Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andrew Duggan | 2563 | 95.03% | 4 | 40.00% |
Benjamin Tissoires | 84 | 3.11% | 2 | 20.00% |
Nick Dyer | 33 | 1.22% | 2 | 20.00% |
Kees Cook | 15 | 0.56% | 1 | 10.00% |
Thomas Gleixner | 2 | 0.07% | 1 | 10.00% |
Total | 2697 | 10 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2012-2016 Synaptics Incorporated */ #include <linux/input.h> #include <linux/input/mt.h> #include <linux/rmi.h> #include "rmi_driver.h" #include "rmi_2d_sensor.h" enum rmi_f12_object_type { RMI_F12_OBJECT_NONE = 0x00, RMI_F12_OBJECT_FINGER = 0x01, RMI_F12_OBJECT_STYLUS = 0x02, RMI_F12_OBJECT_PALM = 0x03, RMI_F12_OBJECT_UNCLASSIFIED = 0x04, RMI_F12_OBJECT_GLOVED_FINGER = 0x06, RMI_F12_OBJECT_NARROW_OBJECT = 0x07, RMI_F12_OBJECT_HAND_EDGE = 0x08, RMI_F12_OBJECT_COVER = 0x0A, RMI_F12_OBJECT_STYLUS_2 = 0x0B, RMI_F12_OBJECT_ERASER = 0x0C, RMI_F12_OBJECT_SMALL_OBJECT = 0x0D, }; #define F12_DATA1_BYTES_PER_OBJ 8 struct f12_data { struct rmi_2d_sensor sensor; struct rmi_2d_sensor_platform_data sensor_pdata; bool has_dribble; u16 data_addr; struct rmi_register_descriptor query_reg_desc; struct rmi_register_descriptor control_reg_desc; struct rmi_register_descriptor data_reg_desc; /* F12 Data1 describes sensed objects */ const struct rmi_register_desc_item *data1; u16 data1_offset; /* F12 Data5 describes finger ACM */ const struct rmi_register_desc_item *data5; u16 data5_offset; /* F12 Data5 describes Pen */ const struct rmi_register_desc_item *data6; u16 data6_offset; /* F12 Data9 reports relative data */ const struct rmi_register_desc_item *data9; u16 data9_offset; const struct rmi_register_desc_item *data15; u16 data15_offset; }; static int rmi_f12_read_sensor_tuning(struct f12_data *f12) { const struct rmi_register_desc_item *item; struct rmi_2d_sensor *sensor = &f12->sensor; struct rmi_function *fn = sensor->fn; struct rmi_device *rmi_dev = fn->rmi_dev; int ret; int offset; u8 buf[15]; int pitch_x = 0; int pitch_y = 0; int rx_receivers = 0; int tx_receivers = 0; int sensor_flags = 0; item = rmi_get_register_desc_item(&f12->control_reg_desc, 8); if (!item) { dev_err(&fn->dev, "F12 does not have the sensor tuning control register\n"); return -ENODEV; } offset = rmi_register_desc_calc_reg_offset(&f12->control_reg_desc, 8); if (item->reg_size > sizeof(buf)) { dev_err(&fn->dev, "F12 control8 should be no bigger than %zd bytes, not: %ld\n", sizeof(buf), item->reg_size); return -ENODEV; } ret = rmi_read_block(rmi_dev, fn->fd.control_base_addr + offset, buf, item->reg_size); if (ret) return ret; offset = 0; if (rmi_register_desc_has_subpacket(item, 0)) { sensor->max_x = (buf[offset + 1] << 8) | buf[offset]; sensor->max_y = (buf[offset + 3] << 8) | buf[offset + 2]; offset += 4; } rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s: max_x: %d max_y: %d\n", __func__, sensor->max_x, sensor->max_y); if (rmi_register_desc_has_subpacket(item, 1)) { pitch_x = (buf[offset + 1] << 8) | buf[offset]; pitch_y = (buf[offset + 3] << 8) | buf[offset + 2]; offset += 4; } if (rmi_register_desc_has_subpacket(item, 2)) { /* Units 1/128 sensor pitch */ rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s: Inactive Border xlo:%d xhi:%d ylo:%d yhi:%d\n", __func__, buf[offset], buf[offset + 1], buf[offset + 2], buf[offset + 3]); offset += 4; } if (rmi_register_desc_has_subpacket(item, 3)) { rx_receivers = buf[offset]; tx_receivers = buf[offset + 1]; offset += 2; } if (rmi_register_desc_has_subpacket(item, 4)) { sensor_flags = buf[offset]; offset += 1; } sensor->x_mm = (pitch_x * rx_receivers) >> 12; sensor->y_mm = (pitch_y * tx_receivers) >> 12; rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s: x_mm: %d y_mm: %d\n", __func__, sensor->x_mm, sensor->y_mm); return 0; } static void rmi_f12_process_objects(struct f12_data *f12, u8 *data1, int size) { int i; struct rmi_2d_sensor *sensor = &f12->sensor; int objects = f12->data1->num_subpackets; if ((f12->data1->num_subpackets * F12_DATA1_BYTES_PER_OBJ) > size) objects = size / F12_DATA1_BYTES_PER_OBJ; for (i = 0; i < objects; i++) { struct rmi_2d_sensor_abs_object *obj = &sensor->objs[i]; obj->type = RMI_2D_OBJECT_NONE; obj->mt_tool = MT_TOOL_FINGER; switch (data1[0]) { case RMI_F12_OBJECT_FINGER: obj->type = RMI_2D_OBJECT_FINGER; break; case RMI_F12_OBJECT_STYLUS: obj->type = RMI_2D_OBJECT_STYLUS; obj->mt_tool = MT_TOOL_PEN; break; case RMI_F12_OBJECT_PALM: obj->type = RMI_2D_OBJECT_PALM; obj->mt_tool = MT_TOOL_PALM; break; case RMI_F12_OBJECT_UNCLASSIFIED: obj->type = RMI_2D_OBJECT_UNCLASSIFIED; break; } obj->x = (data1[2] << 8) | data1[1]; obj->y = (data1[4] << 8) | data1[3]; obj->z = data1[5]; obj->wx = data1[6]; obj->wy = data1[7]; rmi_2d_sensor_abs_process(sensor, obj, i); data1 += F12_DATA1_BYTES_PER_OBJ; } if (sensor->kernel_tracking) input_mt_assign_slots(sensor->input, sensor->tracking_slots, sensor->tracking_pos, sensor->nbr_fingers, sensor->dmax); for (i = 0; i < objects; i++) rmi_2d_sensor_abs_report(sensor, &sensor->objs[i], i); } static irqreturn_t rmi_f12_attention(int irq, void *ctx) { int retval; struct rmi_function *fn = ctx; struct rmi_device *rmi_dev = fn->rmi_dev; struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev); struct f12_data *f12 = dev_get_drvdata(&fn->dev); struct rmi_2d_sensor *sensor = &f12->sensor; int valid_bytes = sensor->pkt_size; if (drvdata->attn_data.data) { if (sensor->attn_size > drvdata->attn_data.size) valid_bytes = drvdata->attn_data.size; else valid_bytes = sensor->attn_size; memcpy(sensor->data_pkt, drvdata->attn_data.data, valid_bytes); drvdata->attn_data.data += sensor->attn_size; drvdata->attn_data.size -= sensor->attn_size; } else { retval = rmi_read_block(rmi_dev, f12->data_addr, sensor->data_pkt, sensor->pkt_size); if (retval < 0) { dev_err(&fn->dev, "Failed to read object data. Code: %d.\n", retval); return IRQ_RETVAL(retval); } } if (f12->data1) rmi_f12_process_objects(f12, &sensor->data_pkt[f12->data1_offset], valid_bytes); input_mt_sync_frame(sensor->input); return IRQ_HANDLED; } static int rmi_f12_write_control_regs(struct rmi_function *fn) { int ret; const struct rmi_register_desc_item *item; struct rmi_device *rmi_dev = fn->rmi_dev; struct f12_data *f12 = dev_get_drvdata(&fn->dev); int control_size; char buf[3]; u16 control_offset = 0; u8 subpacket_offset = 0; if (f12->has_dribble && (f12->sensor.dribble != RMI_REG_STATE_DEFAULT)) { item = rmi_get_register_desc_item(&f12->control_reg_desc, 20); if (item) { control_offset = rmi_register_desc_calc_reg_offset( &f12->control_reg_desc, 20); /* * The byte containing the EnableDribble bit will be * in either byte 0 or byte 2 of control 20. Depending * on the existence of subpacket 0. If control 20 is * larger then 3 bytes, just read the first 