Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jonathan Corbet | 2353 | 97.03% | 6 | 40.00% |
Hans Verkuil | 33 | 1.36% | 3 | 20.00% |
Alexey Khoroshilov | 23 | 0.95% | 1 | 6.67% |
Mauro Carvalho Chehab | 8 | 0.33% | 1 | 6.67% |
Libin Yang | 4 | 0.16% | 1 | 6.67% |
Thomas Gleixner | 2 | 0.08% | 1 | 6.67% |
Gustavo A. R. Silva | 1 | 0.04% | 1 | 6.67% |
Arvind Yadav | 1 | 0.04% | 1 | 6.67% |
Total | 2425 | 15 |
// SPDX-License-Identifier: GPL-2.0-only /* * A driver for the CMOS camera controller in the Marvell 88ALP01 "cafe" * multifunction chip. Currently works with the Omnivision OV7670 * sensor. * * The data sheet for this device can be found at: * http://wiki.laptop.org/images/5/5c/88ALP01_Datasheet_July_2007.pdf * * Copyright 2006-11 One Laptop Per Child Association, Inc. * Copyright 2006-11 Jonathan Corbet <corbet@lwn.net> * * Written by Jonathan Corbet, corbet@lwn.net. * * v4l2_device/v4l2_subdev conversion by: * Copyright (C) 2009 Hans Verkuil <hverkuil@xs4all.nl> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/videodev2.h> #include <media/v4l2-device.h> #include <linux/device.h> #include <linux/wait.h> #include <linux/delay.h> #include <linux/io.h> #include "mcam-core.h" #define CAFE_VERSION 0x000002 /* * Parameters. */ MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>"); MODULE_DESCRIPTION("Marvell 88ALP01 CMOS Camera Controller driver"); MODULE_LICENSE("GPL"); MODULE_SUPPORTED_DEVICE("Video"); struct cafe_camera { int registered; /* Fully initialized? */ struct mcam_camera mcam; struct pci_dev *pdev; wait_queue_head_t smbus_wait; /* Waiting on i2c events */ }; /* * Most of the camera controller registers are defined in mcam-core.h, * but the Cafe platform has some additional registers of its own; * they are described here. */ /* * "General purpose register" has a couple of GPIOs used for sensor * power and reset on OLPC XO 1.0 systems. */ #define REG_GPR 0xb4 #define GPR_C1EN 0x00000020 /* Pad 1 (power down) enable */ #define GPR_C0EN 0x00000010 /* Pad 0 (reset) enable */ #define GPR_C1 0x00000002 /* Control 1 value */ /* * Control 0 is wired to reset on OLPC machines. For ov7x sensors, * it is active low. */ #define GPR_C0 0x00000001 /* Control 0 value */ /* * These registers control the SMBUS module for communicating * with the sensor. */ #define REG_TWSIC0 0xb8 /* TWSI (smbus) control 0 */ #define TWSIC0_EN 0x00000001 /* TWSI enable */ #define TWSIC0_MODE 0x00000002 /* 1 = 16-bit, 0 = 8-bit */ #define TWSIC0_SID 0x000003fc /* Slave ID */ /* * Subtle trickery: the slave ID field starts with bit 2. But the * Linux i2c stack wants to treat the bottommost bit as a separate * read/write bit, which is why slave ID's are usually presented * >>1. For consistency with that behavior, we shift over three * bits instead of two. */ #define TWSIC0_SID_SHIFT 3 #define TWSIC0_CLKDIV 0x0007fc00 /* Clock divider */ #define TWSIC0_MASKACK 0x00400000 /* Mask ack from sensor */ #define TWSIC0_OVMAGIC 0x00800000 /* Make it work on OV sensors */ #define REG_TWSIC1 0xbc /* TWSI control 1 */ #define TWSIC1_DATA 0x0000ffff /* Data to/from camchip */ #define TWSIC1_ADDR 0x00ff0000 /* Address (register) */ #define TWSIC1_ADDR_SHIFT 16 #define TWSIC1_READ 0x01000000 /* Set for read op */ #define TWSIC1_WSTAT 0x02000000 /* Write status */ #define TWSIC1_RVALID 0x04000000 /* Read data valid */ #define TWSIC1_ERROR 0x08000000 /* Something screwed up */ /* * Here's the weird