_addr + 1, data->current_irq_mask, data->num_of_irq_regs); if (error < 0) { dev_err(&rmi_dev->dev, "%s: Failed to read current IRQ mask.\n", __func__); return error; } error = rmi_driver_process_reset_requests(rmi_dev); if (error < 0) return error; error = rmi_driver_process_config_requests(rmi_dev); if (error < 0) return error; return 0; } static int rmi_read_pdt_entry(struct rmi_device *rmi_dev, struct pdt_entry *entry, u16 pdt_address) { u8 buf[RMI_PDT_ENTRY_SIZE]; int error; error = rmi_read_block(rmi_dev, pdt_address, buf, RMI_PDT_ENTRY_SIZE); if (error) { dev_err(&rmi_dev->dev, "Read PDT entry at %#06x failed, code: %d.\n", pdt_address, error); return error; } entry->page_start = pdt_address & RMI4_PAGE_MASK; entry->query_base_addr = buf[0]; entry->command_base_addr = buf[1]; entry->control_base_addr = buf[2]; entry->data_base_addr = buf[3]; entry->interrupt_source_count = buf[4] & RMI_PDT_INT_SOURCE_COUNT_MASK; entry->function_version = (buf[4] & RMI_PDT_FUNCTION_VERSION_MASK) >> 5; entry->function_number = buf[5]; return 0; } static void rmi_driver_copy_pdt_to_fd(const struct pdt_entry *pdt, struct rmi_function_descriptor *fd) { fd->query_base_addr = pdt->query_base_addr + pdt->page_start; fd->command_base_addr = pdt->command_base_addr + pdt->page_start; fd->control_base_addr = pdt->control_base_addr + pdt->page_start; fd->data_base_addr = pdt->data_base_addr + pdt->page_start; fd->function_number = pdt->function_number; fd->interrupt_source_count = pdt->interrupt_source_count; fd->function_version = pdt->function_version; } #define RMI_SCAN_CONTINUE 0 #define RMI_SCAN_DONE 1 static int rmi_scan_pdt_page(struct rmi_device *rmi_dev, int page, int *empty_pages, void *ctx, int (*callback)(struct rmi_device *rmi_dev, void *ctx, const struct pdt_entry *entry)) { struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); struct pdt_entry pdt_entry; u16 page_start = RMI4_PAGE_SIZE * page; u16 pdt_start = page_start + PDT_START_SCAN_LOCATION; u16 pdt_end = page_start + PDT_END_SCAN_LOCATION; u16 addr; int error; int retval; for (addr = pdt_start; addr >= pdt_end; addr -= RMI_PDT_ENTRY_SIZE) { error = rmi_read_pdt_entry(rmi_dev, &pdt_entry, addr); if (error) return error; if (RMI4_END_OF_PDT(pdt_entry.function_number)) break; retval = callback(rmi_dev, ctx, &pdt_entry); if (retval != RMI_SCAN_CONTINUE) return retval; } /* * Count number of empty PDT pages. If a gap of two pages * or more is found, stop scanning. */ if (addr == pdt_start) ++*empty_pages; else *empty_pages = 0; return (data->bootloader_mode || *empty_pages >= 2) ? RMI_SCAN_DONE : RMI_SCAN_CONTINUE; } int rmi_scan_pdt(struct rmi_device *rmi_dev, void *ctx, int (*callback)(struct rmi_device *rmi_dev, void *ctx, const struct pdt_entry *entry)) { int page; int empty_pages = 0; int retval = RMI_SCAN_DONE; for (page = 0; page <= RMI4_MAX_PAGE; page++) { retval = rmi_scan_pdt_page(rmi_dev, page, &empty_pages, ctx, callback); if (retval != RMI_SCAN_CONTINUE) break; } return retval < 0 ? retval : 0; } int rmi_read_register_desc(struct rmi_device *d, u16 addr, struct rmi_register_descriptor *rdesc) { int ret; u8 size_presence_reg; u8 buf[35]; int presense_offset = 1; u8 *struct_buf; int reg; int offset = 0; int map_offset = 0; int i; int b; /* * The first register of the register descriptor is the size of * the register descriptor's presense register. */ ret = rmi_read(d, addr, &size_presence_reg); if (ret) return ret; ++addr; if (size_presence_reg < 0 || size_presence_reg > 35) return -EIO; memset(buf, 0, sizeof(buf)); /* * The presence register contains the size of the register structure * and a bitmap which identified which packet registers are present * for this particular register type (ie query, control, or data). */ ret = rmi_read_block(d, addr, buf, size_presence_reg); if (ret) return ret; ++addr; if (buf[0] == 0) { presense_offset = 3; rdesc->struct_size = buf[1] | (buf[2] << 8); } else { rdesc->struct_size = buf[0]; } for (i = presense_offset; i < size_presence_reg; i++) { for (b = 