Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christoph Hellwig | 868 | 75.48% | 1 | 12.50% |
Anup Patel | 251 | 21.83% | 4 | 50.00% |
Atish Patra | 30 | 2.61% | 2 | 25.00% |
Palmer Dabbelt | 1 | 0.09% | 1 | 12.50% |
Total | 1150 | 8 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2017 SiFive * Copyright (C) 2018 Christoph Hellwig */ #define pr_fmt(fmt) "plic: " fmt #include <linux/interrupt.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/irqchip.h> #include <linux/irqdomain.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <linux/spinlock.h> #include <asm/smp.h> /* * This driver implements a version of the RISC-V PLIC with the actual layout * specified in chapter 8 of the SiFive U5 Coreplex Series Manual: * * https://static.dev.sifive.com/U54-MC-RVCoreIP.pdf * * The largest number supported by devices marked as 'sifive,plic-1.0.0', is * 1024, of which device 0 is defined as non-existent by the RISC-V Privileged * Spec. */ #define MAX_DEVICES 1024 #define MAX_CONTEXTS 15872 /* * Each interrupt source has a priority register associated with it. * We always hardwire it to one in Linux. */ #define PRIORITY_BASE 0 #define PRIORITY_PER_ID 4 /* * Each hart context has a vector of interrupt enable bits associated with it. * There's one bit for each interrupt source. */ #define ENABLE_BASE 0x2000 #define ENABLE_PER_HART 0x80 /* * Each hart context has a set of control registers associated with it. Right * now there's only two: a source priority threshold over which the hart will * take an interrupt, and a register to claim interrupts. */ #define CONTEXT_BASE 0x200000 #define CONTEXT_PER_HART 0x1000 #define CONTEXT_THRESHOLD 0x00 #define CONTEXT_CLAIM 0x04 static void __iomem *plic_regs; struct plic_handler { bool present; void __iomem *hart_base; /* * Protect mask operations on the registers given that we can't * assume atomic memory operations work on them. */ raw_spinlock_t enable_lock; void __iomem *enable_base; }; static DEFINE_PER_CPU(struct plic_handler, plic_handlers); static inline void plic_toggle(struct plic_handler *handler, int hwirq, int enable) { u32 __iomem *reg = handler->enable_base + (hwirq / 32) * sizeof(u32); u32 hwirq_mask = 1 << (hwirq % 32); raw_spin_lock(&handler->enable_lock); if (enable) writel(readl(reg) | hwirq_mask, reg); else writel(readl(reg) & ~hwirq_mask, reg); raw_spin_unlock(&handler->enable_lock); } static inline void plic_irq_toggle(const struct cpumask *mask, int hwirq, int enable) { int cpu; writel(enable, plic_regs + PRIORITY_BASE + hwirq * PRIORITY_PER_ID); for_each_cpu(cpu, mask) { struct plic_handler *handler = per_cpu_ptr(&plic_handlers, cpu); if (handler->present) plic_toggle(handler, hwirq, enable); } } static void plic_irq_enable(struct irq_data *d) { unsigned int cpu = cpumask_any_and(irq_data_get_affinity_mask(d), cpu_online_mask); if (WARN_ON_ONCE(cpu >= nr_cpu_ids)) return; plic_irq_toggle(cpumask_of(cpu), d->hwirq, 1); } static void plic_irq_disable(struct irq_data *d) { plic_irq_toggle(cpu_possible_mask, d->hwirq, 0); } #ifdef CONFIG_SMP static int plic_set_affinity(struct irq_data *d, const struct cpumask *mask_val, bool force) { unsigned int cpu; if (force) cpu = cpumask_first(mask_val); else cpu = cpumask_any_and(mask_val, cpu_online_mask); if (cpu >= nr_cpu_ids) return -EINVAL; if (!irqd_irq_disabled(d)) { plic_irq_toggle(cpu_possible_mask, d->hwirq, 0); plic_irq_toggle(cpumask_of(cpu), d->hwirq, 1); } irq_data_update_effective_affinity(d, cpumask_of(cpu)); return IRQ_SET_MASK_OK_DONE; } #endif static struct irq_chip plic_chip = { .name = "SiFive PLIC", /* * There is no need to mask/unmask PLIC interrupts. They are "masked" * by reading claim and "unmasked" when writing it back. */ .irq_enable = plic_irq_enable, .irq_disable = plic_irq_disable, #ifdef CONFIG_SMP .irq_set_affinity = plic_set_affinity, #endif }; static int plic_irqdomain_map(struct irq_domain *d, unsigned int irq, irq_hw_number_t hwirq) { irq_set_chip_and_handler(irq, &plic_chip, handle_simple_irq); irq_set_chip_data(irq, NULL); irq_set_noprobe(irq); return 0; } static const struct irq_domain_ops plic_irqdomain_ops = { .map = plic_irqdomain_map, .xlate = irq_domain_xlate_onecell, }; static struct irq_domain *plic_irqdomain; /* * Handling an interrupt is a two-step process: first you claim the interrupt * by reading the claim register, then you complete the interrupt by writing * that source ID back to the same claim register. This automatically enables * and disables the interrupt, so there's nothing else to do. */ static void plic_handle_irq(struct pt_regs *regs) { struct plic_handler *handler = this_cpu_ptr(&plic_handlers); void __iomem *claim = handler->hart_base + CONTEXT_CLAIM; irq_hw_number_t hwirq; WARN_ON_ONCE(!handler->present); csr_clear(sie, SIE_SEIE); while ((hwirq = readl(claim))) { int irq = irq_find_mapping(plic_irqdomain, hwirq); if (unlikely(irq <= 0)) pr_warn_ratelimited("can't find mapping for hwirq %lu\n", hwirq); else generic_handle_irq(irq); writel(hwirq, claim); } csr_set(sie, SIE_SEIE); } /* * Walk up the DT tree until we find an active RISC-V core (HART) node and * extract the cpuid from it. */ static int plic_find_hart_id(struct device_node *node) { for (; node; node = node->parent) { if (of_device_is_compatible(node, "riscv")) return riscv_of_processor_hartid(node); } return -1; } static int __init plic_init(struct device_node *node, struct device_node *parent) { int error = 0, nr_contexts, nr_handlers = 0, i; u32 nr_irqs; if (plic_regs) { pr_warn("PLIC already present.\n"); return -ENXIO; } plic_regs = of_iomap(node, 0); if (WARN_ON(!plic_regs)) return -EIO; error = -EINVAL; of_property_read_u32(node, "riscv,ndev", &nr_irqs); if (WARN_ON(!nr_irqs)) goto out_iounmap; nr_contexts = of_irq_count(node); if (WARN_ON(!nr_contexts)) goto out_iounmap; if (WARN_ON(nr_contexts < num_possible_cpus())) goto out_iounmap; error = -ENOMEM; plic_irqdomain = irq_domain_add_linear(node, nr_irqs + 1, &plic_irqdomain_ops, NULL); if (WARN_ON(!plic_irqdomain)) goto out_iounmap; for (i = 0; i < nr_contexts; i++) { struct of_phandle_args parent; struct plic_handler *handler; irq_hw_number_t hwirq; int cpu, hartid; if (of_irq_parse_one(node, i, &parent)) { pr_err("failed to parse parent for context %d.\n", i); continue; } /* skip context holes */ if (parent.args[0] == -1) continue; hartid = plic_find_hart_id(parent.np); if (hartid < 0) { pr_warn("failed to parse hart ID for context %d.\n", i); continue; } cpu = riscv_hartid_to_cpuid(hartid); if (cpu < 0) { pr_warn("Invalid cpuid for context %d\n", i); continue; } handler = per_cpu_ptr(&plic_handlers, cpu); if (handler->present) { pr_warn("handler already present for context %d.\n", i); continue; } handler->present = true; handler->hart_base = plic_regs + CONTEXT_BASE + i * CONTEXT_PER_HART; raw_spin_lock_init(&handler->enable_lock); handler->enable_base = plic_regs + ENABLE_BASE + i * ENABLE_PER_HART; /* priority must be > threshold to trigger an interrupt */ writel(0, handler->hart_base + CONTEXT_THRESHOLD); for (hwirq = 1; hwirq <= nr_irqs; hwirq++) plic_toggle(handler, hwirq, 0); nr_handlers++; } pr_info("mapped %d interrupts with %d handlers for %d contexts.\n", nr_irqs, nr_handlers, nr_contexts); set_handle_irq(plic_handle_irq); return 0; out_iounmap: iounmap(plic_regs); return error; } IRQCHIP_DECLARE(sifive_plic, "sifive,plic-1.0.0", plic_init); IRQCHIP_DECLARE(riscv_plic0, "riscv,plic0", plic_init); /* for legacy systems */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1