Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Oded Gabbay | 4037 | 94.59% | 19 | 76.00% |
Omer Shpigelman | 140 | 3.28% | 2 | 8.00% |
Dalit Ben Zoor | 68 | 1.59% | 2 | 8.00% |
Tomer Tayar | 23 | 0.54% | 2 | 8.00% |
Total | 4268 | 25 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2016-2019 HabanaLabs, Ltd. * All Rights Reserved. */ #define pr_fmt(fmt) "habanalabs: " fmt #include "habanalabs.h" #include <linux/pci.h> #include <linux/sched/signal.h> #include <linux/hwmon.h> #include <uapi/misc/habanalabs.h> #define HL_PLDM_PENDING_RESET_PER_SEC (HL_PENDING_RESET_PER_SEC * 10) bool hl_device_disabled_or_in_reset(struct hl_device *hdev) { if ((hdev->disabled) || (atomic_read(&hdev->in_reset))) return true; else return false; } enum hl_device_status hl_device_status(struct hl_device *hdev) { enum hl_device_status status; if (hdev->disabled) status = HL_DEVICE_STATUS_MALFUNCTION; else if (atomic_read(&hdev->in_reset)) status = HL_DEVICE_STATUS_IN_RESET; else status = HL_DEVICE_STATUS_OPERATIONAL; return status; }; static void hpriv_release(struct kref *ref) { struct hl_fpriv *hpriv; struct hl_device *hdev; hpriv = container_of(ref, struct hl_fpriv, refcount); hdev = hpriv->hdev; put_pid(hpriv->taskpid); hl_debugfs_remove_file(hpriv); mutex_destroy(&hpriv->restore_phase_mutex); kfree(hpriv); /* Now the FD is really closed */ atomic_dec(&hdev->fd_open_cnt); /* This allows a new user context to open the device */ hdev->user_ctx = NULL; } void hl_hpriv_get(struct hl_fpriv *hpriv) { kref_get(&hpriv->refcount); } void hl_hpriv_put(struct hl_fpriv *hpriv) { kref_put(&hpriv->refcount, hpriv_release); } /* * hl_device_release - release function for habanalabs device * * @inode: pointer to inode structure * @filp: pointer to file structure * * Called when process closes an habanalabs device */ static int hl_device_release(struct inode *inode, struct file *filp) { struct hl_fpriv *hpriv = filp->private_data; hl_cb_mgr_fini(hpriv->hdev, &hpriv->cb_mgr); hl_ctx_mgr_fini(hpriv->hdev, &hpriv->ctx_mgr); filp->private_data = NULL; hl_hpriv_put(hpriv); return 0; } /* * hl_mmap - mmap function for habanalabs device * * @*filp: pointer to file structure * @*vma: pointer to vm_area_struct of the process * * Called when process does an mmap on habanalabs device. Call the device's mmap * function at the end of the common code. */ static int hl_mmap(struct file *filp, struct vm_area_struct *vma) { struct hl_fpriv *hpriv = filp->private_data; if ((vma->vm_pgoff & HL_MMAP_CB_MASK) == HL_MMAP_CB_MASK) { vma->vm_pgoff ^= HL_MMAP_CB_MASK; return hl_cb_mmap(hpriv, vma); } return -EINVAL; } static const struct file_operations hl_ops = { .owner = THIS_MODULE, .open = hl_device_open, .release = hl_device_release, .mmap = hl_mmap, .unlocked_ioctl = hl_ioctl, .compat_ioctl = hl_ioctl }; /* * device_setup_cdev - setup cdev and device for habanalabs device * * @hdev: pointer to habanalabs device structure * @hclass: pointer to the class object of the device * @minor: minor number of the specific device * @fpos : file operations to install for this device * * Create a cdev and a Linux device for habanalabs's device. Need to be * called at the end of the habanalabs device initialization process, * because this function exposes the device to the user */ static int device_setup_cdev(struct hl_device *hdev, struct class *hclass, int minor, const struct file_operations *fops) { int err, devno = MKDEV(hdev->major, minor); struct cdev *hdev_cdev = &hdev->cdev; char *name; name = kasprintf(GFP_KERNEL, "hl%d", hdev->id); if (!name) return -ENOMEM; cdev_init(hdev_cdev, fops); hdev_cdev->owner = THIS_MODULE; err = cdev_add(hdev_cdev, devno, 1); if (err) { pr_err("Failed to add char device %s\n", name); goto err_cdev_add; } hdev->dev = device_create(hclass, NULL, devno, NULL, "%s", name); if (IS_ERR(hdev->dev)) { pr_err("Failed to create device %s\n", name); err = PTR_ERR(hdev->dev); goto err_device_create; } dev_set_drvdata(hdev->dev, hdev); kfree(name); return 0; err_device_create: cdev_del(hdev_cdev); err_cdev_add: kfree(name); return err; } /* * device_early_init - do some early initialization for the habanalabs device * * @hdev: pointer to habanalabs device structure * * Install the relevant function pointers and call the early_init function, * if such a function exists */ static int device_early_init(struct hl_device *hdev) { int rc; switch (hdev->asic_type) { case ASIC_GOYA: goya_set_asic_funcs(hdev); strlcpy(hdev->asic_name, "GOYA", sizeof(hdev->asic_name)); break; default: dev_err(hdev->dev, "Unrecognized ASIC type %d\n", hdev->asic_type); return -EINVAL; } rc = hdev->asic_funcs->early_init(hdev); if (rc) return rc; rc = hl_asid_init(hdev); if (rc) goto early_fini; hdev->cq_wq = alloc_workqueue("hl-free-jobs", WQ_UNBOUND, 0); if (hdev->cq_wq == NULL) { dev_err(hdev->dev, "Failed to allocate CQ workqueue\n"); rc = -ENOMEM; goto asid_fini; } hdev->eq_wq = alloc_workqueue("hl-events", WQ_UNBOUND, 0); if (hdev->eq_wq == NULL) { dev_err(hdev->dev, "Failed to allocate EQ workqueue\n"); rc = -ENOMEM; goto free_cq_wq; } hdev->hl_chip_info = kzalloc(sizeof(struct hwmon_chip_info), GFP_KERNEL); if (!hdev->hl_chip_info) { rc = -ENOMEM; goto free_eq_wq; } hl_cb_mgr_init(&hdev->kernel_cb_mgr); mutex_init(&hdev->fd_open_cnt_lock); mutex_init(&hdev->send_cpu_message_lock); mutex_init(&hdev->mmu_cache_lock); INIT_LIST_HEAD(&hdev->hw_queues_mirror_list); spin_lock_init(&hdev->hw_queues_mirror_lock); atomic_set(&hdev->in_reset, 0); atomic_set(&hdev->fd_open_cnt, 0); atomic_set(&hdev->cs_active_cnt, 0); return 0; free_eq_wq: destroy_workqueue(hdev->eq_wq); free_cq_wq: destroy_workqueue(hdev->cq_wq); asid_fini: hl_asid_fini(hdev); early_fini: if (hdev->asic_funcs->early_fini) hdev->asic_funcs->early_fini(hdev); return rc; } /* * device_early_fini - finalize all that was done in device_early_init * * @hdev: pointer to habanalabs device structure * */ static void device_early_fini(struct hl_device *hdev) { mutex_destroy(&hdev->mmu_cache_lock); mutex_destroy(&hdev->send_cpu_message_lock); hl_cb_mgr_fini(hdev, &hdev->kernel_cb_mgr); kfree(hdev->hl_chip_info); destroy_workqueue(hdev->eq_wq); destroy_workqueue(hdev->cq_wq); hl_asid_fini(hdev); if (hdev->asic_funcs->early_fini) hdev->asic_funcs->early_fini(hdev); mutex_destroy(&hdev->fd_open_cnt_lock); } static void set_freq_to_low_job(struct work_struct *work) { struct hl_device *hdev = container_of(work, struct hl_device, work_freq.work); if (atomic_read(&hdev->fd_open_cnt) == 0) hl_device_set_frequency(hdev, PLL_LOW); schedule_delayed_work(&hdev->work_freq, usecs_to_jiffies(HL_PLL_LOW_JOB_FREQ_USEC)); } static void hl_device_heartbeat(struct work_struct *work) { struct hl_device *hdev = container_of(work, struct hl_device, work_heartbeat.work); if (hl_device_disabled_or_in_reset(hdev)) goto reschedule; if (!hdev->asic_funcs->send_heartbeat(hdev)) goto reschedule; dev_err(hdev->dev, "Device heartbeat failed!