Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Damien Le Moal | 3894 | 98.81% | 5 | 41.67% |
Mike Snitzer | 20 | 0.51% | 2 | 16.67% |
Kent Overstreet | 12 | 0.30% | 1 | 8.33% |
John Pittman | 7 | 0.18% | 1 | 8.33% |
Christoph Hellwig | 4 | 0.10% | 1 | 8.33% |
Dan Carpenter | 3 | 0.08% | 1 | 8.33% |
Bart Van Assche | 1 | 0.03% | 1 | 8.33% |
Total | 3941 | 12 |
/* * Copyright (C) 2017 Western Digital Corporation or its affiliates. * * This file is released under the GPL. */ #include "dm-zoned.h" #include <linux/module.h> #define DM_MSG_PREFIX "zoned" #define DMZ_MIN_BIOS 8192 /* * Zone BIO context. */ struct dmz_bioctx { struct dmz_target *target; struct dm_zone *zone; struct bio *bio; refcount_t ref; }; /* * Chunk work descriptor. */ struct dm_chunk_work { struct work_struct work; refcount_t refcount; struct dmz_target *target; unsigned int chunk; struct bio_list bio_list; }; /* * Target descriptor. */ struct dmz_target { struct dm_dev *ddev; unsigned long flags; /* Zoned block device information */ struct dmz_dev *dev; /* For metadata handling */ struct dmz_metadata *metadata; /* For reclaim */ struct dmz_reclaim *reclaim; /* For chunk work */ struct radix_tree_root chunk_rxtree; struct workqueue_struct *chunk_wq; struct mutex chunk_lock; /* For cloned BIOs to zones */ struct bio_set bio_set; /* For flush */ spinlock_t flush_lock; struct bio_list flush_list; struct delayed_work flush_work; struct workqueue_struct *flush_wq; }; /* * Flush intervals (seconds). */ #define DMZ_FLUSH_PERIOD (10 * HZ) /* * Target BIO completion. */ static inline void dmz_bio_endio(struct bio *bio, blk_status_t status) { struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx)); if (status != BLK_STS_OK && bio->bi_status == BLK_STS_OK) bio->bi_status = status; if (refcount_dec_and_test(&bioctx->ref)) { struct dm_zone *zone = bioctx->zone; if (zone) { if (bio->bi_status != BLK_STS_OK && bio_op(bio) == REQ_OP_WRITE && dmz_is_seq(zone)) set_bit(DMZ_SEQ_WRITE_ERR, &zone->flags); dmz_deactivate_zone(zone); } bio_endio(bio); } } /* * Completion callback for an internally cloned target BIO. This terminates the * target BIO when there are no more references to its context. */ static void dmz_clone_endio(struct bio *clone) { struct dmz_bioctx *bioctx = clone->bi_private; blk_status_t status = clone->bi_status; bio_put(clone); dmz_bio_endio(bioctx->bio, status); } /* * Issue a clone of a target BIO. The clone may only partially process the * original target BIO. */ static int dmz_submit_bio(struct dmz_target *dmz, struct dm_zone *zone, struct bio *bio, sector_t chunk_block, unsigned int nr_blocks) { struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx)); struct bio *clone; clone = bio_clone_fast(bio, GFP_NOIO, &dmz->bio_set); if (!clone) return -ENOMEM; bio_set_dev(clone, dmz->dev->bdev); clone->bi_iter.bi_sector = dmz_start_sect(dmz->metadata, zone) + dmz_blk2sect(chunk_block); clone->bi_iter.bi_size = dmz_blk2sect(nr_blocks) << SECTOR_SHIFT; clone->bi_end_io = dmz_clone_endio; clone->bi_private = bioctx; bio_advance(bio, clone->bi_iter.bi_size); refcount_inc(&bioctx->ref); generic_make_request(clone); if (bio_op(bio) == REQ_OP_WRITE && dmz_is_seq(zone)) zone->wp_block += nr_blocks; return 0; } /* * Zero out pages of discarded blocks accessed by a read BIO. */ static void dmz_handle_read_zero(struct dmz_target *dmz, struct bio *bio, sector_t chunk_block, unsigned int nr_blocks) { unsigned int size = nr_blocks << DMZ_BLOCK_SHIFT; /* Clear nr_blocks */ swap(bio->bi_iter.bi_size, size); zero_fill_bio(bio); swap(bio->bi_iter.bi_size, size); bio_advance(bio, size); } /* * Process