Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ramesh Shanmugasundaram | 8140 | 99.89% | 1 | 14.29% |
Mauro Carvalho Chehab | 4 | 0.05% | 2 | 28.57% |
Kuninori Morimoto | 2 | 0.02% | 1 | 14.29% |
Fabio Estevam | 1 | 0.01% | 1 | 14.29% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 14.29% |
Akinobu Mita | 1 | 0.01% | 1 | 14.29% |
Total | 8149 | 7 |
// SPDX-License-Identifier: GPL-2.0 /* * Maxim Integrated MAX2175 RF to Bits tuner driver * * This driver & most of the hard coded values are based on the reference * application delivered by Maxim for this device. * * Copyright (C) 2016 Maxim Integrated Products * Copyright (C) 2017 Renesas Electronics Corporation */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/i2c.h> #include <linux/kernel.h> #include <linux/math64.h> #include <linux/max2175.h> #include <linux/module.h> #include <linux/of.h> #include <linux/regmap.h> #include <linux/slab.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-device.h> #include "max2175.h" #define DRIVER_NAME "max2175" #define mxm_dbg(ctx, fmt, arg...) dev_dbg(&ctx->client->dev, fmt, ## arg) #define mxm_err(ctx, fmt, arg...) dev_err(&ctx->client->dev, fmt, ## arg) /* Rx mode */ struct max2175_rxmode { enum max2175_band band; /* Associated band */ u32 freq; /* Default freq in Hz */ u8 i2s_word_size; /* Bit value */ }; /* Register map to define preset values */ struct max2175_reg_map { u8 idx; /* Register index */ u8 val; /* Register value */ }; static const struct max2175_rxmode eu_rx_modes[] = { /* EU modes */ [MAX2175_EU_FM_1_2] = { MAX2175_BAND_FM, 98256000, 1 }, [MAX2175_DAB_1_2] = { MAX2175_BAND_VHF, 182640000, 0 }, }; static const struct max2175_rxmode na_rx_modes[] = { /* NA modes */ [MAX2175_NA_FM_1_0] = { MAX2175_BAND_FM, 98255520, 1 }, [MAX2175_NA_FM_2_0] = { MAX2175_BAND_FM, 98255520, 6 }, }; /* * Preset values: * Based on Maxim MAX2175 Register Table revision: 130p10 */ static const u8 full_fm_eu_1p0[] = { 0x15, 0x04, 0xb8, 0xe3, 0x35, 0x18, 0x7c, 0x00, 0x00, 0x7d, 0x40, 0x08, 0x70, 0x7a, 0x88, 0x91, 0x61, 0x61, 0x61, 0x61, 0x5a, 0x0f, 0x34, 0x1c, 0x14, 0x88, 0x33, 0x02, 0x00, 0x09, 0x00, 0x65, 0x9f, 0x2b, 0x80, 0x00, 0x95, 0x05, 0x2c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x4a, 0x08, 0xa8, 0x0e, 0x0e, 0x2f, 0x7e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xab, 0x5e, 0xa9, 0xae, 0xbb, 0x57, 0x18, 0x3b, 0x03, 0x3b, 0x64, 0x40, 0x60, 0x00, 0x2a, 0xbf, 0x3f, 0xff, 0x9f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a, 0x00, 0xff, 0xfc, 0xef, 0x1c, 0x40, 0x00, 0x00, 0x02, 0x00, 0x00, 0xe0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xac, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x75, 0x00, 0x00, 0x00, 0x47, 0x00, 0x00, 0x11, 0x3f, 0x22, 0x00, 0xf1, 0x00, 0x41, 0x03, 0xb0, 0x00, 0x00, 0x00, 0x1b, }; static const u8 full_fm_na_1p0[] = { 0x13, 0x08, 0x8d, 0xc0, 0x35, 0x18, 0x7d, 0x3f, 0x7d, 0x75, 0x40, 0x08, 0x70, 0x7a, 0x88, 0x91, 0x61, 0x61, 0x61, 0x61, 0x5c, 0x0f, 0x34, 0x1c, 0x14, 0x88, 0x33, 0x02, 0x00, 0x01, 0x00, 0x65, 0x9f, 0x2b, 0x80, 0x00, 0x95, 0x05, 0x2c, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x40, 0x4a, 0x08, 0xa8, 0x0e, 0x0e, 0xaf, 0x7e, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xab, 0x5e, 0xa9, 0xae, 0xbb, 0x57, 0x18, 0x3b, 0x03, 0x3b, 0x64, 0x40, 0x60, 0x00, 0x2a, 0xbf, 0x3f, 0xff, 0x9f, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a, 0x00, 0xff, 0xfc, 0xef, 0x1c, 0x40, 0x00, 0x00, 0x02, 0x00, 0x00, 0xe0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xa6, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x75, 0x00, 0x00, 0x00, 0x35, 0x00, 0x00, 0x11, 0x3f, 0x22, 0x00, 0xf1, 0x00, 0x41, 0x03, 0xb0, 0x00, 0x00, 0x00, 0x1b, }; /* DAB1.2 settings */ static const struct max2175_reg_map dab12_map[] = { { 0x01, 0x13 }, { 0x02, 0x0d }, { 0x03, 0x15 }, { 0x04, 0x55 }, { 0x05, 0x0a }, { 0x06, 0xa0 }, { 0x07, 0x40 }, { 0x08, 0x00 }, { 0x09, 0x00 }, { 0x0a, 0x7d }, { 0x0b, 0x4a }, { 0x0c, 0x28 }, { 0x0e, 0x43 }, { 0x0f, 0xb5 }, { 0x10, 0x31 }, { 0x11, 0x9e }, { 0x12, 0x68 }, { 0x13, 0x9e }, { 0x14, 0x68 }, { 0x15, 0x58 }, { 0x16, 0x2f }, { 0x17, 0x3f }, { 0x18, 0x40 }, { 0x1a, 0x88 }, { 0x1b, 0xaa }, { 0x1c, 0x9a }, { 0x1d, 0x00 }, { 0x1e, 0x00 }, { 0x23, 0x80 }, { 0x24, 0x00 }, { 0x25, 0x00 }, { 0x26, 0x00 }, { 0x27, 0x00 }, { 0x32, 0x08 }, { 0x33, 0xf8 }, { 0x36, 0x2d }, { 0x37, 0x7e }, { 0x55, 0xaf }, { 0x56, 0x3f }, { 0x57, 0xf8 }, { 0x58, 0x99 }, { 0x76, 0x00 }, { 0x77, 0x00 }, { 0x78, 0x02 }, { 0x79, 0x40 }, { 0x82, 0x00 }, { 0x83, 0x00 }, { 0x85, 0x00 }, { 0x86, 0x20 }, }; /* EU FM 1.2 settings */ static const struct max2175_reg_map fmeu1p2_map[] = { { 0x01, 0x15 }, { 0x02, 0x04 }, { 0x03, 0xb8 }, { 0x04, 0xe3 }, { 0x05, 0x35 }, { 0x06, 0x18 }, { 0x07, 0x7c }, { 0x08, 0x00 }, { 0x09, 0x00 }, { 0x0a, 0x73 }, { 0x0b, 0x40 }, { 0x0c, 0x08 }, { 0x0e, 0x7a }, { 0x0f, 0x88 }, { 0x10, 0x91 }, { 0x11, 0x61 }, { 0x12, 0x61 }, { 0x13, 0x61 }, { 0x14, 0x61 }, { 0x15, 0x5a }, { 0x16, 0x0f }, { 0x17, 0x34 }, { 0x18, 0x1c }, { 0x1a, 0x88 }, { 0x1b, 0x33 }, { 0x1c, 0x02 }, { 0x1d, 0x00 }, { 0x1e, 0x01 }, { 0x23, 0x80 }, { 0x24, 0x00 }, { 0x25, 0x95 }, { 0x26, 0x05 }, { 0x27, 0x2c }, { 0x32, 0x08 }, { 0x33, 0xa8 }, { 0x36, 0x2f }, { 0x37, 0x7e }, { 0x55, 0xbf }, { 0x56, 0x3f }, { 0x57, 0xff }, { 0x58, 0x9f }, { 0x76, 0xac }, { 0x77, 0x40 }, { 0x78, 0x00 }, { 0x79, 0x00 }, { 0x82, 0x47 }, { 0x83, 0x00 }, { 0x85, 0x11 }, { 0x86, 0x3f }, }; /* FM NA 1.0 settings */ static const struct max2175_reg_map fmna1p0_map[] = { { 0x01, 0x13 }, { 0x02, 0x08 }, { 0x03, 0x8d }, { 0x04, 0xc0 }, { 0x05, 0x35 }, { 0x06, 0x18 }, { 0x07, 0x7d }, { 0x08, 0x3f }, { 0x09, 0x7d }, { 0x0a, 0x75 }, { 0x0b, 0x40 }, { 0x0c, 0x08 }, { 0x0e, 0x7a }, { 0x0f, 0x88 }, { 0x10, 0x91 }, { 0x11, 0x61 }, { 0x12, 0x61 }, { 0x13, 0x61 }, { 0x14, 0x61 }, { 0x15, 0x5c }, { 0x16, 0x0f }, { 0x17, 0x34 }, { 0x18, 0x1c }, { 0x1a, 0x88 }, { 0x1b, 0x33 }, { 0x1c, 0x02 }, { 0x1d, 0x00 }, { 0x1e, 0x01 }, { 0x23, 0x80 }, { 0x24, 0x00 }, { 0x25, 0x95 }, { 0x26, 0x05 }, { 0x27, 0x2c }, { 0x32, 0x08 }, { 0x33, 0xa8 }, { 0x36, 0xaf }, { 0x37, 0x7e }, { 0x55, 0xbf }, { 0x56, 0x3f }, { 0x57, 0xff }, { 0x58, 0x9f }, { 0x76, 0xa6 }, { 0x77, 0x40 }, { 0x78, 0x00 }, { 0x79, 0x00 }, { 0x82, 0x35 }, { 0x83, 0x00 }, { 0x85, 0x11 }, { 0x86, 0x3f }, }; /* FM NA 2.0 settings */ static const struct max2175_reg_map fmna2p0_map[] = { { 0x01, 0x13 }, { 0x02, 0x08 }, { 0x03, 0x8d }, { 0x04, 0xc0 }, { 0x05, 0x35 }, { 0x06, 0x18 }, { 0x07, 0x7c }, { 0x08, 0x54 }, { 0x09, 0xa7 }, { 0x0a, 0x55 }, { 0x0b, 0x42 }, { 0x0c, 0x48 }, { 0x0e, 0x7a }, { 0x0f, 0x88 }, { 0x10, 0x91 }, { 0x11, 0x61 }, { 0x12, 0x61 }, { 0x13, 0x61 }, { 0x14, 0x61 }, { 0x15, 0x5c }, { 0x16, 0x0f }, { 0x17, 0x34 }, { 0x18, 0x1c }, { 0x1a, 0x88 }, { 0x1b, 0x33 }, { 0x1c, 0x02 }, { 0x1d, 0x00 }, { 0x1e, 0x01 }, { 0x23, 0x80 }, { 0x24, 0x00 }, { 0x25, 0x95 }, { 0x26, 0x05 }, { 0x27, 0x2c }, { 0x32, 0x08 }, { 0x33, 0xa8 }, { 0x36, 0xaf }, { 0x37, 0x7e }, { 0x55, 0xbf }, { 0x56, 0x3f }, { 0x57, 0xff }, { 0x58, 0x9f }, { 0x76, 0xac }, { 0x77, 0xc0 }, { 0x78, 0x00 }, { 0x79, 0x00 }, { 0x82, 0x6b }, { 0x83, 0x00 }, { 0x85, 0x11 }, { 0x86, 0x3f }, }; static const u16 ch_coeff_dab1[] = { 0x001c, 0x0007, 0xffcd, 0x0056, 0xffa4, 0x0033, 0x0027, 0xff61, 0x010e, 0xfec0, 0x0106, 0xffb8, 0xff1c, 0x023c, 0xfcb2, 0x039b, 0xfd4e, 0x0055, 0x036a, 0xf7de, 0x0d21, 0xee72, 0x1499, 0x6a51, }; static const u16 ch_coeff_fmeu[] = { 0x0000, 0xffff, 0x0001, 0x0002, 0xfffa, 0xffff, 0x0015, 0xffec, 0xffde, 0x0054, 0xfff9, 0xff52, 0x00b8, 0x00a2, 0xfe0a, 0x00af, 0x02e3, 0xfc14, 0xfe89, 0x089d, 0xfa2e, 0xf30f, 0x25be, 0x4eb6, }; static const u16 eq_coeff_fmeu1_ra02_m6db[] = { 0x0040, 0xffc6, 0xfffa, 0x002c, 0x000d, 0xff90, 0x0037, 0x006e, 0xffc0, 0xff5b, 0x006a, 0x00f0, 0xff57, 0xfe94, 0x0112, 0x0252, 0xfe0c, 0xfc6a, 0x0385, 0x0553, 0xfa49, 0xf789, 0x0b91, 0x1a10, }; static const u16 ch_coeff_fmna[] = { 0x0001, 0x0003, 0xfffe, 0xfff4, 0x0000, 0x001f, 0x000c, 0xffbc, 0xffd3, 0x007d, 0x0075, 0xff33, 0xff01, 0x0131, 0x01ef, 0xfe60, 0xfc7a, 0x020e, 0x0656, 0xfd94, 0xf395, 0x02ab, 0x2857, 0x3d3f, }; static const u16 eq_coeff_fmna1_ra02_m6db[] = { 0xfff1, 0xffe1, 0xffef, 0x000e, 0x0030, 0x002f, 0xfff6, 0xffa7, 0xff9d, 0x000a, 0x00a2, 0x00b5, 0xffea, 0xfed9, 0xfec5, 0x003d, 0x0217, 0x021b, 0xff5a, 0xfc2b, 0xfcbd, 0x02c4, 0x0ac3, 0x0e85, }; static const u8 adc_presets[2][23] = { { 0x83, 0x00, 0xcf, 0xb4, 0x0f, 0x2c, 0x0c, 0x49, 0x00, 0x00, 0x00, 0x8c, 0x02, 0x02, 0x00, 0x04, 0xec, 0x82, 0x4b, 0xcc, 0x01, 0x88, 0x0c, }, { 0x83, 0x00, 0xcf, 0xb4, 0x0f, 0x2c, 0x0c, 0x49, 0x00, 0x00, 0x00, 0x8c, 0x02, 0x20, 0x33, 0x8c, 0x57, 0xd7, 0x59, 0xb7, 0x65, 0x0e, 0x0c, }, }; /* Tuner bands */ static const struct v4l2_frequency_band eu_bands_rf = { .tuner = 0, .type = V4L2_TUNER_RF, .index = 0, .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS, .rangelow = 65000000, .rangehigh = 240000000, }; static const struct v4l2_frequency_band na_bands_rf = { .tuner = 0, .type = V4L2_TUNER_RF, .index = 0, .