\n"); hl_device_reset(hdev, true, false); return; reschedule: schedule_delayed_work(&hdev->work_heartbeat, usecs_to_jiffies(HL_HEARTBEAT_PER_USEC)); } /* * device_late_init - do late stuff initialization for the habanalabs device * * @hdev: pointer to habanalabs device structure * * Do stuff that either needs the device H/W queues to be active or needs * to happen after all the rest of the initialization is finished */ static int device_late_init(struct hl_device *hdev) { int rc; INIT_DELAYED_WORK(&hdev->work_freq, set_freq_to_low_job); hdev->high_pll = hdev->asic_prop.high_pll; /* force setting to low frequency */ atomic_set(&hdev->curr_pll_profile, PLL_LOW); if (hdev->pm_mng_profile == PM_AUTO) hdev->asic_funcs->set_pll_profile(hdev, PLL_LOW); else hdev->asic_funcs->set_pll_profile(hdev, PLL_LAST); if (hdev->asic_funcs->late_init) { rc = hdev->asic_funcs->late_init(hdev); if (rc) { dev_err(hdev->dev, "failed late initialization for the H/W\n"); return rc; } } schedule_delayed_work(&hdev->work_freq, usecs_to_jiffies(HL_PLL_LOW_JOB_FREQ_USEC)); if (hdev->heartbeat) { INIT_DELAYED_WORK(&hdev->work_heartbeat, hl_device_heartbeat); schedule_delayed_work(&hdev->work_heartbeat, usecs_to_jiffies(HL_HEARTBEAT_PER_USEC)); } hdev->late_init_done = true; return 0; } /* * device_late_fini - finalize all that was done in device_late_init * * @hdev: pointer to habanalabs device structure * */ static void device_late_fini(struct hl_device *hdev) { if (!hdev->late_init_done) return; cancel_delayed_work_sync(&hdev->work_freq); if (hdev->heartbeat) cancel_delayed_work_sync(&hdev->work_heartbeat); if (hdev->asic_funcs->late_fini) hdev->asic_funcs->late_fini(hdev); hdev->late_init_done = false; } /* * hl_device_set_frequency - set the frequency of the device * * @hdev: pointer to habanalabs device structure * @freq: the new frequency value * * Change the frequency if needed. * We allose to set PLL to low only if there is no user process * Returns 0 if no change was done, otherwise returns 1; */ int hl_device_set_frequency(struct hl_device *hdev, enum hl_pll_frequency freq) { enum hl_pll_frequency old_freq = (freq == PLL_HIGH) ? PLL_LOW : PLL_HIGH; int ret; if (hdev->pm_mng_profile == PM_MANUAL) return 0; ret = atomic_cmpxchg(&hdev->curr_pll_profile, old_freq, freq); if (ret == freq) return 0; /* * in case we want to lower frequency, check if device is not * opened. We must have a check here to workaround race condition with * hl_device_open */ if ((freq == PLL_LOW) && (atomic_read(&hdev->fd_open_cnt) > 0)) { atomic_set(&hdev->curr_pll_profile, PLL_HIGH); return 0; } dev_dbg(hdev->dev, "Changing device frequency to %s\n", freq == PLL_HIGH ? "high" : "low"); hdev->asic_funcs->set_pll_profile(hdev, freq); return 1; } /* * hl_device_suspend - initiate device suspend * * @hdev: pointer to habanalabs device structure * * Puts the hw in the suspend state (all asics). * Returns 0 for success or an error on failure. * Called at driver suspend. */ int hl_device_suspend(struct hl_device *hdev) { int rc; pci_save_state(hdev->pdev); /* Block future CS/VM/JOB completion operations */ rc = atomic_cmpxchg(&hdev->in_reset, 0, 1); if (rc) { dev_err(hdev->dev, "Can't suspend while in reset\n"); return -EIO; } /* This blocks all other stuff that is not blocked by in_reset */ hdev->disabled = true; /* * Flush anyone that is inside the critical section of enqueue * jobs to the H/W */ hdev->asic_funcs->hw_queues_lock(hdev); hdev->asic_funcs->hw_queues_unlock(hdev); /* Flush processes that are sending message to CPU */ mutex_lock(&hdev->send_cpu_message_lock); mutex_unlock(&hdev->send_cpu_message_lock); rc = hdev->asic_funcs->suspend(hdev); if (rc) dev_err(hdev->dev, "Failed to disable PCI access