a read BIO. */ static int dmz_handle_read(struct dmz_target *dmz, struct dm_zone *zone, struct bio *bio) { sector_t chunk_block = dmz_chunk_block(dmz->dev, dmz_bio_block(bio)); unsigned int nr_blocks = dmz_bio_blocks(bio); sector_t end_block = chunk_block + nr_blocks; struct dm_zone *rzone, *bzone; int ret; /* Read into unmapped chunks need only zeroing the BIO buffer */ if (!zone) { zero_fill_bio(bio); return 0; } dmz_dev_debug(dmz->dev, "READ chunk %llu -> %s zone %u, block %llu, %u blocks", (unsigned long long)dmz_bio_chunk(dmz->dev, bio), (dmz_is_rnd(zone) ? "RND" : "SEQ"), dmz_id(dmz->metadata, zone), (unsigned long long)chunk_block, nr_blocks); /* Check block validity to determine the read location */ bzone = zone->bzone; while (chunk_block < end_block) { nr_blocks = 0; if (dmz_is_rnd(zone) || chunk_block < zone->wp_block) { /* Test block validity in the data zone */ ret = dmz_block_valid(dmz->metadata, zone, chunk_block); if (ret < 0) return ret; if (ret > 0) { /* Read data zone blocks */ nr_blocks = ret; rzone = zone; } } /* * No valid blocks found in the data zone. * Check the buffer zone, if there is one. */ if (!nr_blocks && bzone) { ret = dmz_block_valid(dmz->metadata, bzone, chunk_block); if (ret < 0) return ret; if (ret > 0) { /* Read buffer zone blocks */ nr_blocks = ret; rzone = bzone; } } if (nr_blocks) { /* Valid blocks found: read them */ nr_blocks = min_t(unsigned int, nr_blocks, end_block - chunk_block); ret = dmz_submit_bio(dmz, rzone, bio, chunk_block, nr_blocks); if (ret) return ret; chunk_block += nr_blocks; } else { /* No valid block: zeroout the current BIO block */ dmz_handle_read_zero(dmz, bio, chunk_block, 1); chunk_block++; } } return 0; } /* * Write blocks directly in a data zone, at the write pointer. * If a buffer zone is assigned, invalidate the blocks written * in place. */ static int dmz_handle_direct_write(struct dmz_target *dmz, struct dm_zone *zone, struct bio *bio, sector_t chunk_block, unsigned int nr_blocks) { struct dmz_metadata *zmd = dmz->metadata; struct dm_zone *bzone = zone->bzone; int ret; if (dmz_is_readonly(zone)) return -EROFS; /* Submit write */ ret = dmz_submit_bio(dmz, zone, bio, chunk_block, nr_blocks); if (ret) return ret; /* * Validate the blocks in the data zone and invalidate * in the buffer zone, if there is one. */ ret = dmz_validate_blocks(zmd, zone, chunk_block, nr_blocks); if (ret == 0 && bzone) ret = dmz_invalidate_blocks(zmd, bzone, chunk_block, nr_blocks); return ret; } /* * Write blocks in the buffer zone of @zone. * If no buffer zone is assigned yet, get one. * Called with @zone write locked. */ static int dmz_handle_buffered_write(struct dmz_target *dmz, struct dm_zone *zone, struct bio *bio, sector_t chunk_block, unsigned int nr_blocks) { struct dmz_metadata *zmd = dmz->metadata; struct dm_zone *bzone; int ret; /* Get the buffer zone. One will be allocated if needed */ bzone = dmz_get_chunk_buffer(zmd, zone); if (!bzone) return -ENOSPC; if (dmz_is_readonly(bzone)) return -EROFS; /* Submit write */ ret = dmz_submit_bio(dmz, bzone, bio, chunk_block, nr_blocks); if (ret) return ret; /* * Validate the blocks in the buffer zone * and invalidate in the data zone. */ ret = dmz_validate_blocks(zmd, bzone, chunk_block, nr_blocks); if (ret == 0 && chunk_block < zone->wp_block) ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks); return ret; } /* * Process a write BIO. */ static int dmz_handle_write(struct dmz_target *dmz, struct dm_zone *zone, struct bio *bio) { sector_t chunk_block = dmz_chunk_block(dmz->dev, dmz_bio_block(bio)); unsigned int nr_blocks = dmz_bio_blocks(bio); if (!zone) return -ENOSPC; dmz_dev_debug(dmz->dev, "WRITE chunk %llu -> %s zone %u, block %llu, %u blocks", (unsigned long long)dmz_bio_chunk(dmz->dev, bio), (dmz_is_rnd(zone) ? "RND" : "SEQ"), dmz_id(dmz->metadata, zone), (unsigned long long)chunk_block, nr_blocks); if (dmz_is_rnd(zone) || chunk_block == zone->wp_block) { /* * zone is a random zone or it is a sequential zone * and the BIO is aligned to the zone write pointer: * direct write the zone. */ return dmz_handle_direct_write(dmz, zone, bio, chunk_block, nr_blocks); } /* * This is an unaligned write in a sequential zone: * use buffered write. */ return dmz_handle_buffered_write(dmz, zone, bio, chunk_block, nr_blocks); } /* * Process a discard BIO. */ static int dmz_handle_discard(struct dmz_target *dmz, struct dm_zone *zone, struct bio *bio) { struct dmz_metadata *zmd = dmz->metadata; sector_t block = dmz_bio_block(bio); unsigned int nr_blocks = dmz_bio_blocks(bio); sector_t chunk_block = dmz_chunk_block(dmz->dev, block); int ret = 0; /* For unmapped chunks, there is nothing to do */ if (!zone) return 0; if (dmz_is_readonly(zone)) return -EROFS; dmz_dev_debug(dmz->dev, "DISCARD chunk %llu -> zone %u, block %llu, %u blocks", (unsigned long long)dmz_bio_chunk(dmz->dev, bio), dmz_id(zmd, zone), (unsigned long long)chunk_block, nr_blocks); /* * Invalidate blocks in the data zone and its * buffer zone if one is mapped. */ if (dmz_is_rnd(zone) || chunk_block < zone->wp_block) ret = dmz_invalidate_blocks(zmd, zone, chunk_block, nr_blocks); if (ret == 0 && zone->bzone) ret = dmz_invalidate_blocks(zmd, zone->bzone, chunk_block, nr_blocks); return ret; } /* * Process a BIO. */ static void dmz_handle_bio(struct dmz_target *dmz, struct dm_chunk_work *cw, struct bio *bio) { struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx)); struct dmz_metadata *zmd = dmz->metadata; struct dm_zone *zone; int ret; /* * Write may trigger a zone allocation. So make sure the * allocation can succeed. */ if (bio_op(bio) == REQ_OP_WRITE) dmz_schedule_reclaim(dmz->reclaim); dmz_lock_metadata(zmd); /* * Get the data zone mapping the chunk. There may be no * mapping for read and discard. If a mapping is obtained, + the zone returned will be set to active state. */ zone = dmz_get_chunk_mapping(zmd, dmz_bio_chunk(dmz->dev, bio), bio_op(bio)); if (IS_ERR(zone)) { ret = PTR_ERR(zone); goto out; } /* Process the BIO */ if (zone) { dmz_activate_zone(zone); bioctx->zone = zone; } switch (bio_op(bio)) { case REQ_OP_READ: ret = dmz_handle_read(dmz, zone, bio); break; case REQ_OP_WRITE: ret = dmz_handle_write(dmz, zone, bio); break; case REQ_OP_DISCARD: case REQ_OP_WRITE_ZEROES: ret = dmz_handle_discard(dmz, zone, bio); break; default: dmz_dev_err(dmz->dev, "Unsupported BIO operation 0x%x", bio_op(bio)); ret = -EIO; } /* * Release the chunk mapping. This will check that the mapping * is still valid, that is, that the zone used still has valid blocks. */ if (zone) dmz_put_chunk_mapping(zmd, zone); out: dmz_bio_endio(bio, errno_to_blk_status(ret)); dmz_unlock_metadata(zmd); } /* * Increment a chunk reference counter. */ static inline void dmz_get_chunk_work(struct dm_chunk_work *cw) { refcount_inc(&cw->refcount); } /* * Decrement a chunk work reference count and * free it if it becomes 0. */ static void dmz_put_chunk_work(struct dm_chunk_work *cw) { if (refcount_dec_and_test(&cw->refcount)) { WARN_ON(!bio_list_empty(&cw->bio_list)); radix_tree_delete(&cw->target->chunk_rxtree, cw->chunk); kfree(cw); } } /* * Chunk BIO