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS, .rangelow = 65000000, .rangehigh = 108000000, }; /* Regmap settings */ static const struct regmap_range max2175_regmap_volatile_range[] = { regmap_reg_range(0x30, 0x35), regmap_reg_range(0x3a, 0x45), regmap_reg_range(0x59, 0x5e), regmap_reg_range(0x73, 0x75), }; static const struct regmap_access_table max2175_volatile_regs = { .yes_ranges = max2175_regmap_volatile_range, .n_yes_ranges = ARRAY_SIZE(max2175_regmap_volatile_range), }; static const struct reg_default max2175_reg_defaults[] = { { 0x00, 0x07}, }; static const struct regmap_config max2175_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = 0xff, .reg_defaults = max2175_reg_defaults, .num_reg_defaults = ARRAY_SIZE(max2175_reg_defaults), .volatile_table = &max2175_volatile_regs, .cache_type = REGCACHE_FLAT, }; struct max2175 { struct v4l2_subdev sd; /* Sub-device */ struct i2c_client *client; /* I2C client */ /* Controls */ struct v4l2_ctrl_handler ctrl_hdl; struct v4l2_ctrl *lna_gain; /* LNA gain value */ struct v4l2_ctrl *if_gain; /* I/F gain value */ struct v4l2_ctrl *pll_lock; /* PLL lock */ struct v4l2_ctrl *i2s_en; /* I2S output enable */ struct v4l2_ctrl *hsls; /* High-side/Low-side polarity */ struct v4l2_ctrl *rx_mode; /* Receive mode */ /* Regmap */ struct regmap *regmap; /* Cached configuration */ u32 freq; /* Tuned freq In Hz */ const struct max2175_rxmode *rx_modes; /* EU or NA modes */ const struct v4l2_frequency_band *bands_rf; /* EU or NA bands */ /* Device settings */ unsigned long xtal_freq; /* Ref Oscillator freq in Hz */ u32 decim_ratio; bool master; /* Master/Slave */ bool am_hiz; /* AM Hi-Z filter */ /* ROM values */ u8 rom_bbf_bw_am; u8 rom_bbf_bw_fm; u8 rom_bbf_bw_dab; /* Driver private variables */ bool mode_resolved; /* Flag to sanity check settings */ }; static inline struct max2175 *max2175_from_sd(struct v4l2_subdev *sd) { return container_of(sd, struct max2175, sd); } static inline struct max2175 *max2175_from_ctrl_hdl(struct v4l2_ctrl_handler *h) { return container_of(h, struct max2175, ctrl_hdl); } /* Get bitval of a given val */ static inline u8 max2175_get_bitval(u8 val, u8 msb, u8 lsb) { return (val & GENMASK(msb, lsb)) >> lsb; } /* Read/Write bit(s) on top of regmap */ static int max2175_read(struct max2175 *ctx, u8 idx, u8 *val) { u32 regval; int ret; ret = regmap_read(ctx->regmap, idx, ®val); if (ret) mxm_err(ctx, "read ret(%d): idx 0x%02x\n", ret, idx); else *val = regval; return ret; } static int max2175_write(struct max2175 *ctx, u8 idx, u8 val) { int ret; ret = regmap_write(ctx->regmap, idx, val); if (ret) mxm_err(ctx, "write ret(%d): idx 0x%02x val 0x%02x\n", ret, idx, val); return ret; } static u8 max2175_read_bits(struct max2175 *ctx, u8 idx, u8 msb, u8 lsb) { u8 val; if (max2175_read(ctx, idx, &val)) return 0; return max2175_get_bitval(val, msb, lsb); } static int max2175_write_bits(struct max2175 *ctx, u8 idx, u8 msb, u8 lsb, u8 newval) { int ret = regmap_update_bits(ctx->regmap, idx, GENMASK(msb, lsb), newval << lsb); if (ret) mxm_err(ctx, "wbits ret(%d): idx 0x%02x\n", ret, idx); return ret; } static int max2175_write_bit(struct max2175 *ctx, u8 idx, u8 bit, u8 newval) { return max2175_write_bits(ctx, idx, bit, bit, newval); } /* Checks expected pattern every msec until timeout */ static int max2175_poll_timeout(struct max2175 *ctx, u8 idx, u8 msb, u8 lsb, u8 exp_bitval, u32 timeout_us) { unsigned int val; return regmap_read_poll_timeout(ctx->regmap, idx, val, (max2175_get_bitval(val, msb, lsb) == exp_bitval), 1000, timeout_us); } static int max2175_poll_csm_ready(struct max2175 *ctx) { int ret; ret = max2175_poll_timeout(ctx, 69, 1, 1, 0, 50000); if (ret) mxm_err(ctx, "csm not ready\n"); return ret; } #define MAX2175_IS_BAND_AM(ctx) \ (max2175_read_bits(ctx, 5, 1, 0) == MAX2175_BAND_AM) #define MAX2175_IS_BAND_VHF(ctx) \ (max2175_read_bits(ctx, 5, 1, 0) == MAX2175_BAND_VHF) #define MAX2175_IS_FM_MODE(ctx) \ (max2175_read_bits(ctx, 12, 5, 4) == 0) #define MAX2175_IS_FMHD_MODE(ctx) \ (max2175_read_bits(ctx, 12, 5, 4) == 1) #define MAX2175_IS_DAB_MODE(ctx) \ (max2175_read_bits(ctx, 12, 5, 4) == 2) static int max2175_band_from_freq(u32 freq) { if (freq >= 144000 && freq <= 26100000) return MAX2175_BAND_AM; else if (freq >= 65000000 && freq <= 108000000) return MAX2175_BAND_FM; return MAX2175_BAND_VHF; } static void max2175_i2s_enable(struct max2175 *ctx, bool enable) { if (enable) /* Stuff bits are zeroed */ max2175_write_bits(ctx, 104, 3, 0, 2); else /* Keep SCK alive */ max2175_write_bits(ctx, 104, 3, 0, 9); mxm_dbg(ctx, "i2s %sabled\n", enable ? "en" : "dis"); } static void max2175_set_filter_coeffs(struct max2175 *ctx, u8 m_sel, u8 bank, const u16 *coeffs) { unsigned int i; u8 coeff_addr, upper_address = 24; mxm_dbg(ctx, "set_filter_coeffs: m_sel %d bank %d\n", m_sel, bank); max2175_write_bits(ctx, 114, 5, 4, m_sel); if (m_sel == 2) upper_address = 12; for (i = 0; i < upper_address; i++) { coeff_addr = i + bank * 24; max2175_write(ctx, 115, coeffs[i] >> 8); max2175_write(ctx, 116, coeffs[i]); max2175_write(ctx, 117, coeff_addr | 1 << 7); } max2175_write_bit(ctx, 117, 7, 0); } static void max2175_load_fmeu_1p2(struct max2175 *ctx) { unsigned int i; for (i = 0; i < ARRAY_SIZE(fmeu1p2_map); i++) max2175_write(ctx, fmeu1p2_map[i].idx, fmeu1p2_map[i].val); ctx->decim_ratio = 36; /* Load the Channel Filter Coefficients into channel filter bank #2 */ max2175_set_filter_coeffs(ctx, MAX2175_CH_MSEL, 0, ch_coeff_fmeu); max2175_set_filter_coeffs(ctx, MAX2175_EQ_MSEL, 0, eq_coeff_fmeu1_ra02_m6db); } static void max2175_load_dab_1p2(struct max2175 *ctx) { unsigned int i; for (i = 0; i < ARRAY_SIZE(dab12_map); i++) max2175_write(ctx, dab12_map[i].idx, dab12_map[i].val); ctx->decim_ratio = 1; /* Load the Channel Filter Coefficients into channel filter bank #2 */ max2175_set_filter_coeffs(ctx, MAX2175_CH_MSEL, 2, ch_coeff_dab1); } static void max2175_load_fmna_1p0(struct max2175 *ctx) { unsigned int i; for (i = 0; i < ARRAY_SIZE(fmna1p0_map); i++) max2175_write(ctx, fmna1p0_map[i].idx, fmna1p0_map[i].val); } static void max2175_load_fmna_2p0(struct max2175 *ctx) { unsigned int i; for (i = 0; i < ARRAY_SIZE(fmna2p0_map); i++) max2175_write(ctx, fmna2p0_map[i].idx, fmna2p0_map[i].val); } static void max2175_set_bbfilter(struct max2175 *ctx) { if (MAX2175_IS_BAND_AM(ctx)) { max2175_write_bits(ctx, 12, 3, 0, ctx->rom_bbf_bw_am); mxm_dbg(ctx, "set_bbfilter AM: rom %d\n", ctx->rom_bbf_bw_am); } else if (MAX2175_IS_DAB_MODE(ctx)) { max2175_write_bits(ctx, 12, 3, 0, ctx->rom_bbf_bw_dab); mxm_dbg(ctx, "set_bbfilter DAB: rom %d\n", ctx->rom_bbf_bw_dab); } else { max2175_write_bits(ctx, 12, 3, 0, ctx->rom_bbf_bw_fm); mxm_dbg(ctx, "set_bbfilter FM: rom %d\n", ctx->rom_bbf_bw_fm); } } static bool max2175_set_csm_mode(struct max2175 *ctx, enum max2175_csm_mode new_mode) { int ret = max2175_poll_csm_ready(ctx); if (ret) return ret; max2175_write_bits(ctx, 0, 2, 0, new_mode); mxm_dbg(ctx, "set csm new mode %d\n", new_mode); /* Wait for a fixed settle down time depending on new mode */ switch (new_mode) { case MAX2175_PRESET_TUNE: usleep_range(51100, 51500); /* 51.1ms */ break; /* * Other mode switches need different sleep values depending on band & * mode */ default: break; } return max2175_poll_csm_ready(ctx); } static int max2175_csm_action(struct max2175 *ctx, enum max2175_csm_mode action) { int ret; mxm_dbg(ctx, "csm_action: %d\n", action); /* Other actions can be added in future when needed */ ret = max2175_set_csm_mode(ctx, MAX2175_LOAD_TO_BUFFER); if (ret) return ret; return max2175_set_csm_mode(ctx, MAX2175_PRESET_TUNE); } static int max2175_set_lo_freq(struct max2175 *ctx, u32 lo_freq) { u8 lo_mult, loband_bits = 0, vcodiv_bits = 0; u32 int_desired, frac_desired; enum max2175_band band; int ret; band = max2175_read_bits(ctx, 5, 1, 0); switch (band) { case MAX2175_BAND_AM: lo_mult = 16; break; case MAX2175_BAND_FM: if (lo_freq <= 74700000) { lo_mult = 16; } else if (lo_freq > 74700000 && lo_freq <= 110000000) { loband_bits = 1; lo_mult = 8; } else { loband_bits = 1; vcodiv_bits = 3; lo_mult = 8; } break; case MAX2175_BAND_VHF: if (lo_freq <= 210000000) vcodiv_bits = 2; else vcodiv_bits = 1; loband_bits = 2; lo_mult = 4; break; default: loband_bits = 3; vcodiv_bits = 2; lo_mult = 2; break; } if (band == MAX2175_BAND_L) lo_freq /= lo_mult; else lo_freq *= lo_mult; int_desired = lo_freq / ctx->xtal_freq; frac_desired = div_u64((u64)(lo_freq % ctx->xtal_freq) << 20, ctx->xtal_freq); /* Check CSM is not busy */ ret = max2175_poll_csm_ready(ctx); if (ret) return ret; mxm_dbg(ctx, "lo_mult %u int %u frac %u\n", lo_mult, int_desired, frac_desired); /* Write the calculated values to the appropriate registers */ max2175_write(ctx, 1, int_desired); max2175_write_bits(ctx, 2, 3, 0, (frac_desired >> 16) & 0xf); max2175_write(ctx, 3, frac_desired >> 8); max2175_write(ctx, 4, frac_desired); max2175_write_bits(ctx, 5, 3, 2, loband_bits); max2175_write_bits(ctx, 6, 7, 6, vcodiv_bits); return ret; } /* * Helper similar to DIV_ROUND_CLOSEST but an inline function that accepts s64 * dividend and s32 divisor */ static inline s64 max2175_round_closest(s64 dividend, s32 divisor) { if ((dividend > 0 && divisor > 0) || (dividend < 0 && divisor < 0)) return div_s64(dividend + divisor / 2, divisor); return div_s64(dividend - divisor / 2, divisor); } static int max2175_set_nco_freq(struct max2175 *ctx, s32 nco_freq) { s32 clock_rate = ctx->xtal_freq / ctx->decim_ratio; u32 nco_reg, abs_nco_freq = abs(nco_freq); s64 nco_val_desired; int ret; if (abs_nco_freq < clock_rate / 2) { nco_val_desired = 2 * nco_freq; } else { nco_val_desired = 2LL * (clock_rate - abs_nco_freq); if (nco_freq < 0) nco_val_desired = -nco_val_desired; } nco_reg = max2175_round_closest(nco_val_desired << 20, clock_rate); if (nco_freq < 0) nco_reg += 0x200000; /* Check CSM is not busy */ ret = max2175_poll_csm_ready(ctx); if (ret) return ret; mxm_dbg(ctx, "freq %d desired %lld reg %u\n", nco_freq, nco_val_desired, nco_reg); /* Write the calculated values to the appropriate registers */ max2175_write_bits(ctx, 7, 4, 0, (nco_reg >> 16) & 0x1f); max2175_write(ctx, 8, nco_reg >> 8); max2175_write(ctx, 9, nco_reg); return ret; } static int max2175_set_rf_freq_non_am_bands(struct max2175 *ctx, u64 freq, u32 lo_pos) { s64 adj_freq, low_if_freq; int ret; mxm_dbg(ctx, "rf_freq: non AM bands\n"); if (MAX2175_IS_FM_MODE(ctx)) low_if_freq = 128000; else if (MAX2175_IS_FMHD_MODE(ctx)) low_if_freq = 228000; else return max2175_set_lo_freq(ctx, freq); if (MAX2175_IS_BAND_VHF(ctx) == (lo_pos == MAX2175_LO_ABOVE_DESIRED)) adj_freq = freq + low_if_freq; else adj_freq = freq - low_if_freq; ret = max2175_set_lo_freq(ctx, adj_freq); if (ret) return ret; return max2175_set_nco_freq(ctx, -low_if_freq); } static int max2175_set_rf_freq(struct max2175 *ctx, u64 freq, u32 lo_pos) { int ret; if (MAX2175_IS_BAND_AM(ctx)) ret = max2175_set_nco_freq(ctx, freq); else ret = max2175_set_rf_freq_non_am_bands(ctx, freq, lo_pos); mxm_dbg(ctx, "set_rf_freq: ret %d freq %llu\n", ret, freq); return ret; } static int max2175_tune_rf_freq(struct max2175 *ctx, u64 freq, u32 hsls) { int ret; ret = max2175_set_rf_freq(ctx, freq, hsls); if (ret) return ret; ret = max2175_csm_action(ctx, MAX2175_BUFFER_PLUS_PRESET_TUNE); if (ret) return ret; mxm_dbg(ctx, "tune_rf_freq: old %u new %llu\n", ctx->freq, freq); ctx->freq = freq; return ret; } static void max2175_set_hsls(struct max2175 *ctx, u32 lo_pos) { mxm_dbg(ctx, "set_hsls: lo_pos %u\n", lo_pos); if ((lo_pos == MAX2175_LO_BELOW_DESIRED) == MAX2175_IS_BAND_VHF(ctx)) max2175_write_bit(ctx, 5, 4, 1); else max2175_write_bit(ctx, 5, 4, 0); } static void max2175_set_eu_rx_mode(struct max2175 *ctx, u32 rx_mode) { switch (rx_mode) { case MAX2175_EU_FM_1_2: max2175_load_fmeu_1p2(ctx); break; case MAX2175_DAB_1_2: max2175_load_dab_1p2(ctx); break; } /* Master is the default setting */ if (!ctx->master) max2175_write_bit(ctx, 30, 7, 1); } static void max2175_set_na_rx_mode(struct max2175 *ctx, u32 rx_mode) { switch (rx_mode) { case MAX2175_NA_FM_1_0: max2175_load_fmna_1p0(ctx); break; case MAX2175_NA_FM_2_0: max2175_load_fmna_2p0(ctx); break; } /* Master is the default setting */ if (!ctx->master) max2175_write_bit(ctx, 30, 7, 1); ctx->decim_ratio = 27; /* Load the Channel Filter Coefficients into channel filter bank #2 */ max2175_set_filter_coeffs(ctx, MAX2175_CH_MSEL, 0, ch_coeff_fmna); max2175_set_filter_coeffs(ctx, MAX2175_EQ_MSEL, 0, eq_coeff_fmna1_ra02_m6db); } static int max2175_set_rx_mode(struct max2175 *ctx, u32 rx_mode) { mxm_dbg(ctx, "set_rx_mode: %u am_hiz %u\n", rx_mode, ctx->am_hiz); if (ctx->xtal_freq == MAX2175_EU_XTAL_FREQ) max2175_set_eu_rx_mode(ctx, rx_mode); else max2175_set_na_rx_mode(ctx, rx_mode); if (ctx->am_hiz) { mxm_dbg(ctx, "setting AM HiZ related config\n"); max2175_write_bit(ctx, 50, 5, 1); max2175_write_bit(ctx, 90, 7, 1); max2175_write_bits(ctx, 73, 1, 0, 2); max2175_write_bits(ctx, 80, 5, 0, 33); } /* Load BB filter trim values saved in ROM */ max2175_set_bbfilter(ctx); /* Set HSLS */ max2175_set_hsls(ctx, ctx->hsls->cur.val); /* Use i2s enable settings */ max2175_i2s_enable(ctx, ctx->i2s_en->cur.val); ctx->mode_resolved = true; return 0; } static int max2175_rx_mode_from_freq(struct max2175 *ctx, u32 freq, u32 *mode) { unsigned int i; int band = max2175_band_from_freq(freq); /* Pick the first match always */ for (i = 0; i <= ctx->rx_mode->maximum; i++) { if (ctx->rx_modes[i].band == band) { *mode = i; mxm_dbg(ctx, "rx_mode_from_freq: freq %u mode %d\n", freq, *mode); return 0; } } return -EINVAL; } static bool max2175_freq_rx_mode_valid(struct max2175 *ctx, u32 mode, u32 freq) { int band = max2175_band_from_freq(freq); return (ctx->rx_modes[mode].band == band); } static void max2175_load_adc_presets(struct max2175 *ctx) { unsigned int i, j; for (i = 0; i < ARRAY_SIZE(adc_presets); i++) for (j = 0; j < ARRAY_SIZE(adc_presets[0]); j++) max2175_write(ctx, 146 + j + i * 55, adc_presets[i][j]); } static int max2175_init_power_manager(struct max2175 *ctx) { int ret; /* Execute on-chip power-up/calibration */ max2175_write_bit(ctx, 99, 2, 0); usleep_range(1000, 1500); max2175_write_bit(ctx, 99, 2, 1); /* Wait for the power