of device CPU\n"); /* Shut down the device */ pci_disable_device(hdev->pdev); pci_set_power_state(hdev->pdev, PCI_D3hot); return 0; } /* * hl_device_resume - initiate device resume * * @hdev: pointer to habanalabs device structure * * Bring the hw back to operating state (all asics). * Returns 0 for success or an error on failure. * Called at driver resume. */ int hl_device_resume(struct hl_device *hdev) { int rc; pci_set_power_state(hdev->pdev, PCI_D0); pci_restore_state(hdev->pdev); rc = pci_enable_device_mem(hdev->pdev); if (rc) { dev_err(hdev->dev, "Failed to enable PCI device in resume\n"); return rc; } pci_set_master(hdev->pdev); rc = hdev->asic_funcs->resume(hdev); if (rc) { dev_err(hdev->dev, "Failed to resume device after suspend\n"); goto disable_device; } hdev->disabled = false; atomic_set(&hdev->in_reset, 0); rc = hl_device_reset(hdev, true, false); if (rc) { dev_err(hdev->dev, "Failed to reset device during resume\n"); goto disable_device; } return 0; disable_device: pci_clear_master(hdev->pdev); pci_disable_device(hdev->pdev); return rc; } static void device_kill_open_processes(struct hl_device *hdev) { u16 pending_total, pending_cnt; struct task_struct *task = NULL; if (hdev->pldm) pending_total = HL_PLDM_PENDING_RESET_PER_SEC; else pending_total = HL_PENDING_RESET_PER_SEC; pending_cnt = pending_total; /* Flush all processes that are inside hl_open */ mutex_lock(&hdev->fd_open_cnt_lock); while ((atomic_read(&hdev->fd_open_cnt)) && (pending_cnt)) { pending_cnt--; dev_info(hdev->dev, "Can't HARD reset, waiting for user to close FD\n"); ssleep(1); } if (atomic_read(&hdev->fd_open_cnt)) { task = get_pid_task(hdev->user_ctx->hpriv->taskpid, PIDTYPE_PID); if (task) { dev_info(hdev->dev, "Killing user processes\n"); send_sig(SIGKILL, task, 1); msleep(100); put_task_struct(task); } } /* We killed the open users, but because the driver cleans up after the * user contexts are closed (e.g. mmu mappings), we need to wait again * to make sure the cleaning phase is finished before continuing with * the reset */ pending_cnt = pending_total; while ((atomic_read(&hdev->fd_open_cnt)) && (pending_cnt)) { pending_cnt--; ssleep(1); } if (atomic_read(&hdev->fd_open_cnt)) dev_crit(hdev->dev, "Going to hard reset with open user contexts\n"); mutex_unlock(&hdev->fd_open_cnt_lock); } static void device_hard_reset_pending(struct work_struct *work) { struct hl_device_reset_work *device_reset_work = container_of(work, struct hl_device_reset_work, reset_work); struct hl_device *hdev = device_reset_work->hdev; device_kill_open_processes(hdev); hl_device_reset(hdev, true, true); kfree(device_reset_work); } /* * hl_device_reset - reset the device * * @hdev: pointer to habanalabs device structure * @hard_reset: should we do hard reset to all engines or just reset the * compute/dma engines * * Block future CS and wait for pending CS to be enqueued * Call ASIC H/W fini * Flush all completions * Re-initialize all internal data structures * Call ASIC H/W init, late_init * Test queues * Enable device * * Returns 0 for success or an error on failure. */ int hl_device_reset(struct hl_device *hdev, bool hard_reset, bool from_hard_reset_thread) { int i, rc; if (!hdev->init_done) { dev_err(hdev->dev, "Can't reset before initialization is done\n"); return 0; } /* * Prevent concurrency in this function - only one reset should be * done at any given time. Only need to perform this if we didn't * get from the dedicated hard reset thread */ if (!from_hard_reset_thread) { /* Block future CS/VM/JOB completion operations */ rc = atomic_cmpxchg(&hdev->in_reset, 0, 1); if (rc) return 0; /* This also blocks future CS/VM/JOB completion operations */ hdev->disabled = true; /* * Flush anyone that is inside the critical section of enqueue * jobs to the H/W */ hdev->asic_funcs->hw_queues_lock(hdev); hdev->asic_funcs->hw_queues_unlock(hdev); dev_err(hdev->dev, "Going to RESET device!