Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mikulas Patocka | 12316 | 99.85% | 5 | 45.45% |
Huaisheng Ye | 10 | 0.08% | 4 | 36.36% |
Kees Cook | 8 | 0.06% | 1 | 9.09% |
Wang Sheng-Hui | 1 | 0.01% | 1 | 9.09% |
Total | 12335 | 11 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2018 Red Hat. All rights reserved. * * This file is released under the GPL. */ #include <linux/device-mapper.h> #include <linux/module.h> #include <linux/init.h> #include <linux/vmalloc.h> #include <linux/kthread.h> #include <linux/dm-io.h> #include <linux/dm-kcopyd.h> #include <linux/dax.h> #include <linux/pfn_t.h> #include <linux/libnvdimm.h> #define DM_MSG_PREFIX "writecache" #define HIGH_WATERMARK 50 #define LOW_WATERMARK 45 #define MAX_WRITEBACK_JOBS 0 #define ENDIO_LATENCY 16 #define WRITEBACK_LATENCY 64 #define AUTOCOMMIT_BLOCKS_SSD 65536 #define AUTOCOMMIT_BLOCKS_PMEM 64 #define AUTOCOMMIT_MSEC 1000 #define BITMAP_GRANULARITY 65536 #if BITMAP_GRANULARITY < PAGE_SIZE #undef BITMAP_GRANULARITY #define BITMAP_GRANULARITY PAGE_SIZE #endif #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_DAX_DRIVER) #define DM_WRITECACHE_HAS_PMEM #endif #ifdef DM_WRITECACHE_HAS_PMEM #define pmem_assign(dest, src) \ do { \ typeof(dest) uniq = (src); \ memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \ } while (0) #else #define pmem_assign(dest, src) ((dest) = (src)) #endif #if defined(__HAVE_ARCH_MEMCPY_MCSAFE) && defined(DM_WRITECACHE_HAS_PMEM) #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS #endif #define MEMORY_SUPERBLOCK_MAGIC 0x23489321 #define MEMORY_SUPERBLOCK_VERSION 1 struct wc_memory_entry { __le64 original_sector; __le64 seq_count; }; struct wc_memory_superblock { union { struct { __le32 magic; __le32 version; __le32 block_size; __le32 pad; __le64 n_blocks; __le64 seq_count; }; __le64 padding[8]; }; struct wc_memory_entry entries[0]; }; struct wc_entry { struct rb_node rb_node; struct list_head lru; unsigned short wc_list_contiguous; bool write_in_progress #if BITS_PER_LONG == 64 :1 #endif ; unsigned long index #if BITS_PER_LONG == 64 :47 #endif ; #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS uint64_t original_sector; uint64_t seq_count; #endif }; #ifdef DM_WRITECACHE_HAS_PMEM #define WC_MODE_PMEM(wc) ((wc)->pmem_mode) #define WC_MODE_FUA(wc) ((wc)->writeback_fua) #else #define WC_MODE_PMEM(wc) false #define WC_MODE_FUA(wc) false #endif #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc)) struct dm_writecache { struct mutex lock; struct list_head lru; union { struct list_head freelist; struct { struct rb_root freetree; struct wc_entry *current_free; }; }; struct rb_root tree; size_t freelist_size; size_t writeback_size; size_t freelist_high_watermark; size_t freelist_low_watermark; unsigned uncommitted_blocks; unsigned autocommit_blocks; unsigned max_writeback_jobs; int error; unsigned long autocommit_jiffies; struct timer_list autocommit_timer; struct wait_queue_head freelist_wait; atomic_t bio_in_progress[2]; struct wait_queue_head bio_in_progress_wait[2]; struct dm_target *ti; struct dm_dev *dev; struct dm_dev *ssd_dev; sector_t start_sector; void *memory_map; uint64_t memory_map_size; size_t metadata_sectors; size_t n_blocks; uint64_t seq_count; void *block_start; struct wc_entry *entries; unsigned block_size; unsigned char block_size_bits; bool pmem_mode:1; bool writeback_fua:1; bool overwrote_committed:1; bool memory_vmapped:1; bool high_wm_percent_set:1; bool low_wm_percent_set:1; bool max_writeback_jobs_set:1; bool autocommit_blocks_set:1; bool autocommit_time_set:1; bool writeback_fua_set:1; bool flush_on_suspend:1; unsigned writeback_all; struct workqueue_struct *writeback_wq; struct work_struct writeback_work; struct work_struct flush_work; struct dm_io_client *dm_io; raw_spinlock_t endio_list_lock; struct list_head endio_list; struct task_struct *endio_thread; struct task_struct *flush_thread; struct bio_list flush_list; struct dm_kcopyd_client *dm_kcopyd; unsigned long *dirty_bitmap; unsigned dirty_bitmap_size; struct bio_set bio_set; mempool_t copy_pool; }; #define WB_LIST_INLINE 16 struct writeback_struct { struct list_head endio_entry; struct dm_writecache *wc; struct wc_entry **wc_list; unsigned wc_list_n; struct page *page; struct wc_entry *wc_list_inline[WB_LIST_INLINE]; struct bio bio; }; struct copy_struct { struct list_head endio_entry; struct dm_writecache *wc; struct wc_entry *e; unsigned n_entries; int error; }; DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle, "A percentage of time allocated for data copying"); static void wc_lock(struct dm_writecache *wc) { mutex_lock(&wc->lock); } static void wc_unlock(struct dm_writecache *wc) { mutex_unlock(&wc->lock); } #ifdef DM_WRITECACHE_HAS_PMEM static int persistent_memory_claim(struct dm_writecache *wc) { int r; loff_t s; long p, da; pfn_t pfn; int id; struct page **pages; wc->memory_vmapped = false; if (!wc->ssd_dev->dax_dev) { r = -EOPNOTSUPP; goto err1; } s = wc->memory_map_size; p = s >> PAGE_SHIFT; if (!p) { r = -EINVAL; goto err1; } if (p != s >> PAGE_SHIFT) { r = -EOVERFLOW; goto err1; } id = dax_read_lock(); da = dax_direct_access(wc->ssd_dev->dax_dev, 0, p, &wc->memory_map, &pfn); if (da < 0) { wc->memory_map = NULL; r = da; goto err2; } if (!pfn_t_has_page(pfn)) { wc->memory_map = NULL; r = -EOPNOTSUPP; goto err2; } if (da != p) { long i; wc->memory_map = NULL; pages = kvmalloc_array(p, sizeof(struct page *), GFP_KERNEL); if (!pages) { r = -ENOMEM; goto err2; } i = 0; do { long daa; daa = dax_direct_access(wc->ssd_dev->dax_dev, i, p - i, NULL, &pfn); if (daa <= 0) { r = daa ? daa : -EINVAL; goto err3; } if (!pfn_t_has_page(pfn)) { r = -EOPNOTSUPP; goto err3; } while (daa-- && i < p) { pages[i++] = pfn_t_to_page(pfn); pfn.val++; } } while (i < p); wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL); if (!wc->memory_map) { r = -ENOMEM; goto err3; } kvfree(pages); wc->memory_vmapped = true; } dax_read_unlock(id); wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT; wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT; return 0; err3: kvfree(pages); err2: dax_read_unlock(id); err1: return r; } #else static int persistent_memory_claim(struct dm_writecache *wc) { BUG(); } #endif static void persistent_memory_release(struct dm_writecache *wc) { if (wc->memory_vmapped) vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT)); } static struct page *persistent_memory_page(void *addr) { if (is_vmalloc_addr(addr)) return vmalloc_to_page(addr); else return virt_to_page(addr); } static unsigned persistent_memory_page_offset(void *addr) { return (unsigned long)addr & (PAGE_SIZE - 1); } static