global control registers */ #define REG_GL_CSR 0x3004 /* Control/status register */ #define GCSR_SRS 0x00000001 /* SW Reset set */ #define GCSR_SRC 0x00000002 /* SW Reset clear */ #define GCSR_MRS 0x00000004 /* Master reset set */ #define GCSR_MRC 0x00000008 /* HW Reset clear */ #define GCSR_CCIC_EN 0x00004000 /* CCIC Clock enable */ #define REG_GL_IMASK 0x300c /* Interrupt mask register */ #define GIMSK_CCIC_EN 0x00000004 /* CCIC Interrupt enable */ #define REG_GL_FCR 0x3038 /* GPIO functional control register */ #define GFCR_GPIO_ON 0x08 /* Camera GPIO enabled */ #define REG_GL_GPIOR 0x315c /* GPIO register */ #define GGPIO_OUT 0x80000 /* GPIO output */ #define GGPIO_VAL 0x00008 /* Output pin value */ #define REG_LEN (REG_GL_IMASK + 4) /* * Debugging and related. */ #define cam_err(cam, fmt, arg...) \ dev_err(&(cam)->pdev->dev, fmt, ##arg); #define cam_warn(cam, fmt, arg...) \ dev_warn(&(cam)->pdev->dev, fmt, ##arg); /* -------------------------------------------------------------------- */ /* * The I2C/SMBUS interface to the camera itself starts here. The * controller handles SMBUS itself, presenting a relatively simple register * interface; all we have to do is to tell it where to route the data. */ #define CAFE_SMBUS_TIMEOUT (HZ) /* generous */ static inline struct cafe_camera *to_cam(struct v4l2_device *dev) { struct mcam_camera *m = container_of(dev, struct mcam_camera, v4l2_dev); return container_of(m, struct cafe_camera, mcam); } static int cafe_smbus_write_done(struct mcam_camera *mcam) { unsigned long flags; int c1; /* * We must delay after the interrupt, or the controller gets confused * and never does give us good status. Fortunately, we don't do this * often. */ udelay(20); spin_lock_irqsave(&mcam->dev_lock, flags); c1 = mcam_reg_read(mcam, REG_TWSIC1); spin_unlock_irqrestore(&mcam->dev_lock, flags); return (c1 & (TWSIC1_WSTAT|TWSIC1_ERROR)) != TWSIC1_WSTAT; } static int cafe_smbus_write_data(struct cafe_camera *cam, u16 addr, u8 command, u8 value) { unsigned int rval; unsigned long flags; struct mcam_camera *mcam = &cam->mcam; spin_lock_irqsave(&mcam->dev_lock, flags); rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID); rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */ /* * Marvell sez set clkdiv to all 1's for now. */ rval |= TWSIC0_CLKDIV; mcam_reg_write(mcam, REG_TWSIC0, rval); (void) mcam_reg_read(mcam, REG_TWSIC1); /* force write */ rval = value | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR); mcam_reg_write(mcam, REG_TWSIC1, rval); spin_unlock_irqrestore(&mcam->dev_lock, flags); /* Unfortunately, reading TWSIC1 too soon after sending a command * causes the device to die. * Use a busy-wait because we often send a large quantity of small * commands at-once; using msleep() would cause a lot of context * switches which take longer than 2ms, resulting in a noticeable * boot-time and capture-start delays. */ mdelay(2); /* * Another sad fact is that sometimes, commands silently complete but * cafe_smbus_write_done() never becomes aware of this. * This happens at random and appears to possible occur with any * command. * We don't understand why this is. We work around this issue * with the timeout in the wait below, assuming that all commands * complete within the timeout. */ wait_event_timeout(cam->smbus_wait, cafe_smbus_write_done(mcam), CAFE_SMBUS_TIMEOUT); spin_lock_irqsave(&mcam->dev_lock, flags); rval = mcam_reg_read(mcam, REG_TWSIC1); spin_unlock_irqrestore(&mcam->dev_lock, flags); if (rval & TWSIC1_WSTAT) { cam_err(cam, "SMBUS write (%02x/%02x/%02x) timed out\n", addr, command, value); return -EIO; } if (rval & TWSIC1_ERROR) { cam_err(cam, "SMBUS write (%02x/%02x/%02x) error\n", addr, command, value); return -EIO; } return 0; } static int cafe_smbus_read_done(struct mcam_camera *mcam) { unsigned long flags; int c1; /* * We must delay after the interrupt, or the controller gets confused * and never does give us good status. Fortunately, we don't do this * often. */ udelay(20); spin_lock_irqsave(&mcam->dev_lock, flags); c1 = mcam_reg_read(mcam, REG_TWSIC1); spin_unlock_irqrestore(&mcam->dev_lock, flags); return c1 & (TWSIC1_RVALID|TWSIC1_ERROR); } static int cafe_smbus_read_data(struct cafe_camera *cam, u16 addr, u8 command, u8 *value) { unsigned int rval; unsigned long flags; struct mcam_camera *mcam = &cam->mcam; spin_lock_irqsave(&mcam->dev_lock, flags); rval = TWSIC0_EN | ((addr << TWSIC0_SID_SHIFT) & TWSIC0_SID); rval |= TWSIC0_OVMAGIC; /* Make OV sensors work */ /* * Marvel sez set clkdiv to all 1's for now. */ rval |= TWSIC0_CLKDIV; mcam_reg_write(mcam, REG_TWSIC0, rval); (void) mcam_reg_read(mcam, REG_TWSIC1); /* force write */ rval = TWSIC1_READ | ((command << TWSIC1_ADDR_SHIFT) & TWSIC1_ADDR); mcam_reg_write(mcam, REG_TWSIC1, rval); spin_unlock_irqrestore(&mcam->dev_lock, flags); wait_event_timeout(cam->smbus_wait, cafe_smbus_read_done(mcam), CAFE_SMBUS_TIMEOUT); spin_lock_irqsave(&mcam->dev_lock, flags); rval = mcam_reg_read(mcam, REG_TWSIC1); spin_unlock_irqrestore(&mcam->dev_lock, flags); if (rval & TWSIC1_ERROR) { cam_err(cam, "SMBUS read (%02x/%02x) error\n", addr, command); return -EIO; } if (!(rval & TWSIC1_RVALID)) { cam_err(cam, "SMBUS read (%02x/%02x) timed out\n", addr, command); return -EIO; } *value = rval & 0xff; return 0; } /* * Perform a transfer over SMBUS. This thing is called under * the i2c bus lock, so we shouldn't race with ourselves... */ static int cafe_smbus_xfer(struct i2c_adapter *adapter, u16 addr, unsigned short flags, char rw, u8 command, int size, union i2c_smbus_data *data) { struct cafe_camera *cam = i2c_get_adapdata(adapter); int ret = -EINVAL; /* * This interface would appear to only do byte data ops. OK * it can do word too, but the cam chip has no use for that. */ if (size != I2C_SMBUS_BYTE_DATA) { cam_err(cam, "funky xfer size %d\n", size); return -EINVAL; } if (rw == I2C_SMBUS_WRITE) ret = cafe_smbus_write_data(cam, addr, command, data->byte); else if (rw == I2C_SMBUS_READ) ret = cafe_smbus_read_data(cam, addr, command, &data->byte); return ret; } static void cafe_smbus_enable_irq(struct cafe_camera *cam) { unsigned long flags; spin_lock_irqsave(&cam->mcam.dev_lock, flags); mcam_reg_set_bit(&cam->mcam, REG_IRQMASK, TWSIIRQS); spin_unlock_irqrestore(&cam->mcam.dev_lock, flags); } static u32 cafe_smbus_func(struct i2c_adapter *adapter) { return I2C_FUNC_SMBUS_READ_BYTE_DATA | I2C_FUNC_SMBUS_WRITE_BYTE_DATA; } static const struct i2c_algorithm cafe_smbus_algo = { .smbus_xfer = cafe_smbus_xfer, .functionality = cafe_smbus_func }; static int cafe_smbus_setup(struct cafe_camera *cam) { struct i2c_adapter *adap; int ret; adap = kzalloc(sizeof(*adap), GFP_KERNEL); if (adap == NULL) return -ENOMEM; adap->owner = THIS_MODULE; adap->algo = &cafe_smbus_algo; strscpy(adap->name, "cafe_ccic", sizeof(adap->name)); adap->dev.parent = &cam->pdev->dev; i2c_set_adapdata(adap, cam); ret = i2c_add_adapter(adap); if (ret) { printk(KERN_ERR "Unable to register cafe i2c adapter\n"); kfree(adap); return ret; } cam->mcam.i2c_adapter = adap; cafe_smbus_enable_irq(cam); return 0; } static void cafe_smbus_shutdown(struct cafe_camera *cam) { i2c_del_adapter(cam->mcam.i2c_adapter); kfree(cam->mcam.i2c_adapter); } /* * Controller-level stuff */ static void cafe_ctlr_init(struct mcam_camera *mcam) { unsigned long flags; spin_lock_irqsave(&mcam->dev_lock, flags); /* * Added magic to bring up the hardware on the B-Test board */ mcam_reg_write(mcam, 0x3038, 0x8); mcam_reg_write(mcam, 0x315c, 0x80008); /* * Go through the dance needed to wake the device up. * Note that these registers are global and shared * with the NAND and SD devices. Interaction between the * three still needs to be examined. */ mcam_reg_write(mcam, REG_GL_CSR, GCSR_SRS|GCSR_MRS); /* Needed? */ mcam_reg_write(mcam, REG_GL_CSR, GCSR_SRC|GCSR_MRC); mcam_reg_write(mcam, REG_GL_CSR, GCSR_SRC|GCSR_MRS); /* * Here we must wait a bit for the controller to come around. */ spin_unlock_irqrestore(&mcam->dev_lock, flags); msleep(5); spin_lock_irqsave(&mcam->dev_lock, flags); mcam_reg_write(mcam, REG_GL_CSR, GCSR_CCIC_EN|GCSR_SRC|GCSR_MRC); mcam_reg_set_bit(mcam, REG_GL_IMASK, GIMSK_CCIC_EN); /* * Mask all interrupts. */ mcam_reg_write(mcam, REG_IRQMASK, 0); spin_unlock_irqrestore(&mcam->dev_lock, flags); } static int cafe_ctlr_power_up(struct mcam_camera *mcam) { /* * Part one of the sensor dance: turn the global * GPIO signal on. */ mcam_reg_write(mcam, REG_GL_FCR, GFCR_GPIO_ON); mcam_reg_write(mcam, REG_GL_GPIOR, GGPIO_OUT|GGPIO_VAL); /* * Put the sensor into operational mode (assumes OLPC-style * wiring). Control 0 is reset - set to 1 to operate. * Control 1 is power down, set to 0 to operate. */ mcam_reg_write(mcam, REG_GPR, GPR_C1EN|GPR_C0EN); /* pwr up, reset */ mcam_reg_write(mcam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C0); return 0; } static void cafe_ctlr_power_down(struct mcam_camera *mcam) { mcam_reg_write(mcam, REG_GPR, GPR_C1EN|GPR_C0EN|GPR_C1); mcam_reg_write(mcam, REG_GL_FCR, GFCR_GPIO_ON); mcam_reg_write(mcam, REG_GL_GPIOR, GGPIO_OUT); } /* * The platform interrupt handler. */ static irqreturn_t cafe_irq(int irq, void *data) { struct cafe_camera *cam = data; struct mcam_camera *mcam = &cam->mcam; unsigned int irqs, handled; spin_lock(&mcam->dev_lock); irqs = mcam_reg_read(mcam, REG_IRQSTAT); handled = cam->registered && mccic_irq(mcam, irqs); if (irqs & TWSIIRQS) { mcam_reg_write(mcam, REG_IRQSTAT, TWSIIRQS); wake_up(&cam->smbus_wait); handled = 1; } spin_unlock(&mcam->dev_lock); return IRQ_RETVAL(handled); } /* -------------------------------------------------------------------------- */ /* * PCI interface stuff. */ static int cafe_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { int ret; struct cafe_camera *cam; struct mcam_camera *mcam; /* * Start putting together one of our big camera structures. */ ret = -ENOMEM; cam = kzalloc(sizeof(struct cafe_camera), GFP_KERNEL); if (cam == NULL) goto out; cam->pdev = pdev; mcam = &cam->mcam; mcam->chip_id = MCAM_CAFE; spin_lock_init(&mcam->dev_lock); init_waitqueue_head(&cam->smbus_wait); mcam->plat_power_up = cafe_ctlr_power_up; mcam->plat_power_down = cafe_ctlr_power_down; mcam->dev = &pdev->dev; snprintf(mcam->bus_info, sizeof(mcam->bus_info), "PCI:%s", pci_name(pdev)); /* * Set the clock speed for the XO 1; I