\n"); } again: if ((hard_reset) && (!from_hard_reset_thread)) { struct hl_device_reset_work *device_reset_work; hdev->hard_reset_pending = true; if (!hdev->pdev) { dev_err(hdev->dev, "Reset action is NOT supported in simulator\n"); rc = -EINVAL; goto out_err; } device_reset_work = kzalloc(sizeof(*device_reset_work), GFP_ATOMIC); if (!device_reset_work) { rc = -ENOMEM; goto out_err; } /* * Because the reset function can't run from interrupt or * from heartbeat work, we need to call the reset function * from a dedicated work */ INIT_WORK(&device_reset_work->reset_work, device_hard_reset_pending); device_reset_work->hdev = hdev; schedule_work(&device_reset_work->reset_work); return 0; } if (hard_reset) { device_late_fini(hdev); /* * Now that the heartbeat thread is closed, flush processes * which are sending messages to CPU */ mutex_lock(&hdev->send_cpu_message_lock); mutex_unlock(&hdev->send_cpu_message_lock); } /* * Halt the engines and disable interrupts so we won't get any more * completions from H/W and we won't have any accesses from the * H/W to the host machine */ hdev->asic_funcs->halt_engines(hdev, hard_reset); /* Go over all the queues, release all CS and their jobs */ hl_cs_rollback_all(hdev); /* Release kernel context */ if ((hard_reset) && (hl_ctx_put(hdev->kernel_ctx) == 1)) hdev->kernel_ctx = NULL; /* Reset the H/W. It will be in idle state after this returns */ hdev->asic_funcs->hw_fini(hdev, hard_reset); if (hard_reset) { hl_vm_fini(hdev); hl_eq_reset(hdev, &hdev->event_queue); } /* Re-initialize PI,CI to 0 in all queues (hw queue, cq) */ hl_hw_queue_reset(hdev, hard_reset); for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) hl_cq_reset(hdev, &hdev->completion_queue[i]); /* Make sure the context switch phase will run again */ if (hdev->user_ctx) { atomic_set(&hdev->user_ctx->thread_ctx_switch_token, 1); hdev->user_ctx->thread_ctx_switch_wait_token = 0; } /* Finished tear-down, starting to re-initialize */ if (hard_reset) { hdev->device_cpu_disabled = false; hdev->hard_reset_pending = false; if (hdev->kernel_ctx) { dev_crit(hdev->dev, "kernel ctx was alive during hard reset, something is terribly wrong\n"); rc = -EBUSY; goto out_err; } /* Allocate the kernel context */ hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), GFP_KERNEL); if (!hdev->kernel_ctx) { rc = -ENOMEM; goto out_err; } hdev->user_ctx = NULL; rc = hl_ctx_init(hdev, hdev->kernel_ctx, true); if (rc) { dev_err(hdev->dev, "failed to init kernel ctx in hard reset\n"); kfree(hdev->kernel_ctx); hdev->kernel_ctx = NULL; goto out_err; } } rc = hdev->asic_funcs->hw_init(hdev); if (rc) { dev_err(hdev->dev, "failed to initialize the H/W after reset\n"); goto out_err; } hdev->disabled = false; /* Check that the communication with the device is working */ rc = hdev->asic_funcs->test_queues(hdev); if (rc) { dev_err(hdev->dev, "Failed to detect if device is alive after reset\n"); goto out_err; } if (hard_reset) { rc = device_late_init(hdev); if (rc) { dev_err(hdev->dev, "Failed late init after hard reset\n"); goto out_err; } rc = hl_vm_init(hdev); if (rc) { dev_err(hdev->dev, "Failed to init memory module after hard reset\n"); goto