void persistent_memory_flush_cache(void *ptr, size_t size) { if (is_vmalloc_addr(ptr)) flush_kernel_vmap_range(ptr, size); } static void persistent_memory_invalidate_cache(void *ptr, size_t size) { if (is_vmalloc_addr(ptr)) invalidate_kernel_vmap_range(ptr, size); } static struct wc_memory_superblock *sb(struct dm_writecache *wc) { return wc->memory_map; } static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e) { return &sb(wc)->entries[e->index]; } static void *memory_data(struct dm_writecache *wc, struct wc_entry *e) { return (char *)wc->block_start + (e->index << wc->block_size_bits); } static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e) { return wc->start_sector + wc->metadata_sectors + ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT)); } static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e) { #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS return e->original_sector; #else return le64_to_cpu(memory_entry(wc, e)->original_sector); #endif } static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e) { #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS return e->seq_count; #else return le64_to_cpu(memory_entry(wc, e)->seq_count); #endif } static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e) { #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS e->seq_count = -1; #endif pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1)); } static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e, uint64_t original_sector, uint64_t seq_count) { struct wc_memory_entry me; #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS e->original_sector = original_sector; e->seq_count = seq_count; #endif me.original_sector = cpu_to_le64(original_sector); me.seq_count = cpu_to_le64(seq_count); pmem_assign(*memory_entry(wc, e), me); } #define writecache_error(wc, err, msg, arg...) \ do { \ if (!cmpxchg(&(wc)->error, 0, err)) \ DMERR(msg, ##arg); \ wake_up(&(wc)->freelist_wait); \ } while (0) #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error))) static void writecache_flush_all_metadata(struct dm_writecache *wc) { if (!WC_MODE_PMEM(wc)) memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size); } static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size) { if (!WC_MODE_PMEM(wc)) __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY, wc->dirty_bitmap); } static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev); struct io_notify { struct dm_writecache *wc; struct completion c; atomic_t count; }; static void writecache_notify_io(unsigned long error, void *context) { struct io_notify *endio = context; if (unlikely(error != 0)) writecache_error(endio->wc, -EIO, "error writing metadata"); BUG_ON(atomic_read(&endio->count) <= 0); if (atomic_dec_and_test(&endio->count)) complete(&endio->c); } static void ssd_commit_flushed(struct dm_writecache *wc) { struct dm_io_region region; struct dm_io_request req; struct io_notify endio = { wc, COMPLETION_INITIALIZER_ONSTACK(endio.c), ATOMIC_INIT(1), }; unsigned bitmap_bits = wc->dirty_bitmap_size * 8; unsigned i = 0; while (1) { unsigned j; i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i); if (unlikely(i == bitmap_bits)) break; j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i); region.bdev = wc->ssd_dev->bdev; region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT); region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT); if (unlikely(region.sector >= wc->metadata_sectors)) break; if (unlikely(region.sector + region.count > wc->metadata_sectors)) region.count = wc->metadata_sectors - region.sector; region.sector += wc->start_sector; atomic_inc(&endio.count); req.bi_op = REQ_OP_WRITE; req.bi_op_flags = REQ_SYNC; req.mem.type = DM_IO_VMA; req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY; req.client = wc->dm_io; req.notify.fn = writecache_notify_io; req.notify.context = &endio; /* writing via async dm-io (implied by notify.fn above) won't return an error */ (void) dm_io(&req, 1, ®ion, NULL); i = j; } writecache_notify_io(0, &endio); wait_for_completion_io(&endio.c); writecache_disk_flush(wc, wc->ssd_dev); memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size); } static void writecache_commit_flushed(struct dm_writecache *wc) { if (WC_MODE_PMEM(wc)) wmb(); else ssd_commit_flushed(wc); } static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev) { int r; struct dm_io_region region; struct dm_io_request req; region.bdev = dev->bdev; region.sector = 0; region.count = 0; req.bi_op = REQ_OP_WRITE; req.bi_op_flags = REQ_PREFLUSH; req.mem.type = DM_IO_KMEM; req.mem.ptr.addr = NULL; req.client = wc->dm_io; req.notify.fn = NULL; r = dm_io(&req, 1, ®ion, NULL); if (unlikely(r)) writecache_error(wc, r, "error flushing metadata: %d", r); } static void writecache_wait_for_ios(struct dm_writecache *wc, int direction) { wait_event(wc->bio_in_progress_wait[direction], !atomic_read(&wc->bio_in_progress[direction])); } #define WFE_RETURN_FOLLOWING 1 #define WFE_LOWEST_SEQ 2 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc, uint64_t block, int flags) { struct wc_entry *e; struct rb_node *node = wc->tree.rb_node; if (unlikely(!node)) return NULL; while (1) { e = container_of(node, struct wc_entry, rb_node); if (read_original_sector(wc, e) == block) break; node = (read_original_sector(wc, e) >= block ? e->rb_node.rb_left : e->rb_node.rb_right); if (unlikely(!node)) { if (!(flags & WFE_RETURN_FOLLOWING)) return NULL; if (read_original_sector(wc, e) >= block) { return e; } else { node = rb_next(&e->rb_node); if (unlikely(!node)) return NULL; e = container_of(node, struct wc_entry, rb_node); return e; } } } while (1) { struct wc_entry *e2; if (flags & WFE_LOWEST_SEQ) node = rb_prev(&e->rb_node); else node = rb_next(&e->rb_node); if (unlikely(!node)) return e; e2 = container_of(node, struct wc_entry, rb_node); if (read_original_sector(wc, e2) != block) return e; e = e2; } } static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins) { struct wc_entry *e; struct rb_node **node = &wc->tree.rb_node, *parent = NULL; while (*node) { e = container_of(*node, struct wc_entry, rb_node); parent = &e->rb_node; if (read_original_sector(wc, e) > read_original_sector(wc, ins)) node = &parent->rb_left; else node = &parent->rb_right; } rb_link_node(&ins->rb_node, parent, node); rb_insert_color(&ins->rb_node, &wc->tree); list_add(&ins->lru, &wc->lru); } static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e) { list_del(&e->lru); rb_erase(&e->rb_node, &wc->tree); } static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e) { if (WC_MODE_SORT_FREELIST(wc)) { struct rb_node **node = &wc->freetree.rb_node, *parent = NULL; if (unlikely(!