work function. */ static void dmz_chunk_work(struct work_struct *work) { struct dm_chunk_work *cw = container_of(work, struct dm_chunk_work, work); struct dmz_target *dmz = cw->target; struct bio *bio; mutex_lock(&dmz->chunk_lock); /* Process the chunk BIOs */ while ((bio = bio_list_pop(&cw->bio_list))) { mutex_unlock(&dmz->chunk_lock); dmz_handle_bio(dmz, cw, bio); mutex_lock(&dmz->chunk_lock); dmz_put_chunk_work(cw); } /* Queueing the work incremented the work refcount */ dmz_put_chunk_work(cw); mutex_unlock(&dmz->chunk_lock); } /* * Flush work. */ static void dmz_flush_work(struct work_struct *work) { struct dmz_target *dmz = container_of(work, struct dmz_target, flush_work.work); struct bio *bio; int ret; /* Flush dirty metadata blocks */ ret = dmz_flush_metadata(dmz->metadata); /* Process queued flush requests */ while (1) { spin_lock(&dmz->flush_lock); bio = bio_list_pop(&dmz->flush_list); spin_unlock(&dmz->flush_lock); if (!bio) break; dmz_bio_endio(bio, errno_to_blk_status(ret)); } queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD); } /* * Get a chunk work and start it to process a new BIO. * If the BIO chunk has no work yet, create one. */ static void dmz_queue_chunk_work(struct dmz_target *dmz, struct bio *bio) { unsigned int chunk = dmz_bio_chunk(dmz->dev, bio); struct dm_chunk_work *cw; mutex_lock(&dmz->chunk_lock); /* Get the BIO chunk work. If one is not active yet, create one */ cw = radix_tree_lookup(&dmz->chunk_rxtree, chunk); if (!cw) { int ret; /* Create a new chunk work */ cw = kmalloc(sizeof(struct dm_chunk_work), GFP_NOIO); if (!cw) goto out; INIT_WORK(&cw->work, dmz_chunk_work); refcount_set(&cw->refcount, 0); cw->target = dmz; cw->chunk = chunk; bio_list_init(&cw->bio_list); ret = radix_tree_insert(&dmz->chunk_rxtree, chunk, cw); if (unlikely(ret)) { kfree(cw); cw = NULL; goto out; } } bio_list_add(&cw->bio_list, bio); dmz_get_chunk_work(cw); if (queue_work(dmz->chunk_wq, &cw->work)) dmz_get_chunk_work(cw); out: mutex_unlock(&dmz->chunk_lock); } /* * Process a new BIO. */ static int dmz_map(struct dm_target *ti, struct bio *bio) { struct dmz_target *dmz = ti->private; struct dmz_dev *dev = dmz->dev; struct dmz_bioctx *bioctx = dm_per_bio_data(bio, sizeof(struct dmz_bioctx)); sector_t sector = bio->bi_iter.bi_sector; unsigned int nr_sectors = bio_sectors(bio); sector_t chunk_sector; dmz_dev_debug(dev, "BIO op %d sector %llu + %u => chunk %llu, block %llu, %u blocks", bio_op(bio), (unsigned long long)sector, nr_sectors, (unsigned long long)dmz_bio_chunk(dmz->dev, bio), (unsigned long long)dmz_chunk_block(dmz->dev, dmz_bio_block(bio)), (unsigned int)dmz_bio_blocks(bio)); bio_set_dev(bio, dev->bdev); if (!nr_sectors && bio_op(bio) != REQ_OP_WRITE) return DM_MAPIO_REMAPPED; /* The BIO should be block aligned */ if ((nr_sectors & DMZ_BLOCK_SECTORS_MASK) || (sector & DMZ_BLOCK_SECTORS_MASK)) return DM_MAPIO_KILL; /* Initialize the BIO context */ bioctx->target = dmz; bioctx->zone = NULL; bioctx->bio = bio; refcount_set(&bioctx->ref, 1); /* Set the BIO pending in the flush list */ if (!nr_sectors && bio_op(bio) == REQ_OP_WRITE) { spin_lock(&dmz->flush_lock); bio_list_add(&dmz->flush_list, bio); spin_unlock(&dmz->flush_lock); mod_delayed_work(dmz->flush_wq, &dmz->flush_work, 0); return DM_MAPIO_SUBMITTED; } /* Split zone BIOs to fit entirely into a zone */ chunk_sector = sector & (dev->zone_nr_sectors - 1); if (chunk_sector + nr_sectors > dev->zone_nr_sectors) dm_accept_partial_bio(bio, dev->zone_nr_sectors - chunk_sector); /* Now ready to handle this BIO */ dmz_reclaim_bio_acc(dmz->reclaim); dmz_queue_chunk_work(dmz, bio); return DM_MAPIO_SUBMITTED; } /* * Get zoned device information. */ static int dmz_get_zoned_device(struct dm_target *ti, char *path) { struct dmz_target *dmz = ti->private; struct request_queue *q; struct dmz_dev *dev; sector_t aligned_capacity; int ret; /* Get the target device */ ret = dm_get_device(ti, path, dm_table_get_mode(ti->table), &dmz->ddev); if (ret) { ti->error = "Get target device failed"; dmz->ddev = NULL; return ret; } dev = kzalloc(sizeof(struct dmz_dev), GFP_KERNEL); if (!dev) { ret = -ENOMEM; goto err; } dev->bdev = dmz->ddev->bdev; (void)bdevname(dev->bdev, dev->name); if (bdev_zoned_model(dev->bdev) == BLK_ZONED_NONE) { ti->error = "Not a zoned block device"; ret = -EINVAL; goto err; } q = bdev_get_queue(dev->bdev); dev->capacity = i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT; aligned_capacity = dev->capacity & ~((sector_t)blk_queue_zone_sectors(q) - 1); if (ti->begin || ((ti->len != dev->capacity) && (ti->len != aligned_capacity))) { ti->error = "Partial mapping not supported"; ret = -EINVAL; goto err; } dev->zone_nr_sectors = blk_queue_zone_sectors(q); dev->zone_nr_sectors_shift = ilog2(dev->zone_nr_sectors); dev->zone_nr_blocks = dmz_sect2blk(dev->zone_nr_sectors); dev->zone_nr_blocks_shift = ilog2(dev->zone_nr_blocks); dev->nr_zones = blkdev_nr_zones(dev->bdev); dmz->dev = dev; return 0; err: dm_put_device(ti, dmz->ddev); kfree(dev); return ret; } /* * Cleanup zoned device information. */ static void dmz_put_zoned_device(struct dm_target *ti) { struct dmz_target *dmz = ti->private; dm_put_device(ti, dmz->ddev); kfree(dmz->dev); dmz->dev = NULL; } /* * Setup target. */ static int dmz_ctr(struct dm_target *ti, unsigned int argc, char **argv) { struct dmz_target *dmz; struct dmz_dev *dev; int ret; /* Check arguments */ if (argc != 1) { ti->error = "Invalid argument count"; return -EINVAL; } /* Allocate and initialize the target descriptor */ dmz = kzalloc(sizeof(struct dmz_target), GFP_KERNEL); if (!dmz) { ti->error = "Unable to allocate the zoned target descriptor"; return -ENOMEM; } ti->private = dmz; /* Get the target zoned block device */ ret = dmz_get_zoned_device(ti, argv[0]); if (ret) { dmz->ddev = NULL; goto err; } /* Initialize metadata */ dev = dmz->dev; ret = dmz_ctr_metadata(dev, &dmz->metadata); if (ret) { ti->error = "Metadata initialization failed"; goto err_dev; } /* Set target (no write same support) */ ti->max_io_len = dev->zone_nr_sectors << 9; ti->num_flush_bios = 1; ti->num_discard_bios = 1; ti->num_write_zeroes_bios = 1; ti->per_io_data_size = sizeof(struct dmz_bioctx); ti->flush_supported = true; ti->discards_supported = true; /* The exposed capacity is the number of chunks that can be mapped */ ti->len = (sector_t)dmz_nr_chunks(dmz->metadata) << dev->zone_nr_sectors_shift; /* Zone BIO */ ret = bioset_init(&dmz->bio_set, DMZ_MIN_BIOS, 0, 0); if (ret) { ti->error = "Create BIO set failed"; goto err_meta; } /* Chunk BIO work */ mutex_init(&dmz->chunk_lock); INIT_RADIX_TREE(&dmz->chunk_rxtree, GFP_NOIO); dmz->chunk_wq = alloc_workqueue("dmz_cwq_%s", WQ_MEM_RECLAIM | WQ_UNBOUND, 0, dev->name); if (!dmz->chunk_wq) { ti->error = "Create chunk workqueue failed"; ret = -ENOMEM; goto err_bio; } /* Flush work */ spin_lock_init(&dmz->flush_lock); bio_list_init(&dmz->flush_list); INIT_DELAYED_WORK(&dmz->flush_work, dmz_flush_work); dmz->flush_wq = alloc_ordered_workqueue("dmz_fwq_%s", WQ_MEM_RECLAIM, dev->name); if (!dmz->flush_wq) { ti->error = "Create flush workqueue failed"; ret = -ENOMEM; goto