out_err; } hl_set_max_power(hdev, hdev->max_power); } else { rc = hdev->asic_funcs->soft_reset_late_init(hdev); if (rc) { dev_err(hdev->dev, "Failed late init after soft reset\n"); goto out_err; } } atomic_set(&hdev->in_reset, 0); if (hard_reset) hdev->hard_reset_cnt++; else hdev->soft_reset_cnt++; return 0; out_err: hdev->disabled = true; if (hard_reset) { dev_err(hdev->dev, "Failed to reset! Device is NOT usable\n"); hdev->hard_reset_cnt++; } else { dev_err(hdev->dev, "Failed to do soft-reset, trying hard reset\n"); hdev->soft_reset_cnt++; hard_reset = true; goto again; } atomic_set(&hdev->in_reset, 0); return rc; } /* * hl_device_init - main initialization function for habanalabs device * * @hdev: pointer to habanalabs device structure * * Allocate an id for the device, do early initialization and then call the * ASIC specific initialization functions. Finally, create the cdev and the * Linux device to expose it to the user */ int hl_device_init(struct hl_device *hdev, struct class *hclass) { int i, rc, cq_ready_cnt; /* Create device */ rc = device_setup_cdev(hdev, hclass, hdev->id, &hl_ops); if (rc) goto out_disabled; /* Initialize ASIC function pointers and perform early init */ rc = device_early_init(hdev); if (rc) goto release_device; /* * Start calling ASIC initialization. First S/W then H/W and finally * late init */ rc = hdev->asic_funcs->sw_init(hdev); if (rc) goto early_fini; /* * Initialize the H/W queues. Must be done before hw_init, because * there the addresses of the kernel queue are being written to the * registers of the device */ rc = hl_hw_queues_create(hdev); if (rc) { dev_err(hdev->dev, "failed to initialize kernel queues\n"); goto sw_fini; } /* * Initialize the completion queues. Must be done before hw_init, * because there the addresses of the completion queues are being * passed as arguments to request_irq */ hdev->completion_queue = kcalloc(hdev->asic_prop.completion_queues_count, sizeof(*hdev->completion_queue), GFP_KERNEL); if (!hdev->completion_queue) { dev_err(hdev->dev, "failed to allocate completion queues\n"); rc = -ENOMEM; goto hw_queues_destroy; } for (i = 0, cq_ready_cnt = 0; i < hdev->asic_prop.completion_queues_count; i++, cq_ready_cnt++) { rc = hl_cq_init(hdev, &hdev->completion_queue[i], i); if (rc) { dev_err(hdev->dev, "failed to initialize completion queue\n"); goto cq_fini; } } /* * Initialize the event queue. Must be done before hw_init, * because there the address of the event queue is being * passed as argument to request_irq */ rc = hl_eq_init(hdev, &hdev->event_queue); if (rc) { dev_err(hdev->dev, "failed to initialize event queue\n"); goto cq_fini; } /* Allocate the kernel context */ hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), GFP_KERNEL); if (!hdev->kernel_ctx) { rc = -ENOMEM; goto eq_fini; } hdev->user_ctx = NULL; rc = hl_ctx_init(hdev, hdev->kernel_ctx, true); if (rc) { dev_err(hdev->dev, "failed to initialize kernel context\n"); goto free_ctx; } rc = hl_cb_pool_init(hdev); if (rc) { dev_err(hdev->dev, "failed to initialize CB pool\n"); goto release_ctx; } rc = hl_sysfs_init(hdev); if (rc) { dev_err(hdev->dev, "failed to initialize sysfs\n"); goto free_cb_pool; } hl_debugfs_add_device(hdev); if (hdev->asic_funcs->get_hw_state(hdev) == HL_DEVICE_HW_STATE_DIRTY) { dev_info(hdev->dev, "H/W state is dirty, must reset before initializing\n"); hdev->asic_funcs->hw_fini(hdev, true); } rc = hdev->asic_funcs->hw_init(hdev); if (rc) { dev_err(hdev->dev, "failed to initialize the H/W\n"); rc = 0; goto out_disabled; } hdev->disabled = false; /* Check