don't believe this * driver has ever run anywhere else. */ mcam->clock_speed = 45; mcam->use_smbus = 1; /* * Vmalloc mode for buffers is traditional with this driver. * We *might* be able to run DMA_contig, especially on a system * with CMA in it. */ mcam->buffer_mode = B_vmalloc; /* * Get set up on the PCI bus. */ ret = pci_enable_device(pdev); if (ret) goto out_free; pci_set_master(pdev); ret = -EIO; mcam->regs = pci_iomap(pdev, 0, 0); if (!mcam->regs) { printk(KERN_ERR "Unable to ioremap cafe-ccic regs\n"); goto out_disable; } mcam->regs_size = pci_resource_len(pdev, 0); ret = request_irq(pdev->irq, cafe_irq, IRQF_SHARED, "cafe-ccic", cam); if (ret) goto out_iounmap; /* * Initialize the controller and leave it powered up. It will * stay that way until the sensor driver shows up. */ cafe_ctlr_init(mcam); cafe_ctlr_power_up(mcam); /* * Set up I2C/SMBUS communications. We have to drop the mutex here * because the sensor could attach in this call chain, leading to * unsightly deadlocks. */ ret = cafe_smbus_setup(cam); if (ret) goto out_pdown; ret = mccic_register(mcam); if (ret == 0) { cam->registered = 1; return 0; } cafe_smbus_shutdown(cam); out_pdown: cafe_ctlr_power_down(mcam); free_irq(pdev->irq, cam); out_iounmap: pci_iounmap(pdev, mcam->regs); out_disable: pci_disable_device(pdev); out_free: kfree(cam); out: return ret; } /* * Shut down an initialized device */ static void cafe_shutdown(struct cafe_camera *cam) { mccic_shutdown(&cam->mcam); cafe_smbus_shutdown(cam); free_irq(cam->pdev->irq, cam); pci_iounmap(cam->pdev, cam->mcam.regs); } static void cafe_pci_remove(struct pci_dev *pdev) { struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev); struct cafe_camera *cam = to_cam(v4l2_dev); if (cam == NULL) { printk(KERN_WARNING "pci_remove on unknown pdev %p\n", pdev); return; } cafe_shutdown(cam); kfree(cam); } #ifdef CONFIG_PM /* * Basic power management. */ static int cafe_pci_suspend(struct pci_dev *pdev, pm_message_t state) { struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev); struct cafe_camera *cam = to_cam(v4l2_dev); int ret; ret = pci_save_state(pdev); if (ret) return ret; mccic_suspend(&cam->mcam); pci_disable_device(pdev); return 0; } static int cafe_pci_resume(struct pci_dev *pdev) { struct v4l2_device *v4l2_dev = dev_get_drvdata(&pdev->dev); struct cafe_camera *cam = to_cam(v4l2_dev); int ret = 0; pci_restore_state(pdev); ret = pci_enable_device(pdev); if (ret) { cam_warn(cam, "Unable to re-enable device on resume!\n"); return ret; } cafe_ctlr_init(&cam->mcam); return mccic_resume(&cam->mcam); } #endif /* CONFIG_PM */ static const struct pci_device_id cafe_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_CCIC) }, { 0, } }; MODULE_DEVICE_TABLE(pci, cafe_ids); static struct pci_driver cafe_pci_driver = { .name = "cafe1000-ccic", .id_table = cafe_ids, .probe = cafe_pci_probe, .remove = cafe_pci_remove, #ifdef CONFIG_PM .suspend = cafe_pci_suspend, .resume = cafe_pci_resume, #endif }; static int __init cafe_init(void) { int ret; printk(KERN_NOTICE "Marvell M88ALP01 'CAFE' Camera Controller version %d\n", CAFE_VERSION); ret = pci_register_driver(&cafe_pci_driver); if (ret) { printk(KERN_ERR "Unable to register cafe_ccic driver\n"); goto out; } ret = 0; out: return ret; } static void __exit cafe_exit(void) { pci_unregister_driver(&cafe_pci_driver); } module_init(cafe_init); module_exit(cafe_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1