manager to finish. */ ret = max2175_poll_timeout(ctx, 69, 7, 7, 1, 50000); if (ret) mxm_err(ctx, "init pm failed\n"); return ret; } static int max2175_recalibrate_adc(struct max2175 *ctx) { int ret; /* ADC Re-calibration */ max2175_write(ctx, 150, 0xff); max2175_write(ctx, 205, 0xff); max2175_write(ctx, 147, 0x20); max2175_write(ctx, 147, 0x00); max2175_write(ctx, 202, 0x20); max2175_write(ctx, 202, 0x00); ret = max2175_poll_timeout(ctx, 69, 4, 3, 3, 50000); if (ret) mxm_err(ctx, "adc recalibration failed\n"); return ret; } static u8 max2175_read_rom(struct max2175 *ctx, u8 row) { u8 data = 0; max2175_write_bit(ctx, 56, 4, 0); max2175_write_bits(ctx, 56, 3, 0, row); usleep_range(2000, 2500); max2175_read(ctx, 58, &data); max2175_write_bits(ctx, 56, 3, 0, 0); mxm_dbg(ctx, "read_rom: row %d data 0x%02x\n", row, data); return data; } static void max2175_load_from_rom(struct max2175 *ctx) { u8 data = 0; data = max2175_read_rom(ctx, 0); ctx->rom_bbf_bw_am = data & 0x0f; max2175_write_bits(ctx, 81, 3, 0, data >> 4); data = max2175_read_rom(ctx, 1); ctx->rom_bbf_bw_fm = data & 0x0f; ctx->rom_bbf_bw_dab = data >> 4; data = max2175_read_rom(ctx, 2); max2175_write_bits(ctx, 82, 4, 0, data & 0x1f); max2175_write_bits(ctx, 82, 7, 5, data >> 5); data = max2175_read_rom(ctx, 3); if (ctx->am_hiz) { data &= 0x0f; data |= (max2175_read_rom(ctx, 7) & 0x40) >> 2; if (!data) data |= 2; } else { data = (data & 0xf0) >> 4; data |= (max2175_read_rom(ctx, 7) & 0x80) >> 3; if (!data) data |= 30; } max2175_write_bits(ctx, 80, 5, 0, data + 31); data = max2175_read_rom(ctx, 6); max2175_write_bits(ctx, 81, 7, 6, data >> 6); } static void max2175_load_full_fm_eu_1p0(struct max2175 *ctx) { unsigned int i; for (i = 0; i < ARRAY_SIZE(full_fm_eu_1p0); i++) max2175_write(ctx, i + 1, full_fm_eu_1p0[i]); usleep_range(5000, 5500); ctx->decim_ratio = 36; } static void max2175_load_full_fm_na_1p0(struct max2175 *ctx) { unsigned int i; for (i = 0; i < ARRAY_SIZE(full_fm_na_1p0); i++) max2175_write(ctx, i + 1, full_fm_na_1p0[i]); usleep_range(5000, 5500); ctx->decim_ratio = 27; } static int max2175_core_init(struct max2175 *ctx, u32 refout_bits) { int ret; /* MAX2175 uses 36.864MHz clock for EU & 40.154MHz for NA region */ if (ctx->xtal_freq == MAX2175_EU_XTAL_FREQ) max2175_load_full_fm_eu_1p0(ctx); else max2175_load_full_fm_na_1p0(ctx); /* The default settings assume master */ if (!ctx->master) max2175_write_bit(ctx, 30, 7, 1); mxm_dbg(ctx, "refout_bits %u\n", refout_bits); /* Set REFOUT */ max2175_write_bits(ctx, 56, 7, 5, refout_bits); /* ADC Reset */ max2175_write_bit(ctx, 99, 1, 0); usleep_range(1000, 1500); max2175_write_bit(ctx, 99, 1, 1); /* Load ADC preset values */ max2175_load_adc_presets(ctx); /* Initialize the power management state machine */ ret = max2175_init_power_manager(ctx); if (ret) return ret; /* Recalibrate ADC */ ret = max2175_recalibrate_adc(ctx); if (ret) return ret; /* Load ROM values to appropriate registers */ max2175_load_from_rom(ctx); if (ctx->xtal_freq == MAX2175_EU_XTAL_FREQ) { /* Load FIR coefficients into bank 0 */ max2175_set_filter_coeffs(ctx, MAX2175_CH_MSEL, 0, ch_coeff_fmeu); max2175_set_filter_coeffs(ctx, MAX2175_EQ_MSEL, 0, eq_coeff_fmeu1_ra02_m6db); } else { /* Load FIR coefficients into bank 0 */ max2175_set_filter_coeffs(ctx, MAX2175_CH_MSEL, 0, ch_coeff_fmna); max2175_set_filter_coeffs(ctx, MAX2175_EQ_MSEL, 0, eq_coeff_fmna1_ra02_m6db); } mxm_dbg(ctx, "core initialized\n"); return 0; } static void max2175_s_ctrl_rx_mode(struct max2175 *ctx, u32 rx_mode) { /* Load mode. Range check already done */ max2175_set_rx_mode(ctx, rx_mode); mxm_dbg(ctx, "s_ctrl_rx_mode: %u curr freq %u\n", rx_mode, ctx->freq); /* Check if current freq valid for mode & update */ if (max2175_freq_rx_mode_valid(ctx, rx_mode, ctx->freq)) max2175_tune_rf_freq(ctx, ctx->freq, ctx->hsls->cur.val); else /* Use default freq of mode if current freq is not valid */ max2175_tune_rf_freq(ctx, ctx->rx_modes[rx_mode].freq, ctx->hsls->cur.val); } static int max2175_s_ctrl(struct v4l2_ctrl *ctrl) { struct max2175 *ctx = max2175_from_ctrl_hdl(ctrl->handler); mxm_dbg(ctx, "s_ctrl: id 0x%x, val %u\n", ctrl->id, ctrl->val); switch (ctrl->id) { case V4L2_CID_MAX2175_I2S_ENABLE: max2175_i2s_enable(ctx, ctrl->val); break; case V4L2_CID_MAX2175_HSLS: max2175_set_hsls(ctx, ctrl->val); break; case V4L2_CID_MAX2175_RX_MODE: max2175_s_ctrl_rx_mode(ctx, ctrl->val); break; } return 0; } static u32 max2175_get_lna_gain(struct max2175 *ctx) { enum max2175_band band = max2175_read_bits(ctx, 5, 1, 0); switch (band) { case MAX2175_BAND_AM: return max2175_read_bits(ctx, 51, 3, 0); case MAX2175_BAND_FM: return max2175_read_bits(ctx, 50, 3, 0); case MAX2175_BAND_VHF: return max2175_read_bits(ctx, 52, 5, 0); default: return 0; } } static int max2175_g_volatile_ctrl(struct v4l2_ctrl *ctrl) { struct max2175 *ctx = max2175_from_ctrl_hdl(ctrl->handler); switch (ctrl->id) { case V4L2_CID_RF_TUNER_LNA_GAIN: ctrl->val = max2175_get_lna_gain(ctx); break; case V4L2_CID_RF_TUNER_IF_GAIN: ctrl->val = max2175_read_bits(ctx, 49, 4, 0); break; case V4L2_CID_RF_TUNER_PLL_LOCK: ctrl->val = (max2175_read_bits(ctx, 60, 7, 6) == 3); break; } return 0; }; static int max2175_set_freq_and_mode(struct max2175 *ctx, u32 freq) { u32 rx_mode; int ret; /* Get band from frequency */ ret = max2175_rx_mode_from_freq(ctx, freq, &rx_mode); if (ret) return ret; mxm_dbg(ctx, "set_freq_and_mode: freq %u rx_mode %d\n", freq, rx_mode); /* Load mode */ max2175_set_rx_mode(ctx, rx_mode); ctx->rx_mode->cur.val = rx_mode; /* Tune to the new freq given */ return max2175_tune_rf_freq(ctx, freq, ctx->hsls->cur.val); } static int max2175_s_frequency(struct v4l2_subdev *sd, const struct v4l2_frequency *vf) { struct max2175 *ctx = max2175_from_sd(sd); u32 freq; int ret = 0; mxm_dbg(ctx, "s_freq: new %u curr %u, mode_resolved %d\n", vf->frequency, ctx->freq, ctx->mode_resolved); if (vf->tuner != 0) return -EINVAL; freq = clamp(vf->frequency, ctx->bands_rf->rangelow, ctx->bands_rf->rangehigh); /* Check new freq valid for rx_mode if already resolved */ if (ctx->mode_resolved && max2175_freq_rx_mode_valid(ctx, ctx->rx_mode->cur.val, freq)) ret = max2175_tune_rf_freq(ctx, freq, ctx->hsls->cur.val); else /* Find default rx_mode for freq and tune to it */ ret = max2175_set_freq_and_mode(ctx, freq); mxm_dbg(ctx, "s_freq: ret %d curr %u mode_resolved %d mode %u\n", ret, ctx->freq, ctx->mode_resolved, ctx->rx_mode->cur.val); return ret; } static int max2175_g_frequency(struct v4l2_subdev *sd, struct v4l2_frequency *vf) { struct max2175 *ctx = max2175_from_sd(sd); int ret = 0; if (vf->tuner != 0) return -EINVAL; /* RF freq */ vf->type = V4L2_TUNER_RF; vf->frequency = ctx->freq; return ret; } static int max2175_enum_freq_bands(struct v4l2_subdev *sd, struct v4l2_frequency_band *band) { struct max2175 *ctx = max2175_from_sd(sd); if (band->tuner != 0 || band->index != 0) return -EINVAL; *band = *ctx->bands_rf; return 0; } static int max2175_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *vt) { struct max2175 *ctx = max2175_from_sd(sd); if (vt->index > 0) return -EINVAL; strscpy(vt->name, "RF", sizeof(vt->name)); vt->type = V4L2_TUNER_RF; vt->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS; vt->rangelow = ctx->bands_rf->rangelow; vt->rangehigh = ctx->bands_rf->rangehigh; return 0; } static int max2175_s_tuner(struct v4l2_subdev *sd, const struct v4l2_tuner *vt) { /* Check tuner index is valid */ if (vt->index > 0) return -EINVAL; return 0; } static const struct v4l2_subdev_tuner_ops max2175_tuner_ops = { .s_frequency = max2175_s_frequency, .g_frequency = max2175_g_frequency, .enum_freq_bands = max2175_enum_freq_bands, .g_tuner = max2175_g_tuner, .s_tuner = max2175_s_tuner, }; static const struct v4l2_subdev_ops max2175_ops = { .tuner = &max2175_tuner_ops, }; static const struct v4l2_ctrl_ops max2175_ctrl_ops = { .s_ctrl = max2175_s_ctrl, .g_volatile_ctrl = max2175_g_volatile_ctrl, }; /* * I2S output enable/disable configuration. This is a private control. * Refer to Documentation/media/v4l-drivers/max2175.rst for more details. */ static const struct v4l2_ctrl_config max2175_i2s_en = { .ops = &max2175_ctrl_ops, .id = V4L2_CID_MAX2175_I2S_ENABLE, .name = "I2S Enable", .type = V4L2_CTRL_TYPE_BOOLEAN, .min = 0, .max = 1, .step = 1, .def = 1, .is_private = 1, }; /* * HSLS value control LO freq adjacent location configuration. * Refer to Documentation/media/v4l-drivers/max2175.rst for more details. */ static const struct v4l2_ctrl_config max2175_hsls = { .ops = &max2175_ctrl_ops, .id = V4L2_CID_MAX2175_HSLS, .name = "HSLS Above/Below Desired", .type = V4L2_CTRL_TYPE_BOOLEAN, .min = 0, .max = 1, .step = 1, .def = 1, }; /* * Rx modes below are a set of preset configurations that decides the tuner's * sck and sample rate of transmission. They are separate for EU & NA regions. * Refer to Documentation/media/v4l-drivers/max2175.rst for more details. */ static const char * const max2175_ctrl_eu_rx_modes[] = { [MAX2175_EU_FM_1_2] = "EU FM 1.2", [MAX2175_DAB_1_2] = "DAB 1.2", }; static const char * const max2175_ctrl_na_rx_modes[] = { [MAX2175_NA_FM_1_0] = "NA FM 1.0", [MAX2175_NA_FM_2_0] = "NA FM 2.0", }; static const struct v4l2_ctrl_config max2175_eu_rx_mode = { .ops = &max2175_ctrl_ops, .id = V4L2_CID_MAX2175_RX_MODE, .name = "RX Mode", .type = V4L2_CTRL_TYPE_MENU, .max = ARRAY_SIZE(max2175_ctrl_eu_rx_modes) - 1, .def = 0, .qmenu = max2175_ctrl_eu_rx_modes, }; static const struct v4l2_ctrl_config max2175_na_rx_mode = { .ops = &max2175_ctrl_ops, .id = V4L2_CID_MAX2175_RX_MODE, .name = "RX Mode", .type = V4L2_CTRL_TYPE_MENU, .max = ARRAY_SIZE(max2175_ctrl_na_rx_modes) - 1, .def = 0, .qmenu = max2175_ctrl_na_rx_modes, }; static int max2175_refout_load_to_bits(struct i2c_client *client, u32 load, u32 *bits) { if (load <= 40) *bits = load / 10; else if (load >= 60 && load <= 70) *bits = load / 10 - 1; else return -EINVAL; return 0; } static int max2175_probe(struct i2c_client *client, const struct i2c_device_id *id) { bool master = true, am_hiz = false; u32 refout_load, refout_bits = 0; /* REFOUT disabled */ struct v4l2_ctrl_handler *hdl; struct fwnode_handle *fwnode; struct device_node *np; struct v4l2_subdev *sd; struct regmap *regmap; struct max2175 *ctx; struct clk *clk; int ret; /* Parse DT properties */ np = of_parse_phandle(client->dev.of_node, "maxim,master", 0); if (np) { master = false; /* Slave tuner */ of_node_put(np); } fwnode = of_fwnode_handle(client->dev.of_node); if (fwnode_property_present(fwnode, "maxim,am-hiz-filter")) am_hiz = true; if (!fwnode_property_read_u32(fwnode, "maxim,refout-load", &refout_load)) { ret = max2175_refout_load_to_bits(client, refout_load, &refout_bits); if (ret) { dev_err(&client->dev, "invalid refout_load %u\n", refout_load); return -EINVAL; } } clk = devm_clk_get(&client->dev, NULL); if (IS_ERR(clk)) { ret = PTR_ERR(clk); dev_err(&client->dev, "cannot get clock %d\n", ret); return ret; } regmap = devm_regmap_init_i2c(client, &max2175_regmap_config); if (IS_ERR(regmap)) { ret = PTR_ERR(regmap); dev_err(&client->dev, "regmap init failed %d\n", ret); return -ENODEV; } /* Alloc tuner context */ ctx = devm_kzalloc(&client->dev, sizeof(*ctx), GFP_KERNEL); if (ctx == NULL) return -ENOMEM; sd = &ctx->sd; ctx->master = master; ctx->am_hiz = am_hiz; ctx->mode_resolved = false; ctx->regmap = regmap; ctx->xtal_freq = clk_get_rate(clk); dev_info(&client->dev, "xtal freq %luHz\n", ctx->xtal_freq); v4l2_i2c_subdev_init(sd, client, &max2175_ops); ctx->client = client; sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; /* Controls */ hdl = &ctx->ctrl_hdl; ret = v4l2_ctrl_handler_init(hdl, 7); if (ret) return ret; ctx->lna_gain = v4l2_ctrl_new_std(hdl, &max2175_ctrl_ops, V4L2_CID_RF_TUNER_LNA_GAIN, 0, 63, 1, 0); ctx->lna_gain->flags |= (V4L2_CTRL_FLAG_VOLATILE | V4L2_CTRL_FLAG_READ_ONLY); ctx->if_gain = v4l2_ctrl_new_std(hdl, &max2175_ctrl_ops, V4L2_CID_RF_TUNER_IF_GAIN, 0, 31, 1, 0); ctx->if_gain->flags |= (V4L2_CTRL_FLAG_VOLATILE | V4L2_CTRL_FLAG_READ_ONLY); ctx->pll_lock = v4l2_ctrl_new_std(hdl, &max2175_ctrl_ops, V4L2_CID_RF_TUNER_PLL_LOCK, 0, 1, 1, 0); ctx->pll_lock->flags |= (V4L2_CTRL_FLAG_VOLATILE | V4L2_CTRL_FLAG_READ_ONLY); ctx->i2s_en = v4l2_ctrl_new_custom(hdl, &max2175_i2s_en, NULL); ctx->hsls = v4l2_ctrl_new_custom(hdl, &max2175_hsls, NULL); if (ctx->xtal_freq == MAX2175_EU_XTAL_FREQ) { ctx->rx_mode = v4l2_ctrl_new_custom(hdl, &max2175_eu_rx_mode, NULL); ctx->rx_modes = eu_rx_modes; ctx->bands_rf = &eu_bands_rf; } else { ctx->rx_mode = v4l2_ctrl_new_custom(hdl, &max2175_na_rx_mode, NULL); ctx->rx_modes = na_rx_modes; ctx->bands_rf = &na_bands_rf; } ctx->sd.ctrl_handler = &ctx->ctrl_hdl; /* Set the defaults */ ctx->freq = ctx->bands_rf->rangelow; /* Register subdev */ ret = v4l2_async_register_subdev(sd); if (ret) { dev_err(&client->dev, "register subdev failed\n"); goto err_reg; } /* Initialize device */ ret = max2175_core_init(ctx, refout_bits); if (ret) goto err_init; ret = v4l2_ctrl_handler_setup(hdl); if (ret) goto err_init; return 0; err_init: v4l2_async_unregister_subdev(sd); err_reg: v4l2_ctrl_handler_free(&ctx->ctrl_hdl); return ret; } static int max2175_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct max2175 *ctx = max2175_from_sd(sd); v4l2_ctrl_handler_free(&ctx->ctrl_hdl); v4l2_async_unregister_subdev(sd); return 0; } static const struct i2c_device_id max2175_id[] = { { DRIVER_NAME, 0}, {}, }; MODULE_DEVICE_TABLE(i2c, max2175_id); static const struct of_device_id max2175_of_ids[] = { { .compatible = "maxim,max2175", }, { } }; MODULE_DEVICE_TABLE(of, max2175_of_ids); static struct i2c_driver max2175_driver = { .driver = { .name = DRIVER_NAME, .of_match_table = max2175_of_ids, }, .probe = max2175_probe, .remove = max2175_remove, .id_table = max2175_id, }; module_i2c_driver(max2175_driver); MODULE_DESCRIPTION("Maxim MAX2175 RF to Bits tuner driver"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1