that the communication with the device is working */ rc = hdev->asic_funcs->test_queues(hdev); if (rc) { dev_err(hdev->dev, "Failed to detect if device is alive\n"); rc = 0; goto out_disabled; } /* After test_queues, KMD can start sending messages to device CPU */ rc = device_late_init(hdev); if (rc) { dev_err(hdev->dev, "Failed late initialization\n"); rc = 0; goto out_disabled; } dev_info(hdev->dev, "Found %s device with %lluGB DRAM\n", hdev->asic_name, hdev->asic_prop.dram_size / 1024 / 1024 / 1024); rc = hl_vm_init(hdev); if (rc) { dev_err(hdev->dev, "Failed to initialize memory module\n"); rc = 0; goto out_disabled; } /* * hl_hwmon_init must be called after device_late_init, because only * there we get the information from the device about which * hwmon-related sensors the device supports */ rc = hl_hwmon_init(hdev); if (rc) { dev_err(hdev->dev, "Failed to initialize hwmon\n"); rc = 0; goto out_disabled; } dev_notice(hdev->dev, "Successfully added device to habanalabs driver\n"); hdev->init_done = true; return 0; free_cb_pool: hl_cb_pool_fini(hdev); release_ctx: if (hl_ctx_put(hdev->kernel_ctx) != 1) dev_err(hdev->dev, "kernel ctx is still alive on initialization failure\n"); free_ctx: kfree(hdev->kernel_ctx); eq_fini: hl_eq_fini(hdev, &hdev->event_queue); cq_fini: for (i = 0 ; i < cq_ready_cnt ; i++) hl_cq_fini(hdev, &hdev->completion_queue[i]); kfree(hdev->completion_queue); hw_queues_destroy: hl_hw_queues_destroy(hdev); sw_fini: hdev->asic_funcs->sw_fini(hdev); early_fini: device_early_fini(hdev); release_device: device_destroy(hclass, hdev->dev->devt); cdev_del(&hdev->cdev); out_disabled: hdev->disabled = true; if (hdev->pdev) dev_err(&hdev->pdev->dev, "Failed to initialize hl%d. Device is NOT usable !\n", hdev->id); else pr_err("Failed to initialize hl%d. Device is NOT usable !\n", hdev->id); return rc; } /* * hl_device_fini - main tear-down function for habanalabs device * * @hdev: pointer to habanalabs device structure * * Destroy the device, call ASIC fini functions and release the id */ void hl_device_fini(struct hl_device *hdev) { int i, rc; ktime_t timeout; dev_info(hdev->dev, "Removing device\n"); /* * This function is competing with the reset function, so try to * take the reset atomic and if we are already in middle of reset, * wait until reset function is finished. Reset function is designed * to always finish (could take up to a few seconds in worst case). */ timeout = ktime_add_us(ktime_get(), HL_PENDING_RESET_PER_SEC * 1000 * 1000 * 4); rc = atomic_cmpxchg(&hdev->in_reset, 0, 1); while (rc) { usleep_range(50, 200); rc = atomic_cmpxchg(&hdev->in_reset, 0, 1); if (ktime_compare(ktime_get(), timeout) > 0) { WARN(1, "Failed to remove device because reset function did not finish\n"); return; } } /* Mark device as disabled */ hdev->disabled = true; /* * Flush anyone that is inside the critical section of enqueue * jobs to the H/W */ hdev->asic_funcs->hw_queues_lock(hdev); hdev->asic_funcs->hw_queues_unlock(hdev); hdev->hard_reset_pending = true; device_kill_open_processes(hdev); hl_hwmon_fini(hdev); device_late_fini(hdev); hl_debugfs_remove_device(hdev); hl_sysfs_fini(hdev); /* * Halt the engines and disable interrupts so we won't get any more * completions from H/W and we won't have any accesses from the * H/W to the host machine */ hdev->asic_funcs->halt_engines(hdev, true); /* Go over all the queues, release all CS and their jobs */ hl_cs_rollback_all(hdev); hl_cb_pool_fini(hdev); /* Release kernel context */ if ((hdev->kernel_ctx) && (hl_ctx_put(hdev->kernel_ctx) != 