0; b < 8; b++) { if (buf[i] & (0x1 << b)) bitmap_set(rdesc->presense_map, map_offset, 1); ++map_offset; } } rdesc->num_registers = bitmap_weight(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS); rdesc->registers = devm_kcalloc(&d->dev, rdesc->num_registers, sizeof(struct rmi_register_desc_item), GFP_KERNEL); if (!rdesc->registers) return -ENOMEM; /* * Allocate a temporary buffer to hold the register structure. * I'm not using devm_kzalloc here since it will not be retained * after exiting this function */ struct_buf = kzalloc(rdesc->struct_size, GFP_KERNEL); if (!struct_buf) return -ENOMEM; /* * The register structure contains information about every packet * register of this type. This includes the size of the packet * register and a bitmap of all subpackets contained in the packet * register. */ ret = rmi_read_block(d, addr, struct_buf, rdesc->struct_size); if (ret) goto free_struct_buff; reg = find_first_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS); for (i = 0; i < rdesc->num_registers; i++) { struct rmi_register_desc_item *item = &rdesc->registers[i]; int reg_size = struct_buf[offset]; ++offset; if (reg_size == 0) { reg_size = struct_buf[offset] | (struct_buf[offset + 1] << 8); offset += 2; } if (reg_size == 0) { reg_size = struct_buf[offset] | (struct_buf[offset + 1] << 8) | (struct_buf[offset + 2] << 16) | (struct_buf[offset + 3] << 24); offset += 4; } item->reg = reg; item->reg_size = reg_size; map_offset = 0; do { for (b = 0; b < 7; b++) { if (struct_buf[offset] & (0x1 << b)) bitmap_set(item->subpacket_map, map_offset, 1); ++map_offset; } } while (struct_buf[offset++] & 0x80); item->num_subpackets = bitmap_weight(item->subpacket_map, RMI_REG_DESC_SUBPACKET_BITS); rmi_dbg(RMI_DEBUG_CORE, &d->dev, "%s: reg: %d reg size: %ld subpackets: %d\n", __func__, item->reg, item->reg_size, item->num_subpackets); reg = find_next_bit(rdesc->presense_map, RMI_REG_DESC_PRESENSE_BITS, reg + 1); } free_struct_buff: kfree(struct_buf); return ret; } const struct rmi_register_desc_item *rmi_get_register_desc_item( struct rmi_register_descriptor *rdesc, u16 reg) { const struct rmi_register_desc_item *item; int i; for (i = 0; i < rdesc->num_registers; i++) { item = &rdesc->registers[i]; if (item->reg == reg) return item; } return NULL; } size_t rmi_register_desc_calc_size(struct rmi_register_descriptor *rdesc) { const struct rmi_register_desc_item *item; int i; size_t size = 0; for (i = 0; i < rdesc->num_registers; i++) { item = &rdesc->registers[i]; size += item->reg_size; } return size; } /* Compute the register offset relative to the base address */ int rmi_register_desc_calc_reg_offset( struct rmi_register_descriptor *rdesc, u16 reg) { const struct rmi_register_desc_item *item; int offset = 0; int i; for (i = 0; i < rdesc->num_registers; i++) { item = &rdesc->registers[i]; if (item->reg == reg) return offset; ++offset; } return -1; } bool rmi_register_desc_has_subpacket(const struct rmi_register_desc_item *item, u8 subpacket) { return find_next_bit(item->subpacket_map, RMI_REG_DESC_PRESENSE_BITS, subpacket) == subpacket; } static int rmi_check_bootloader_mode(struct rmi_device *rmi_dev, const struct pdt_entry *pdt) { struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); int ret; u8 status; if (pdt->function_number == 0x34 && pdt->function_version > 1) { ret = rmi_read(rmi_dev, pdt->data_base_addr, &status); if (ret) { dev_err(&rmi_dev->dev, "Failed to read F34 status: %d.\n", ret); return ret; } if (status & BIT(7)) data->bootloader_mode = true; } else if (pdt->function_number == 0x01) { ret = rmi_read(rmi_dev, pdt->data_base_addr, &status); if (ret) { dev_err(&rmi_dev->dev, "Failed to read F01 status: %d.