3. */ control_size = min(item->reg_size, 3UL); ret = rmi_read_block(rmi_dev, fn->fd.control_base_addr + control_offset, buf, control_size); if (ret) return ret; if (rmi_register_desc_has_subpacket(item, 0)) subpacket_offset += 1; switch (f12->sensor.dribble) { case RMI_REG_STATE_OFF: buf[subpacket_offset] &= ~BIT(2); break; case RMI_REG_STATE_ON: buf[subpacket_offset] |= BIT(2); break; case RMI_REG_STATE_DEFAULT: default: break; } ret = rmi_write_block(rmi_dev, fn->fd.control_base_addr + control_offset, buf, control_size); if (ret) return ret; } } return 0; } static int rmi_f12_config(struct rmi_function *fn) { struct rmi_driver *drv = fn->rmi_dev->driver; int ret; drv->set_irq_bits(fn->rmi_dev, fn->irq_mask); ret = rmi_f12_write_control_regs(fn); if (ret) dev_warn(&fn->dev, "Failed to write F12 control registers: %d\n", ret); return 0; } static int rmi_f12_probe(struct rmi_function *fn) { struct f12_data *f12; int ret; struct rmi_device *rmi_dev = fn->rmi_dev; char buf; u16 query_addr = fn->fd.query_base_addr; const struct rmi_register_desc_item *item; struct rmi_2d_sensor *sensor; struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev); struct rmi_driver_data *drvdata = dev_get_drvdata(&rmi_dev->dev); u16 data_offset = 0; rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s\n", __func__); ret = rmi_read(fn->rmi_dev, query_addr, &buf); if (ret < 0) { dev_err(&fn->dev, "Failed to read general info register: %d\n", ret); return -ENODEV; } ++query_addr; if (!(buf & BIT(0))) { dev_err(&fn->dev, "Behavior of F12 without register descriptors is undefined.\n"); return -ENODEV; } f12 = devm_kzalloc(&fn->dev, sizeof(struct f12_data), GFP_KERNEL); if (!f12) return -ENOMEM; f12->has_dribble = !!(buf & BIT(3)); if (fn->dev.of_node) { ret = rmi_2d_sensor_of_probe(&fn->dev, &f12->sensor_pdata); if (ret) return ret; } else { f12->sensor_pdata = pdata->sensor_pdata; } ret = rmi_read_register_desc(rmi_dev, query_addr, &f12->query_reg_desc); if (ret) { dev_err(&fn->dev, "Failed to read the Query Register Descriptor: %d\n", ret); return ret; } query_addr += 3; ret = rmi_read_register_desc(rmi_dev, query_addr, &f12->control_reg_desc); if (ret) { dev_err(&fn->dev, "Failed to read the Control Register Descriptor: %d\n", ret); return ret; } query_addr += 3; ret = rmi_read_register_desc(rmi_dev, query_addr, &f12->data_reg_desc); if (ret) { dev_err(&fn->dev, "Failed to read the Data Register Descriptor: %d\n", ret); return ret; } query_addr += 3; sensor = &f12->sensor; sensor->fn = fn; f12->data_addr = fn->fd.data_base_addr; sensor->pkt_size = rmi_register_desc_calc_size(&f12->data_reg_desc); sensor->axis_align = f12->sensor_pdata.axis_align; sensor->x_mm = f12->sensor_pdata.x_mm; sensor->y_mm = f12->sensor_pdata.y_mm; sensor->dribble = f12->sensor_pdata.dribble; if (sensor->sensor_type == rmi_sensor_default) sensor->sensor_type = f12->sensor_pdata.sensor_type; rmi_dbg(RMI_DEBUG_FN, &fn->dev, "%s: data packet size: %d\n", __func__, sensor->pkt_size); sensor->data_pkt = devm_kzalloc(&fn->dev, sensor->pkt_size, GFP_KERNEL); if (!sensor->data_pkt) return -ENOMEM; dev_set_drvdata(&fn->dev, f12); ret = rmi_f12_read_sensor_tuning(f12); if (ret) return ret; /* * Figure out what data is contained in the data registers. HID devices * may have registers defined, but their data is not reported in the * HID attention report. Registers