*node)) wc->current_free = e; while (*node) { parent = *node; if (&e->rb_node < *node) node = &parent->rb_left; else node = &parent->rb_right; } rb_link_node(&e->rb_node, parent, node); rb_insert_color(&e->rb_node, &wc->freetree); } else { list_add_tail(&e->lru, &wc->freelist); } wc->freelist_size++; } static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc) { struct wc_entry *e; if (WC_MODE_SORT_FREELIST(wc)) { struct rb_node *next; if (unlikely(!wc->current_free)) return NULL; e = wc->current_free; next = rb_next(&e->rb_node); rb_erase(&e->rb_node, &wc->freetree); if (unlikely(!next)) next = rb_first(&wc->freetree); wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL; } else { if (unlikely(list_empty(&wc->freelist))) return NULL; e = container_of(wc->freelist.next, struct wc_entry, lru); list_del(&e->lru); } wc->freelist_size--; if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark)) queue_work(wc->writeback_wq, &wc->writeback_work); return e; } static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e) { writecache_unlink(wc, e); writecache_add_to_freelist(wc, e); clear_seq_count(wc, e); writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); if (unlikely(waitqueue_active(&wc->freelist_wait))) wake_up(&wc->freelist_wait); } static void writecache_wait_on_freelist(struct dm_writecache *wc) { DEFINE_WAIT(wait); prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE); wc_unlock(wc); io_schedule(); finish_wait(&wc->freelist_wait, &wait); wc_lock(wc); } static void writecache_poison_lists(struct dm_writecache *wc) { /* * Catch incorrect access to these values while the device is suspended. */ memset(&wc->tree, -1, sizeof wc->tree); wc->lru.next = LIST_POISON1; wc->lru.prev = LIST_POISON2; wc->freelist.next = LIST_POISON1; wc->freelist.prev = LIST_POISON2; } static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e) { writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry)); if (WC_MODE_PMEM(wc)) writecache_flush_region(wc, memory_data(wc, e), wc->block_size); } static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e) { return read_seq_count(wc, e) < wc->seq_count; } static void writecache_flush(struct dm_writecache *wc) { struct wc_entry *e, *e2; bool need_flush_after_free; wc->uncommitted_blocks = 0; del_timer(&wc->autocommit_timer); if (list_empty(&wc->lru)) return; e = container_of(wc->lru.next, struct wc_entry, lru); if (writecache_entry_is_committed(wc, e)) { if (wc->overwrote_committed) { writecache_wait_for_ios(wc, WRITE); writecache_disk_flush(wc, wc->ssd_dev); wc->overwrote_committed = false; } return; } while (1) { writecache_flush_entry(wc, e); if (unlikely(e->lru.next == &wc->lru)) break; e2 = container_of(e->lru.next, struct wc_entry, lru); if (writecache_entry_is_committed(wc, e2)) break; e = e2; cond_resched(); } writecache_commit_flushed(wc); writecache_wait_for_ios(wc, WRITE); wc->seq_count++; pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count)); writecache_flush_region(wc, &sb(wc)->seq_count, sizeof sb(wc)->seq_count); writecache_commit_flushed(wc); wc->overwrote_committed = false; need_flush_after_free = false; while (1) { /* Free another committed entry with lower seq-count */ struct rb_node *rb_node = rb_prev(&e->rb_node); if (rb_node) { e2 = container_of(rb_node, struct wc_entry, rb_node); if (read_original_sector(wc, e2) == read_original_sector(wc, e) && likely(!e2->write_in_progress)) { writecache_free_entry(wc, e2); need_flush_after_free = true; } } if (unlikely(e->lru.prev == &wc->lru)) break; e = container_of(e->lru.prev, struct wc_entry, lru); cond_resched(); } if (need_flush_after_free) writecache_commit_flushed(wc); } static void writecache_flush_work(struct work_struct *work) { struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work); wc_lock(wc); writecache_flush(wc); wc_unlock(wc); } static void writecache_autocommit_timer(struct timer_list *t) { struct dm_writecache *wc = from_timer(wc, t, autocommit_timer); if (!writecache_has_error(wc)) queue_work(wc->writeback_wq, &wc->flush_work); } static void writecache_schedule_autocommit(struct dm_writecache *wc) { if (!timer_pending(&wc->autocommit_timer)) mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies); } static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end) { struct wc_entry *e; bool discarded_something = false; e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ); if (unlikely(!e)) return; while (read_original_sector(wc, e) < end) { struct rb_node *node = rb_next(&e->rb_node); if (likely(!e->write_in_progress)) { if (!discarded_something) { writecache_wait_for_ios(wc, READ); writecache_wait_for_ios(wc, WRITE); discarded_something = true; } writecache_free_entry(wc, e); } if (unlikely(!node)) break; e = container_of(node, struct wc_entry, rb_node); } if (discarded_something) writecache_commit_flushed(wc); } static bool writecache_wait_for_writeback(struct dm_writecache *wc) { if (wc->writeback_size) { writecache_wait_on_freelist(wc); return true; } return false; } static void writecache_suspend(struct dm_target *ti) { struct dm_writecache *wc = ti->private; bool flush_on_suspend; del_timer_sync(&wc->autocommit_timer); wc_lock(wc); writecache_flush(wc); flush_on_suspend = wc->flush_on_suspend; if (flush_on_suspend) { wc->flush_on_suspend = false; wc->writeback_all++; queue_work(wc->writeback_wq, &wc->writeback_work); } wc_unlock(wc); flush_workqueue(wc->writeback_wq); wc_lock(wc); if (flush_on_suspend) wc->writeback_all--; while (writecache_wait_for_writeback(wc)); if (WC_MODE_PMEM(wc)) persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); writecache_poison_lists(wc); wc_unlock(wc); } static int writecache_alloc_entries(struct dm_writecache *wc) { size_t b; if (wc->entries) return 0; wc->entries = vmalloc(array_size(sizeof(struct wc_entry), wc->n_blocks)); if (!wc->entries) return -ENOMEM; for (b = 0; b < wc->n_blocks; b++) { struct wc_entry *e = &wc->entries[b]; e->index = b; e->write_in_progress = false; } return 0; } static void writecache_resume(struct dm_target *ti) { struct dm_writecache *wc = ti->private; size_t b; bool need_flush = false; __le64 sb_seq_count; int r; wc_lock(wc); if (WC_MODE_PMEM(wc)) persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size); wc->tree = RB_ROOT; INIT_LIST_HEAD(&wc->lru); if (WC_MODE_SORT_FREELIST(wc)) { wc->freetree = RB_ROOT; wc->current_free = NULL; } else { INIT_LIST_HEAD(&wc->freelist); } wc->freelist_size = 0; r = memcpy_mcsafe(&sb_seq_count, &sb(wc)->seq_count, sizeof(uint64_t)); if (r) { writecache_error(wc, r, "hardware memory