err_cwq; } mod_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD); /* Initialize reclaim */ ret = dmz_ctr_reclaim(dev, dmz->metadata, &dmz->reclaim); if (ret) { ti->error = "Zone reclaim initialization failed"; goto err_fwq; } dmz_dev_info(dev, "Target device: %llu 512-byte logical sectors (%llu blocks)", (unsigned long long)ti->len, (unsigned long long)dmz_sect2blk(ti->len)); return 0; err_fwq: destroy_workqueue(dmz->flush_wq); err_cwq: destroy_workqueue(dmz->chunk_wq); err_bio: mutex_destroy(&dmz->chunk_lock); bioset_exit(&dmz->bio_set); err_meta: dmz_dtr_metadata(dmz->metadata); err_dev: dmz_put_zoned_device(ti); err: kfree(dmz); return ret; } /* * Cleanup target. */ static void dmz_dtr(struct dm_target *ti) { struct dmz_target *dmz = ti->private; flush_workqueue(dmz->chunk_wq); destroy_workqueue(dmz->chunk_wq); dmz_dtr_reclaim(dmz->reclaim); cancel_delayed_work_sync(&dmz->flush_work); destroy_workqueue(dmz->flush_wq); (void) dmz_flush_metadata(dmz->metadata); dmz_dtr_metadata(dmz->metadata); bioset_exit(&dmz->bio_set); dmz_put_zoned_device(ti); mutex_destroy(&dmz->chunk_lock); kfree(dmz); } /* * Setup target request queue limits. */ static void dmz_io_hints(struct dm_target *ti, struct queue_limits *limits) { struct dmz_target *dmz = ti->private; unsigned int chunk_sectors = dmz->dev->zone_nr_sectors; limits->logical_block_size = DMZ_BLOCK_SIZE; limits->physical_block_size = DMZ_BLOCK_SIZE; blk_limits_io_min(limits, DMZ_BLOCK_SIZE); blk_limits_io_opt(limits, DMZ_BLOCK_SIZE); limits->discard_alignment = DMZ_BLOCK_SIZE; limits->discard_granularity = DMZ_BLOCK_SIZE; limits->max_discard_sectors = chunk_sectors; limits->max_hw_discard_sectors = chunk_sectors; limits->max_write_zeroes_sectors = chunk_sectors; /* FS hint to try to align to the device zone size */ limits->chunk_sectors = chunk_sectors; limits->max_sectors = chunk_sectors; /* We are exposing a drive-managed zoned block device */ limits->zoned = BLK_ZONED_NONE; } /* * Pass on ioctl to the backend device. */ static int dmz_prepare_ioctl(struct dm_target *ti, struct block_device **bdev) { struct dmz_target *dmz = ti->private; *bdev = dmz->dev->bdev; return 0; } /* * Stop works on suspend. */ static void dmz_suspend(struct dm_target *ti) { struct dmz_target *dmz = ti->private; flush_workqueue(dmz->chunk_wq); dmz_suspend_reclaim(dmz->reclaim); cancel_delayed_work_sync(&dmz->flush_work); } /* * Restart works on resume or if suspend failed. */ static void dmz_resume(struct dm_target *ti) { struct dmz_target *dmz = ti->private; queue_delayed_work(dmz->flush_wq, &dmz->flush_work, DMZ_FLUSH_PERIOD); dmz_resume_reclaim(dmz->reclaim); } static int dmz_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data) { struct dmz_target *dmz = ti->private; struct dmz_dev *dev = dmz->dev; sector_t capacity = dev->capacity & ~(dev->zone_nr_sectors - 1); return fn(ti, dmz->ddev, 0, capacity, data); } static struct target_type dmz_type = { .name = "zoned", .version = {1, 0, 0}, .features = DM_TARGET_SINGLETON | DM_TARGET_ZONED_HM, .module = THIS_MODULE, .ctr = dmz_ctr, .dtr = dmz_dtr, .map = dmz_map, .io_hints = dmz_io_hints, .prepare_ioctl = dmz_prepare_ioctl, .postsuspend = dmz_suspend, .resume = dmz_resume, .iterate_devices = dmz_iterate_devices, }; static int __init dmz_init(void) { return dm_register_target(&dmz_type); } static void __exit dmz_exit(void) { dm_unregister_target(&dmz_type); } module_init(dmz_init); module_exit(dmz_exit); MODULE_DESCRIPTION(DM_NAME " target for zoned block devices"); MODULE_AUTHOR("Damien Le Moal <damien.lemoal@wdc.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1