which are not reported in the HID * attention report check to see if the device is receiving data from * HID attention reports. */ item = rmi_get_register_desc_item(&f12->data_reg_desc, 0); if (item && !drvdata->attn_data.data) data_offset += item->reg_size; item = rmi_get_register_desc_item(&f12->data_reg_desc, 1); if (item) { f12->data1 = item; f12->data1_offset = data_offset; data_offset += item->reg_size; sensor->nbr_fingers = item->num_subpackets; sensor->report_abs = 1; sensor->attn_size += item->reg_size; } item = rmi_get_register_desc_item(&f12->data_reg_desc, 2); if (item && !drvdata->attn_data.data) data_offset += item->reg_size; item = rmi_get_register_desc_item(&f12->data_reg_desc, 3); if (item && !drvdata->attn_data.data) data_offset += item->reg_size; item = rmi_get_register_desc_item(&f12->data_reg_desc, 4); if (item && !drvdata->attn_data.data) data_offset += item->reg_size; item = rmi_get_register_desc_item(&f12->data_reg_desc, 5); if (item) { f12->data5 = item; f12->data5_offset = data_offset; data_offset += item->reg_size; sensor->attn_size += item->reg_size; } item = rmi_get_register_desc_item(&f12->data_reg_desc, 6); if (item && !drvdata->attn_data.data) { f12->data6 = item; f12->data6_offset = data_offset; data_offset += item->reg_size; } item = rmi_get_register_desc_item(&f12->data_reg_desc, 7); if (item && !drvdata->attn_data.data) data_offset += item->reg_size; item = rmi_get_register_desc_item(&f12->data_reg_desc, 8); if (item && !drvdata->attn_data.data) data_offset += item->reg_size; item = rmi_get_register_desc_item(&f12->data_reg_desc, 9); if (item && !drvdata->attn_data.data) { f12->data9 = item; f12->data9_offset = data_offset; data_offset += item->reg_size; if (!sensor->report_abs) sensor->report_rel = 1; } item = rmi_get_register_desc_item(&f12->data_reg_desc, 10); if (item && !drvdata->attn_data.data) data_offset += item->reg_size; item = rmi_get_register_desc_item(&f12->data_reg_desc, 11); if (item && !drvdata->attn_data.data) data_offset += item->reg_size; item = rmi_get_register_desc_item(&f12->data_reg_desc, 12); if (item && !drvdata->attn_data.data) data_offset += item->reg_size; item = rmi_get_register_desc_item(&f12->data_reg_desc, 13); if (item && !drvdata->attn_data.data) data_offset += item->reg_size; item = rmi_get_register_desc_item(&f12->data_reg_desc, 14); if (item && !drvdata->attn_data.data) data_offset += item->reg_size; item = rmi_get_register_desc_item(&f12->data_reg_desc, 15); if (item && !drvdata->attn_data.data) { f12->data15 = item; f12->data15_offset = data_offset; data_offset += item->reg_size; } /* allocate the in-kernel tracking buffers */ sensor->tracking_pos = devm_kcalloc(&fn->dev, sensor->nbr_fingers, sizeof(struct input_mt_pos), GFP_KERNEL); sensor->tracking_slots = devm_kcalloc(&fn->dev, sensor->nbr_fingers, sizeof(int), GFP_KERNEL); sensor->objs = devm_kcalloc(&fn->dev, sensor->nbr_fingers, sizeof(struct rmi_2d_sensor_abs_object), GFP_KERNEL); if (!sensor->tracking_pos || !sensor->tracking_slots || !sensor->objs) return -ENOMEM; ret = rmi_2d_sensor_configure_input(fn, sensor); if (ret) return ret; return 0; } struct rmi_function_handler rmi_f12_handler = { .driver = { .name = "rmi4_f12", }, .func = 0x12, .probe = rmi_f12_probe, .config = rmi_f12_config, .attention = rmi_f12_attention, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1