error when reading superblock: %d", r); sb_seq_count = cpu_to_le64(0); } wc->seq_count = le64_to_cpu(sb_seq_count); #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS for (b = 0; b < wc->n_blocks; b++) { struct wc_entry *e = &wc->entries[b]; struct wc_memory_entry wme; if (writecache_has_error(wc)) { e->original_sector = -1; e->seq_count = -1; continue; } r = memcpy_mcsafe(&wme, memory_entry(wc, e), sizeof(struct wc_memory_entry)); if (r) { writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d", (unsigned long)b, r); e->original_sector = -1; e->seq_count = -1; } else { e->original_sector = le64_to_cpu(wme.original_sector); e->seq_count = le64_to_cpu(wme.seq_count); } } #endif for (b = 0; b < wc->n_blocks; b++) { struct wc_entry *e = &wc->entries[b]; if (!writecache_entry_is_committed(wc, e)) { if (read_seq_count(wc, e) != -1) { erase_this: clear_seq_count(wc, e); need_flush = true; } writecache_add_to_freelist(wc, e); } else { struct wc_entry *old; old = writecache_find_entry(wc, read_original_sector(wc, e), 0); if (!old) { writecache_insert_entry(wc, e); } else { if (read_seq_count(wc, old) == read_seq_count(wc, e)) { writecache_error(wc, -EINVAL, "two identical entries, position %llu, sector %llu, sequence %llu", (unsigned long long)b, (unsigned long long)read_original_sector(wc, e), (unsigned long long)read_seq_count(wc, e)); } if (read_seq_count(wc, old) > read_seq_count(wc, e)) { goto erase_this; } else { writecache_free_entry(wc, old); writecache_insert_entry(wc, e); need_flush = true; } } } cond_resched(); } if (need_flush) { writecache_flush_all_metadata(wc); writecache_commit_flushed(wc); } wc_unlock(wc); } static int process_flush_mesg(unsigned argc, char **argv, struct dm_writecache *wc) { if (argc != 1) return -EINVAL; wc_lock(wc); if (dm_suspended(wc->ti)) { wc_unlock(wc); return -EBUSY; } if (writecache_has_error(wc)) { wc_unlock(wc); return -EIO; } writecache_flush(wc); wc->writeback_all++; queue_work(wc->writeback_wq, &wc->writeback_work); wc_unlock(wc); flush_workqueue(wc->writeback_wq); wc_lock(wc); wc->writeback_all--; if (writecache_has_error(wc)) { wc_unlock(wc); return -EIO; } wc_unlock(wc); return 0; } static int process_flush_on_suspend_mesg(unsigned argc, char **argv, struct dm_writecache *wc) { if (argc != 1) return -EINVAL; wc_lock(wc); wc->flush_on_suspend = true; wc_unlock(wc); return 0; } static int writecache_message(struct dm_target *ti, unsigned argc, char **argv, char *result, unsigned maxlen) { int r = -EINVAL; struct dm_writecache *wc = ti->private; if (!strcasecmp(argv[0], "flush")) r = process_flush_mesg(argc, argv, wc); else if (!strcasecmp(argv[0], "flush_on_suspend")) r = process_flush_on_suspend_mesg(argc, argv, wc); else DMERR("unrecognised message received: %s", argv[0]); return r; } static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data) { void *buf; unsigned long flags; unsigned size; int rw = bio_data_dir(bio); unsigned remaining_size = wc->block_size; do { struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter); buf = bvec_kmap_irq(&bv, &flags); size = bv.bv_len; if (unlikely(size > remaining_size)) size = remaining_size; if (rw == READ) { int r; r = memcpy_mcsafe(buf, data, size); flush_dcache_page(bio_page(bio)); if (unlikely(r)) { writecache_error(wc, r, "hardware memory error when reading data: %d", r); bio->bi_status = BLK_STS_IOERR; } } else { flush_dcache_page(bio_page(bio)); memcpy_flushcache(data, buf, size); } bvec_kunmap_irq(buf, &flags); data = (char *)data + size; remaining_size -= size; bio_advance(bio, size); } while (unlikely(remaining_size)); } static int writecache_flush_thread(void *data) { struct dm_writecache *wc = data; while (1) { struct bio *bio; wc_lock(wc); bio = bio_list_pop(&wc->flush_list); if (!bio) { set_current_state(TASK_INTERRUPTIBLE); wc_unlock(wc); if (unlikely(kthread_should_stop())) { set_current_state(TASK_RUNNING); break; } schedule(); continue; } if (bio_op(bio) == REQ_OP_DISCARD) { writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio)); wc_unlock(wc); bio_set_dev(bio, wc->dev->bdev); generic_make_request(bio); } else { writecache_flush(wc); wc_unlock(wc); if (writecache_has_error(wc)) bio->bi_status = BLK_STS_IOERR; bio_endio(bio); } } return 0; } static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio) { if (bio_list_empty(&wc->flush_list)) wake_up_process(wc->flush_thread); bio_list_add(&wc->flush_list, bio); } static int writecache_map(struct dm_target *ti, struct bio *bio) { struct wc_entry *e; struct dm_writecache *wc = ti->private; bio->bi_private = NULL; wc_lock(wc); if (unlikely(bio->bi_opf & REQ_PREFLUSH)) { if (writecache_has_error(wc)) goto unlock_error; if (WC_MODE_PMEM(wc)) { writecache_flush(wc); if (writecache_has_error(wc)) goto unlock_error; goto unlock_submit; } else { writecache_offload_bio(wc, bio); goto unlock_return; } } bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector); if (unlikely((((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) & (wc->block_size / 512 - 1)) != 0)) { DMERR("I/O is not aligned, sector %llu, size %u, block size %u", (unsigned long long)bio->bi_iter.bi_sector, bio->bi_iter.bi_size, wc->block_size); goto unlock_error; } if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) { if (writecache_has_error(wc)) goto unlock_error; if (WC_MODE_PMEM(wc)) { writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio)); goto unlock_remap_origin; } else { writecache_offload_bio(wc, bio); goto unlock_return; } } if (bio_data_dir(bio) == READ) { read_next_block: e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING); if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) { if (WC_MODE_PMEM(wc)) { bio_copy_block(wc, bio, memory_data(wc, e)); if (bio->bi_iter.bi_size) goto read_next_block; goto unlock_submit; } else { dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); bio_set_dev(bio, wc->ssd_dev->bdev); bio->bi_iter.bi_sector = cache_sector(wc, e); if (!writecache_entry_is_committed(wc, e)) writecache_wait_for_ios(wc, WRITE); goto unlock_remap; } } else { if (e) { sector_t next_boundary = read_original_sector(wc, e) - bio->bi_iter.bi_sector; if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT) { dm_accept_partial_bio(bio, next_boundary); } } goto unlock_remap_origin; } } else { do { if (writecache_has_error(wc)) goto unlock_error; e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0); if (e) { if (!writecache_entry_is_committed(wc, e)) goto bio_copy; if (!WC_MODE_PMEM(wc) && !e->write_in_progress) { wc->overwrote_committed = true; goto bio_copy; } } e = writecache_pop_from_freelist(wc); if (unlikely(!e)) { writecache_wait_on_freelist(wc); continue; } write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count); writecache_insert_entry(wc, e); wc->uncommitted_blocks++; bio_copy: if (WC_MODE_PMEM(wc)) { bio_copy_block(wc, bio, memory_data(wc, e)); } else { dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT); bio_set_dev(bio, wc->ssd_dev->bdev); bio->bi_iter.bi_sector = cache_sector(wc, e); if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) { wc->uncommitted_blocks = 0; queue_work(wc->writeback_wq, &wc->flush_work); } else { writecache_schedule_autocommit(wc); } goto unlock_remap; } } while (bio->bi_iter.bi_size); if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) writecache_flush(wc); else writecache_schedule_autocommit(wc); goto unlock_submit; } unlock_remap_origin: bio_set_dev(bio, wc->dev->bdev); wc_unlock(wc); return DM_MAPIO_REMAPPED; unlock_remap: /* make sure that writecache_end_io decrements bio_in_progress: */ bio->bi_private = (void *)1; atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]); wc_unlock(wc); return DM_MAPIO_REMAPPED; unlock_submit: wc_unlock(wc); bio_endio(bio); return DM_MAPIO_SUBMITTED; unlock_return: wc_unlock(wc); return DM_MAPIO_SUBMITTED; unlock_error: wc_unlock(wc); bio_io_error(bio); return DM_MAPIO_SUBMITTED; } static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status) { struct dm_writecache *wc = ti->private; if (bio->bi_private != NULL) { int dir = bio_data_dir(bio); if (atomic_dec_and_test(&wc->bio_in_progress[dir])) if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir]))) wake_up(&wc->bio_in_progress_wait[dir]); } return 0; } static int writecache_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data) { struct dm_writecache *wc = ti->private; return fn(ti, wc->dev, 0, ti->len, data); } static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits) { struct dm_writecache *wc = ti->private; if (limits->logical_block_size < wc->block_size) limits->logical_block_size = wc->block_size; if (limits->physical_block_size < wc->block_size) limits->physical_block_size = wc->block_size; if (limits->io_min < wc->block_size) limits->io_min = wc->block_size; } static void writecache_writeback_endio(struct bio *bio) { struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio); struct dm_writecache *wc = wb->wc; unsigned long flags; raw_spin_lock_irqsave(&wc->endio_list_lock, flags); if (unlikely(list_empty(&wc->endio_list))) wake_up_process(wc->endio_thread); list_add_tail(&wb->endio_entry, &wc->endio_list); raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags); } static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr) { struct copy_struct *c = ptr; struct dm_writecache *wc = c->wc; c->error = likely(!(read_err | write_err)) ? 0 : -EIO; raw_spin_lock_irq(&wc->endio_list_lock); if (unlikely(list_empty(&wc->endio_list))) wake_up_process(wc->endio_thread); list_add_tail(&c->endio_entry, &wc->endio_list); raw_spin_unlock_irq(&wc->endio_list_lock); } static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list) { unsigned i; struct writeback_struct *wb; struct wc_entry *e; unsigned long n_walked = 0; do { wb = list_entry(list->next, struct writeback_struct, endio_entry); list_del(&wb->endio_entry); if (unlikely(wb->bio.bi_status != BLK_STS_OK)) writecache_error(wc, blk_status_to_errno(wb->bio.bi_status), "write error %d", wb->bio.bi_status); i = 0; do { e = wb->wc_list[i]; BUG_ON(!e->write_in_progress); e->write_in_progress = false; INIT_LIST_HEAD(&e->lru); if (!writecache_has_error(wc)) writecache_free_entry(wc, e); BUG_ON(!wc->writeback_size); wc->writeback_size--; n_walked++; if (unlikely(n_walked >= ENDIO_LATENCY)) { writecache_commit_flushed(wc); wc_unlock(wc); wc_lock(wc); n_walked = 0; } } while (++i < wb->wc_list_n); if (wb->wc_list != wb->wc_list_inline) kfree(wb->wc_list); bio_put(&wb->bio); } while (!list_empty(list)); } static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list) { struct copy_struct *c; struct wc_entry *e; do { c = list_entry(list->next, struct copy_struct, endio_entry); list_del(&c->endio_entry); if (unlikely(c->error)) writecache_error(wc, c->error, "copy error"); e = c->e; do { BUG_ON(!e->write_in_progress); e->write_in_progress = false; INIT_LIST_HEAD(&e->lru); if (!writecache_has_error(wc)) writecache_free_entry(wc, e); BUG_ON(!wc->writeback_size); wc->writeback_size--; e++; } while (--c->n_entries); mempool_free(c, &wc->copy_pool); } while (!list_empty(list)); } static int writecache_endio_thread(void *data) { struct dm_writecache *wc = data; while (1) { struct list_head list; raw_spin_lock_irq(&wc->endio_list_lock); if (!list_empty(&wc->endio_list)) goto pop_from_list; set_current_state(TASK_INTERRUPTIBLE); raw_spin_unlock_irq(&wc->endio_list_lock); if (unlikely(kthread_should_stop())) { set_current_state(TASK_RUNNING); break; } schedule(); continue; pop_from_list: list = wc->endio_list; list.next->prev = list.prev->next = &list; INIT_LIST_HEAD(&wc->endio_list); raw_spin_unlock_irq(&wc->endio_list_lock); if (!WC_MODE_FUA(wc)) writecache_disk_flush(wc, wc->dev); wc_lock(wc); if (WC_MODE_PMEM(wc)) { __writecache_endio_pmem(wc, &list); } else { __writecache_endio_ssd(wc, &list); writecache_wait_for_ios(wc, READ); } writecache_commit_flushed(wc); wc_unlock(wc); } return 0; } static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e, gfp_t gfp) { struct dm_writecache *wc = wb->wc; unsigned block_size = wc->block_size; void *address = memory_data(wc, e); persistent_memory_flush_cache(address, block_size); return bio_add_page(&wb->bio, persistent_memory_page(address), block_size, persistent_memory_page_offset(address)) != 0; } struct writeback_list { struct list_head list; size_t size; }; static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl) { if (unlikely(wc->max_writeback_jobs)) { if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) { wc_lock(wc); while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs) writecache_wait_on_freelist(wc); wc_unlock(wc); } } cond_resched(); } static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl) { struct wc_entry *e, *f; struct bio *bio; struct writeback_struct *wb; unsigned max_pages; while (wbl->size) { wbl->size--; e = container_of(wbl->list.prev, struct wc_entry, lru); list_del(&e->lru); max_pages = e->wc_list_contiguous; bio = bio_alloc_bioset(GFP_NOIO, max_pages, &wc->bio_set); wb = container_of(bio, struct writeback_struct, bio); wb->wc = wc; bio->bi_end_io = writecache_writeback_endio; bio_set_dev(bio, wc->dev->bdev); bio->bi_iter.bi_sector = read_original_sector(wc, e); if (max_pages <= WB_LIST_INLINE || unlikely(!(wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *), GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) { wb->wc_list = wb->wc_list_inline; max_pages = WB_LIST_INLINE; } BUG_ON(!wc_add_block(wb, e, GFP_NOIO)); wb->wc_list[0] = e; wb->wc_list_n = 1; while (wbl->size && wb->wc_list_n < max_pages) { f = container_of(wbl->list.prev, struct wc_entry, lru); if (read_original_sector(wc, f) != read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT)) break; if (!wc_add_block(wb, f, GFP_NOWAIT | __GFP_NOWARN)) break; wbl->size--; list_del(&f->lru); wb->wc_list[wb->wc_list_n++] = f; e = f; } bio_set_op_attrs(bio, REQ_OP_WRITE, WC_MODE_FUA(wc) * REQ_FUA); if (writecache_has_error(wc)) { bio->bi_status = BLK_STS_IOERR; bio_endio(bio); } else { submit_bio(bio); } __writeback_throttle(wc, wbl); } } static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl) { struct wc_entry *e, *f; struct dm_io_region from, to; struct copy_struct *c; while (wbl->size) { unsigned n_sectors; wbl->size--; e = container_of(wbl->list.prev, struct wc_entry, lru); list_del(&e->lru); n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT); from.bdev = wc->ssd_dev->bdev; from.sector = cache_sector(wc, e); from.count = n_sectors; to.bdev = wc->dev->bdev; to.sector = read_original_sector(wc, e); to.count = n_sectors; c = mempool_alloc(&wc->copy_pool, GFP_NOIO); c->wc = wc; c->e = e; c->n_entries = e->wc_list_contiguous; while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) { wbl->size--; f = container_of(wbl->list.prev, struct wc_entry, lru); BUG_ON(f != e + 1); list_del(&f->lru); e = f; } dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c); __writeback_throttle(wc, wbl); } } static void writecache_writeback(struct work_struct *work) { struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work); struct blk_plug plug; struct wc_entry *e, *f, *g; struct rb_node *node, *next_node; struct list_head skipped; struct writeback_list wbl; unsigned long n_walked; wc_lock(wc); restart: if (writecache_has_error(wc)) { wc_unlock(wc); return; } if (unlikely(wc->writeback_all)) { if (writecache_wait_for_writeback(wc)) goto restart; } if (wc->overwrote_committed) { writecache_wait_for_ios(wc, WRITE); } n_walked = 0; INIT_LIST_HEAD(&skipped); INIT_LIST_HEAD(&wbl.list); wbl.size = 0; while (!list_empty(&wc->lru) && (wc->writeback_all || wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark)) { n_walked++; if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all) && likely(!dm_suspended(wc->ti))) { queue_work(wc->writeback_wq, &wc->writeback_work); break; } e = container_of(wc->lru.prev, struct wc_entry, lru); BUG_ON(e->write_in_progress); if (unlikely(!writecache_entry_is_committed(wc, e))) { writecache_flush(wc); } node = rb_prev(&e->rb_node); if (node) { f = container_of(node, struct wc_entry, rb_node); if (unlikely(read_original_sector(wc, f) == read_original_sector(wc, e))) { BUG_ON(!f->write_in_progress); list_del(&e->lru); list_add(&e->lru, &skipped); cond_resched(); continue; } } wc->writeback_size++; list_del(&e->lru); list_add(&e->lru, &wbl.list); wbl.size++; e->write_in_progress = true; e->wc_list_contiguous = 1; f = e; while (1) { next_node = rb_next(&f->rb_node); if (unlikely(!next_node)) break; g = container_of(next_node, struct wc_entry, rb_node); if (read_original_sector(wc, g) == read_original_sector(wc, f)) { f = g; continue; } if (read_original_sector(wc, g) != read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT)) break; if (unlikely(g->write_in_progress)) break; if (unlikely(!writecache_entry_is_committed(wc, g))) break; if (!WC_MODE_PMEM(wc)) { if (g != f + 1) break; } n_walked++; //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all)) // break; wc->writeback_size++; list_del(&g->lru); list_add(&g->lru, &wbl.list); wbl.size++; g->write_in_progress = true; g->wc_list_contiguous = BIO_MAX_PAGES; f = g; e->wc_list_contiguous++; if (unlikely(e->wc_list_contiguous == BIO_MAX_PAGES)) break; } cond_resched(); } if (!list_empty(&skipped)) { list_splice_tail(&skipped, &wc->lru); /* * If we didn't do any progress, we must wait until some * writeback finishes to avoid burning CPU in a loop */ if (unlikely(!wbl.size)) writecache_wait_for_writeback(wc); } wc_unlock(wc); blk_start_plug(&plug); if (WC_MODE_PMEM(wc)) __writecache_writeback_pmem(wc, &wbl); else __writecache_writeback_ssd(wc, &wbl); blk_finish_plug(&plug); if (unlikely(wc->writeback_all)) { wc_lock(wc); while (writecache_wait_for_writeback(wc)); wc_unlock(wc); } } static int calculate_memory_size(uint64_t device_size, unsigned block_size, size_t *n_blocks_p, size_t *n_metadata_blocks_p) { uint64_t n_blocks, offset; struct wc_entry e; n_blocks = device_size; do_div(n_blocks, block_size + sizeof(struct wc_memory_entry)); while (1) { if (!n_blocks) return -ENOSPC; /* Verify the following entries[n_blocks] won't overflow */ if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) / sizeof(struct wc_memory_entry))) return -EFBIG; offset = offsetof(struct wc_memory_superblock, entries[n_blocks]); offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1); if (offset + n_blocks * block_size <= device_size) break; n_blocks--; } /* check if the bit field overflows */ e.index = n_blocks; if (e.index != n_blocks) return -EFBIG; if (n_blocks_p) *n_blocks_p = n_blocks; if (n_metadata_blocks_p) *n_metadata_blocks_p = offset >> __ffs(block_size); return 0; } static int init_memory(struct dm_writecache *wc) { size_t b; int r; r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL); if (r) return r; r = writecache_alloc_entries(wc); if (r) return r; for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++) pmem_assign(sb(wc)->padding[b], cpu_to_le64(0)); pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION)); pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size)); pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks)); pmem_assign(sb(wc)->seq_count, cpu_to_le64(0)); for (b = 0; b < wc->n_blocks; b++) write_original_sector_seq_count(wc, &wc->entries[b], -1, -1); writecache_flush_all_metadata(wc); writecache_commit_flushed(wc); pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC)); writecache_flush_region(wc, &sb(wc)->magic, sizeof sb(wc)->magic); writecache_commit_flushed(wc); return 0; } static void writecache_dtr(struct dm_target *ti) { struct dm_writecache *wc = ti->private; if (!wc) return; if (wc->endio_thread) kthread_stop(wc->endio_thread); if (wc->flush_thread) kthread_stop(wc->flush_thread); bioset_exit(&wc->bio_set); mempool_exit(&wc->copy_pool); if (wc->writeback_wq) destroy_workqueue(wc->writeback_wq); if (wc->dev) dm_put_device(ti, wc->dev); if (wc->ssd_dev) dm_put_device(ti, wc->ssd_dev); if (wc->entries) vfree(wc->entries); if (wc->memory_map) { if (WC_MODE_PMEM(wc)) persistent_memory_release(wc); else vfree(wc->memory_map); } if (wc->dm_kcopyd) dm_kcopyd_client_destroy(wc->dm_kcopyd); if (wc->dm_io) dm_io_client_destroy(wc->dm_io); if (wc->dirty_bitmap) vfree(wc->dirty_bitmap); kfree(wc); } static int writecache_ctr(struct dm_target *ti, unsigned argc, char **argv) { struct dm_writecache *wc; struct dm_arg_set as; const char *string; unsigned opt_params; size_t offset, data_size; int i, r; char dummy; int high_wm_percent = HIGH_WATERMARK; int low_wm_percent = LOW_WATERMARK; uint64_t x; struct wc_memory_superblock s; static struct dm_arg _args[] = { {0, 10, "Invalid number of feature args"}, }; as.argc = argc; as.argv = argv; wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL); if (!wc) { ti->error = "Cannot allocate writecache structure"; r = -ENOMEM; goto bad; } ti->private = wc; wc->ti = ti; mutex_init(&wc->lock); writecache_poison_lists(wc); init_waitqueue_head(&wc->freelist_wait); timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0); for (i = 0; i < 2; i++) { atomic_set(&wc->bio_in_progress[i], 0); init_waitqueue_head(&wc->bio_in_progress_wait[i]); } wc->dm_io = dm_io_client_create(); if (IS_ERR(wc->dm_io)) { r = PTR_ERR(wc->dm_io); ti->error = "Unable to allocate dm-io client"; wc->dm_io = NULL; goto bad; } wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1); if (!wc->writeback_wq) { r = -ENOMEM; ti->error = "Could not allocate writeback workqueue"; goto bad; } INIT_WORK(&wc->writeback_work, writecache_writeback); INIT_WORK(&wc->flush_work, writecache_flush_work); raw_spin_lock_init(&wc->endio_list_lock); INIT_LIST_HEAD(&wc->endio_list); wc->endio_thread = kthread_create(writecache_endio_thread, wc, "writecache_endio"); if (IS_ERR(wc->endio_thread)) { r = PTR_ERR(wc->endio_thread); wc->endio_thread = NULL; ti->error = "Couldn't spawn endio thread"; goto bad; } wake_up_process(wc->endio_thread); /* * Parse the mode (pmem or ssd) */ string = dm_shift_arg(&as); if (!string) goto bad_arguments; if (!strcasecmp(string, "s")) { wc->pmem_mode = false; } else if (!strcasecmp(string, "p")) { #ifdef DM_WRITECACHE_HAS_PMEM wc->pmem_mode = true; wc->writeback_fua = true; #else /* * If the architecture doesn't support persistent memory or * the kernel doesn't support any DAX drivers, this driver can * only be used in SSD-only mode. */ r = -EOPNOTSUPP; ti->error = "Persistent memory or DAX not supported on this system"; goto bad; #endif } else { goto bad_arguments; } if (WC_MODE_PMEM(wc)) { r = bioset_init(&wc->bio_set, BIO_POOL_SIZE, offsetof(struct writeback_struct, bio), BIOSET_NEED_BVECS); if (r) { ti->error = "Could not allocate bio set"; goto bad; } } else { r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct)); if (r) { ti->error = "Could not allocate mempool"; goto bad; } } /* * Parse the origin data device */ string = dm_shift_arg(&as); if (!string) goto bad_arguments; r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev); if (r) { ti->error = "Origin data device lookup failed"; goto bad; } /* * Parse cache data device (be it pmem or ssd) */ string = dm_shift_arg(&as); if (!string) goto bad_arguments; r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev); if (r) { ti->error = "Cache data device lookup failed"; goto bad; } wc->memory_map_size = i_size_read(wc->ssd_dev->bdev->bd_inode); /* * Parse the cache block size */ string = dm_shift_arg(&as); if (!string) goto bad_arguments; if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 || wc->block_size < 512 || wc->block_size > PAGE_SIZE || (wc->block_size & (wc->block_size - 1))) { r = -EINVAL; ti->error = "Invalid block size"; goto bad; } wc->block_size_bits = __ffs(wc->block_size); wc->max_writeback_jobs = MAX_WRITEBACK_JOBS; wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM; wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC); /* * Parse optional arguments */ r = dm_read_arg_group(_args, &as, &opt_params, &ti->error); if (r) goto bad; while (opt_params) { string = dm_shift_arg(&as), opt_params--; if (!strcasecmp(string, "start_sector") && opt_params >= 1) { unsigned long long start_sector; string = dm_shift_arg(&as), opt_params--; if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1) goto invalid_optional; wc->start_sector = start_sector; if (wc->start_sector != start_sector || wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT) goto invalid_optional; } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) { string = dm_shift_arg(&as), opt_params--; if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1) goto invalid_optional; if (high_wm_percent < 0 || high_wm_percent > 100) goto invalid_optional; wc->high_wm_percent_set = true; } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) { string = dm_shift_arg(&as), opt_params--; if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1) goto invalid_optional; if (low_wm_percent < 0 || low_wm_percent > 100) goto invalid_optional; wc->low_wm_percent_set = true; } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) { string = dm_shift_arg(&as), opt_params--; if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1) goto invalid_optional; wc->max_writeback_jobs_set = true; } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) { string = dm_shift_arg(&as), opt_params--; if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1) goto invalid_optional; wc->autocommit_blocks_set = true; } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) { unsigned autocommit_msecs; string = dm_shift_arg(&as), opt_params--; if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1) goto invalid_optional; if (autocommit_msecs > 3600000) goto invalid_optional; wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs); wc->autocommit_time_set = true; } else if (!strcasecmp(string, "fua")) { if (WC_MODE_PMEM(wc)) { wc->writeback_fua = true; wc->writeback_fua_set = true; } else goto invalid_optional; } else if (!strcasecmp(string, "nofua")) { if (WC_MODE_PMEM(wc)) { wc->writeback_fua = false; wc->writeback_fua_set = true; } else goto invalid_optional; } else { invalid_optional: r = -EINVAL; ti->error = "Invalid optional argument"; goto bad; } } if (high_wm_percent < low_wm_percent) { r = -EINVAL; ti->error = "High watermark must be greater than or equal to low watermark"; goto bad; } if (WC_MODE_PMEM(wc)) { r = persistent_memory_claim(wc); if (r) { ti->error = "Unable to map persistent memory for cache"; goto bad; } } else { struct dm_io_region region; struct dm_io_request req; size_t