1)) dev_err(hdev->dev, "kernel ctx is still alive\n"); /* Reset the H/W. It will be in idle state after this returns */ hdev->asic_funcs->hw_fini(hdev, true); hl_vm_fini(hdev); hl_eq_fini(hdev, &hdev->event_queue); for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) hl_cq_fini(hdev, &hdev->completion_queue[i]); kfree(hdev->completion_queue); hl_hw_queues_destroy(hdev); /* Call ASIC S/W finalize function */ hdev->asic_funcs->sw_fini(hdev); device_early_fini(hdev); /* Hide device from user */ device_destroy(hdev->dev->class, hdev->dev->devt); cdev_del(&hdev->cdev); pr_info("removed device successfully\n"); } /* * hl_poll_timeout_memory - Periodically poll a host memory address * until it is not zero or a timeout occurs * @hdev: pointer to habanalabs device structure * @addr: Address to poll * @timeout_us: timeout in us * @val: Variable to read the value into * * Returns 0 on success and -ETIMEDOUT upon a timeout. In either * case, the last read value at @addr is stored in @val. Must not * be called from atomic context if sleep_us or timeout_us are used. * * The function sleeps for 100us with timeout value of * timeout_us */ int hl_poll_timeout_memory(struct hl_device *hdev, u64 addr, u32 timeout_us, u32 *val) { /* * address in this function points always to a memory location in the * host's (server's) memory. That location is updated asynchronously * either by the direct access of the device or by another core */ u32 *paddr = (u32 *) (uintptr_t) addr; ktime_t timeout; /* timeout should be longer when working with simulator */ if (!hdev->pdev) timeout_us *= 10; timeout = ktime_add_us(ktime_get(), timeout_us); might_sleep(); for (;;) { /* * Flush CPU read/write buffers to make sure we read updates * done by other cores or by the device */ mb(); *val = *paddr; if (*val) break; if (ktime_compare(ktime_get(), timeout) > 0) { *val = *paddr; break; } usleep_range((100 >> 2) + 1, 100); } return *val ? 0 : -ETIMEDOUT; } /* * hl_poll_timeout_devicememory - Periodically poll a device memory address * until it is not zero or a timeout occurs * @hdev: pointer to habanalabs device structure * @addr: Device address to poll * @timeout_us: timeout in us * @val: Variable to read the value into * * Returns 0 on success and -ETIMEDOUT upon a timeout. In either * case, the last read value at @addr is stored in @val. Must not * be called from atomic context if sleep_us or timeout_us are used. * * The function sleeps for 100us with timeout value of * timeout_us */ int hl_poll_timeout_device_memory(struct hl_device *hdev, void __iomem *addr, u32 timeout_us, u32 *val) { ktime_t timeout = ktime_add_us(ktime_get(), timeout_us); might_sleep(); for (;;) { *val = readl(addr); if (*val) break; if (ktime_compare(ktime_get(), timeout) > 0) { *val = readl(addr); break; } usleep_range((100 >> 2) + 1, 100); } return *val ? 0 : -ETIMEDOUT; } /* * MMIO register access helper functions. */ /* * hl_rreg - Read an MMIO register * * @hdev: pointer to habanalabs device structure * @reg: MMIO register offset (in bytes) * * Returns the value of the MMIO register we are asked to read * */ inline u32 hl_rreg(struct hl_device *hdev, u32 reg) { return readl(hdev->rmmio + reg); } /* * hl_wreg - Write to an MMIO register * * @hdev: pointer to habanalabs device structure * @reg: MMIO register offset (in bytes) * @val: 32-bit value * * Writes the 32-bit value into the MMIO register * */ inline void hl_wreg(struct hl_device *hdev, u32 reg, u32 val) { writel(val, hdev->rmmio + reg); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1