\n", ret); return ret; } if (status & BIT(6)) data->bootloader_mode = true; } return 0; } static int rmi_count_irqs(struct rmi_device *rmi_dev, void *ctx, const struct pdt_entry *pdt) { int *irq_count = ctx; int ret; *irq_count += pdt->interrupt_source_count; ret = rmi_check_bootloader_mode(rmi_dev, pdt); if (ret < 0) return ret; return RMI_SCAN_CONTINUE; } int rmi_initial_reset(struct rmi_device *rmi_dev, void *ctx, const struct pdt_entry *pdt) { int error; if (pdt->function_number == 0x01) { u16 cmd_addr = pdt->page_start + pdt->command_base_addr; u8 cmd_buf = RMI_DEVICE_RESET_CMD; const struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev); if (rmi_dev->xport->ops->reset) { error = rmi_dev->xport->ops->reset(rmi_dev->xport, cmd_addr); if (error) return error; return RMI_SCAN_DONE; } rmi_dbg(RMI_DEBUG_CORE, &rmi_dev->dev, "Sending reset\n"); error = rmi_write_block(rmi_dev, cmd_addr, &cmd_buf, 1); if (error) { dev_err(&rmi_dev->dev, "Initial reset failed. Code = %d.\n", error); return error; } mdelay(pdata->reset_delay_ms ?: DEFAULT_RESET_DELAY_MS); return RMI_SCAN_DONE; } /* F01 should always be on page 0. If we don't find it there, fail. */ return pdt->page_start == 0 ? RMI_SCAN_CONTINUE : -ENODEV; } static int rmi_create_function(struct rmi_device *rmi_dev, void *ctx, const struct pdt_entry *pdt) { struct device *dev = &rmi_dev->dev; struct rmi_driver_data *data = dev_get_drvdata(dev); int *current_irq_count = ctx; struct rmi_function *fn; int i; int error; rmi_dbg(RMI_DEBUG_CORE, dev, "Initializing F%02X.\n", pdt->function_number); fn = kzalloc(sizeof(struct rmi_function) + BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long), GFP_KERNEL); if (!fn) { dev_err(dev, "Failed to allocate memory for F%02X\n", pdt->function_number); return -ENOMEM; } INIT_LIST_HEAD(&fn->node); rmi_driver_copy_pdt_to_fd(pdt, &fn->fd); fn->rmi_dev = rmi_dev; fn->num_of_irqs = pdt->interrupt_source_count; fn->irq_pos = *current_irq_count; *current_irq_count += fn->num_of_irqs; for (i = 0; i < fn->num_of_irqs; i++) set_bit(fn->irq_pos + i, fn->irq_mask); error = rmi_register_function(fn); if (error) return error; if (pdt->function_number == 0x01) data->f01_container = fn; else if (pdt->function_number == 0x34) data->f34_container = fn; list_add_tail(&fn->node, &data->function_list); return RMI_SCAN_CONTINUE; } void rmi_enable_irq(struct rmi_device *rmi_dev, bool clear_wake) { struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev); struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); int irq = pdata->irq; int irq_flags; int retval; mutex_lock(&data->enabled_mutex); if (data->enabled) goto out; enable_irq(irq); data->enabled = true; if (clear_wake && device_may_wakeup(rmi_dev->xport->dev)) { retval = disable_irq_wake(irq); if (retval) dev_warn(&rmi_dev->dev, "Failed to disable irq for wake: %d\n", retval); } /* * Call rmi_process_interrupt_requests() after enabling irq, * otherwise we may lose interrupt on edge-triggered systems. */ irq_flags = irq_get_trigger_type(pdata->irq); if (irq_flags & IRQ_TYPE_EDGE_BOTH) rmi_process_interrupt_requests(rmi_dev); out: mutex_unlock(&data->enabled_mutex); } void rmi_disable_irq(struct rmi_device *rmi_dev, bool enable_wake) { struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev); struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); struct rmi4_attn_data attn_data = {0}; int irq = pdata->irq; int retval, count; mutex_lock(&data->enabled_mutex); if (!data->enabled) goto out; data->enabled = false; disable_irq(irq); if (enable_wake && device_may_wakeup(rmi_dev->xport->dev)) { retval = enable_irq_wake(irq); if (retval) dev_warn(&rmi_dev->dev, "Failed to enable irq for wake: %d\n", retval); } /* make sure the fifo is clean */ while (!kfifo_is_empty(&data->attn_fifo)) { count = kfifo_get(&data->attn_fifo, &attn_data); if (count) kfree(attn_data.data); } out: mutex_unlock(&data->enabled_mutex); } int rmi_driver_suspend(struct rmi_device *rmi_dev, bool enable_wake) { int retval; retval = rmi_suspend_functions(rmi_dev); if (retval) dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n", retval); rmi_disable_irq(rmi_dev, enable_wake); return retval; } EXPORT_SYMBOL_GPL(rmi_driver_suspend); int rmi_driver_resume(struct rmi_device *rmi_dev, bool clear_wake) { int retval; rmi_enable_irq(rmi_dev, clear_wake); retval = rmi_resume_functions(rmi_dev); if (retval) dev_warn(&rmi_dev->dev, "Failed to suspend functions: %d\n", retval); return retval; } EXPORT_SYMBOL_GPL(rmi_driver_resume); static int rmi_driver_remove(struct device *dev) { struct rmi_device *rmi_dev = to_rmi_device(dev); struct rmi_driver_data *data = dev_get_drvdata(&rmi_dev->dev); rmi_disable_irq(rmi_dev, false); irq_domain_remove(data->irqdomain); data->irqdomain = NULL; rmi_f34_remove_sysfs(rmi_dev); rmi_free_function_list(rmi_dev); return 0; } #ifdef CONFIG_OF static int rmi_driver_of_probe(struct device *dev, struct rmi_device_platform_data *pdata) { int retval; retval = rmi_of_property_read_u32(dev, &pdata->reset_delay_ms, "syna,reset-delay-ms", 1); if (retval) return retval; return 0; } #else static inline int rmi_driver_of_probe(struct device *dev, struct rmi_device_platform_data *pdata) { return -ENODEV; } #endif int rmi_probe_interrupts(struct rmi_driver_data *data) { struct rmi_device *rmi_dev = data->rmi_dev; struct device *dev = &rmi_dev->dev; struct fwnode_handle *fwnode = rmi_dev->xport->dev->fwnode; int irq_count = 0; size_t size; int retval; /* * We need to count the IRQs and allocate their storage before scanning * the PDT and creating the function entries, because adding a new * function can trigger events that result in the IRQ related storage * being accessed. */ rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Counting IRQs.\n", __func__); data->bootloader_mode = false; retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_count_irqs); if (retval < 0) { dev_err(dev, "IRQ counting failed with code %d.\n", retval); return retval; } if (data->bootloader_mode) dev_warn(dev, "Device in bootloader mode.\n"); /* Allocate and register a linear revmap irq_domain */ data->irqdomain = irq_domain_create_linear(fwnode, irq_count, &irq_domain_simple_ops, data); if (!data->irqdomain) { dev_err(&rmi_dev->dev, "Failed to create IRQ domain\n"); return -ENOMEM; } data->irq_count = irq_count; data->num_of_irq_regs = (data->irq_count + 7) / 8; size = BITS_TO_LONGS(data->irq_count) * sizeof(unsigned long); data->irq_memory = devm_kcalloc(dev, size, 4, GFP_KERNEL); if (!data->irq_memory) { dev_err(dev, "Failed to allocate memory for irq masks.\n"); return -ENOMEM; } data->irq_status = data->irq_memory + size * 0; data->fn_irq_bits = data->irq_memory + size * 1; data->current_irq_mask = data->irq_memory + size * 2; data->new_irq_mask = data->irq_memory + size * 3; return retval; } int rmi_init_functions(struct rmi_driver_data *data) { struct rmi_device *rmi_dev = data->rmi_dev; struct device *dev = &rmi_dev->dev; int irq_count = 0; int retval; rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Creating functions.\n", __func__); retval = rmi_scan_pdt(rmi_dev, &irq_count, rmi_create_function); if (retval < 0) { dev_err(dev, "Function creation failed with code %d.\n", retval); goto err_destroy_functions; } if (!data->f01_container) { dev_err(dev, "Missing F01 container!\n"); retval = -EINVAL; goto err_destroy_functions; } retval = rmi_read_block(rmi_dev, data->f01_container->fd.control_base_addr + 1, data->current_irq_mask, data->num_of_irq_regs); if (retval < 0) { dev_err(dev, "%s: Failed to read current IRQ mask.\n", __func__); goto err_destroy_functions; } return 0; err_destroy_functions: rmi_free_function_list(rmi_dev); return retval; } static int rmi_driver_probe(struct device *dev) { struct rmi_driver *rmi_driver; struct rmi_driver_data *data; struct rmi_device_platform_data *pdata; struct rmi_device *rmi_dev; int retval; rmi_dbg(RMI_DEBUG_CORE, dev, "%s: Starting probe.\n", __func__); if (!rmi_is_physical_device(dev)) { rmi_dbg(RMI_DEBUG_CORE, dev, "Not a physical device.