n_blocks, n_metadata_blocks; uint64_t n_bitmap_bits; wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT; bio_list_init(&wc->flush_list); wc->flush_thread = kthread_create(writecache_flush_thread, wc, "dm_writecache_flush"); if (IS_ERR(wc->flush_thread)) { r = PTR_ERR(wc->flush_thread); wc->flush_thread = NULL; ti->error = "Couldn't spawn flush thread"; goto bad; } wake_up_process(wc->flush_thread); r = calculate_memory_size(wc->memory_map_size, wc->block_size, &n_blocks, &n_metadata_blocks); if (r) { ti->error = "Invalid device size"; goto bad; } n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) + BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY; /* this is limitation of test_bit functions */ if (n_bitmap_bits > 1U << 31) { r = -EFBIG; ti->error = "Invalid device size"; goto bad; } wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits); if (!wc->memory_map) { r = -ENOMEM; ti->error = "Unable to allocate memory for metadata"; goto bad; } wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle); if (IS_ERR(wc->dm_kcopyd)) { r = PTR_ERR(wc->dm_kcopyd); ti->error = "Unable to allocate dm-kcopyd client"; wc->dm_kcopyd = NULL; goto bad; } wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT); wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) / BITS_PER_LONG * sizeof(unsigned long); wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size); if (!wc->dirty_bitmap) { r = -ENOMEM; ti->error = "Unable to allocate dirty bitmap"; goto bad; } region.bdev = wc->ssd_dev->bdev; region.sector = wc->start_sector; region.count = wc->metadata_sectors; req.bi_op = REQ_OP_READ; req.bi_op_flags = REQ_SYNC; req.mem.type = DM_IO_VMA; req.mem.ptr.vma = (char *)wc->memory_map; req.client = wc->dm_io; req.notify.fn = NULL; r = dm_io(&req, 1, ®ion, NULL); if (r) { ti->error = "Unable to read metadata"; goto bad; } } r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock)); if (r) { ti->error = "Hardware memory error when reading superblock"; goto bad; } if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) { r = init_memory(wc); if (r) { ti->error = "Unable to initialize device"; goto bad; } r = memcpy_mcsafe(&s, sb(wc), sizeof(struct wc_memory_superblock)); if (r) { ti->error = "Hardware memory error when reading superblock"; goto bad; } } if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) { ti->error = "Invalid magic in the superblock"; r = -EINVAL; goto bad; } if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) { ti->error = "Invalid version in the superblock"; r = -EINVAL; goto bad; } if (le32_to_cpu(s.block_size) != wc->block_size) { ti->error = "Block size does not match superblock"; r = -EINVAL; goto bad; } wc->n_blocks = le64_to_cpu(s.n_blocks); offset = wc->n_blocks * sizeof(struct wc_memory_entry); if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) { overflow: ti->error = "Overflow in size calculation"; r = -EINVAL; goto bad; } offset += sizeof(struct wc_memory_superblock); if (offset < sizeof(struct wc_memory_superblock)) goto overflow; offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1); data_size = wc->n_blocks * (size_t)wc->block_size; if (!offset || (data_size / wc->block_size != wc->n_blocks) || (offset + data_size < offset)) goto overflow; if (offset + data_size > wc->memory_map_size) { ti->error = "Memory area is too small"; r = -EINVAL; goto bad; } wc->metadata_sectors = offset >> SECTOR_SHIFT; wc->block_start = (char *)sb(wc) + offset; x = (uint64_t)wc->n_blocks * (100 - high_wm_percent); x += 50; do_div(x, 100); wc->freelist_high_watermark = x; x = (uint64_t)wc->n_blocks * (100 - low_wm_percent); x += 50; do_div(x, 100); wc->freelist_low_watermark = x; r = writecache_alloc_entries(wc); if (r) { ti->error = "Cannot allocate memory"; goto bad; } ti->num_flush_bios = 1; ti->flush_supported = true; ti->num_discard_bios = 1; if (WC_MODE_PMEM(wc)) persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size); return 0; bad_arguments: r = -EINVAL; ti->error = "Bad arguments"; bad: writecache_dtr(ti); return r; } static void writecache_status(struct dm_target *ti, status_type_t type, unsigned status_flags, char *result, unsigned maxlen) { struct dm_writecache *wc = ti->private; unsigned extra_args; unsigned sz = 0; uint64_t x; switch (type) { case STATUSTYPE_INFO: DMEMIT("%ld %llu %llu %llu", writecache_has_error(wc), (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size, (unsigned long long)wc->writeback_size); break; case STATUSTYPE_TABLE: DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's', wc->dev->name, wc->ssd_dev->name, wc->block_size); extra_args = 0; if (wc->start_sector) extra_args += 2; if (wc->high_wm_percent_set) extra_args += 2; if (wc->low_wm_percent_set) extra_args += 2; if (wc->max_writeback_jobs_set) extra_args += 2; if (wc->autocommit_blocks_set) extra_args += 2; if (wc->autocommit_time_set) extra_args += 2; if (wc->writeback_fua_set) extra_args++; DMEMIT("%u", extra_args); if (wc->start_sector) DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector); if (wc->high_wm_percent_set) { x = (uint64_t)wc->freelist_high_watermark * 100; x += wc->n_blocks / 2; do_div(x, (size_t)wc->n_blocks); DMEMIT(" high_watermark %u", 100 - (unsigned)x); } if (wc->low_wm_percent_set) { x = (uint64_t)wc->freelist_low_watermark * 100; x += wc->n_blocks / 2; do_div(x, (size_t)wc->n_blocks); DMEMIT(" low_watermark %u", 100 - (unsigned)x); } if (wc->max_writeback_jobs_set) DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs); if (wc->autocommit_blocks_set) DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks); if (wc->autocommit_time_set) DMEMIT(" autocommit_time %u", jiffies_to_msecs(wc->autocommit_jiffies)); if (wc->writeback_fua_set) DMEMIT(" %sfua", wc->writeback_fua ? "" : "no"); break; } } static struct target_type writecache_target = { .name = "writecache", .version = {1, 1, 1}, .module = THIS_MODULE, .ctr = writecache_ctr, .dtr = writecache_dtr, .status = writecache_status, .postsuspend = writecache_suspend, .resume = writecache_resume, .message = writecache_message, .map = writecache_map, .end_io = writecache_end_io, .iterate_devices = writecache_iterate_devices, .io_hints = writecache_io_hints, }; static int __init dm_writecache_init(void) { int r; r = dm_register_target(&writecache_target); if (r < 0) { DMERR("register failed %d", r); return r; } return 0; } static void __exit dm_writecache_exit(void) { dm_unregister_target(&writecache_target); } module_init(dm_writecache_init); module_exit(dm_writecache_exit); MODULE_DESCRIPTION(DM_NAME " writecache target"); MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1