\n"); return -ENODEV; } rmi_dev = to_rmi_device(dev); rmi_driver = to_rmi_driver(dev->driver); rmi_dev->driver = rmi_driver; pdata = rmi_get_platform_data(rmi_dev); if (rmi_dev->xport->dev->of_node) { retval = rmi_driver_of_probe(rmi_dev->xport->dev, pdata); if (retval) return retval; } data = devm_kzalloc(dev, sizeof(struct rmi_driver_data), GFP_KERNEL); if (!data) return -ENOMEM; INIT_LIST_HEAD(&data->function_list); data->rmi_dev = rmi_dev; dev_set_drvdata(&rmi_dev->dev, data); /* * Right before a warm boot, the sensor might be in some unusual state, * such as F54 diagnostics, or F34 bootloader mode after a firmware * or configuration update. In order to clear the sensor to a known * state and/or apply any updates, we issue a initial reset to clear any * previous settings and force it into normal operation. * * We have to do this before actually building the PDT because * the reflash updates (if any) might cause various registers to move * around. * * For a number of reasons, this initial reset may fail to return * within the specified time, but we'll still be able to bring up the * driver normally after that failure. This occurs most commonly in * a cold boot situation (where then firmware takes longer to come up * than from a warm boot) and the reset_delay_ms in the platform data * has been set too short to accommodate that. Since the sensor will * eventually come up and be usable, we don't want to just fail here * and leave the customer's device unusable. So we warn them, and * continue processing. */ retval = rmi_scan_pdt(rmi_dev, NULL, rmi_initial_reset); if (retval < 0) dev_warn(dev, "RMI initial reset failed! Continuing in spite of this.\n"); retval = rmi_read(rmi_dev, PDT_PROPERTIES_LOCATION, &data->pdt_props); if (retval < 0) { /* * we'll print out a warning and continue since * failure to get the PDT properties is not a cause to fail */ dev_warn(dev, "Could not read PDT properties from %#06x (code %d). Assuming 0x00.\n", PDT_PROPERTIES_LOCATION, retval); } mutex_init(&data->irq_mutex); mutex_init(&data->enabled_mutex); retval = rmi_probe_interrupts(data); if (retval) goto err; if (rmi_dev->xport->input) { /* * The transport driver already has an input device. * In some cases it is preferable to reuse the transport * devices input device instead of creating a new one here. * One example is some HID touchpads report "pass-through" * button events are not reported by rmi registers. */ data->input = rmi_dev->xport->input; } else { data->input = devm_input_allocate_device(dev); if (!data->input) { dev_err(dev, "%s: Failed to allocate input device.\n", __func__); retval = -ENOMEM; goto err; } rmi_driver_set_input_params(rmi_dev, data->input); data->input->phys = devm_kasprintf(dev, GFP_KERNEL, "%s/input0", dev_name(dev)); } retval = rmi_init_functions(data); if (retval) goto err; retval = rmi_f34_create_sysfs(rmi_dev); if (retval) goto err; if (data->input) { rmi_driver_set_input_name(rmi_dev, data->input); if (!rmi_dev->xport->input) { if (input_register_device(data->input)) { dev_err(dev, "%s: Failed to register input device.\n", __func__); goto err_destroy_functions; } } } retval = rmi_irq_init(rmi_dev); if (retval < 0) goto err_destroy_functions; if (data->f01_container->dev.driver) { /* Driver already bound, so enable ATTN now. */ retval = rmi_enable_sensor(rmi_dev); if (retval) goto err_disable_irq; } return 0; err_disable_irq: rmi_disable_irq(rmi_dev, false); err_destroy_functions: rmi_free_function_list(rmi_dev); err: return retval; } static struct rmi_driver rmi_physical_driver = { .driver = { .owner = THIS_MODULE, .name = "rmi4_physical", .bus = &rmi_bus_type, .probe = rmi_driver_probe, .remove = rmi_driver_remove, }, .reset_handler = rmi_driver_reset_handler, .clear_irq_bits = rmi_driver_clear_irq_bits, .set_irq_bits = rmi_driver_set_irq_bits, .set_input_params = rmi_driver_set_input_params, }; bool rmi_is_physical_driver(struct device_driver *drv) { return drv == &rmi_physical_driver.driver; } int __init rmi_register_physical_driver(void) { int error; error = driver_register(&rmi_physical_driver.driver); if (error) { pr_err("%s: driver register failed, code=%d.\n", __func__, error); return error; } return 0; } void __exit rmi_unregister_physical_driver(void) { driver_unregister(&rmi_physical_driver.driver); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1