Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Samu Onkalo | 2688 | 42.43% | 19 | 33.33% |
Daniel Mack | 1153 | 18.20% | 5 | 8.77% |
Pavel Machek | 1037 | 16.37% | 3 | 5.26% |
Éric Piel | 752 | 11.87% | 10 | 17.54% |
Takashi Iwai | 234 | 3.69% | 4 | 7.02% |
AnilKumar Chimata | 214 | 3.38% | 2 | 3.51% |
Sebastian Reichel | 186 | 2.94% | 2 | 3.51% |
Joe Perches | 33 | 0.52% | 1 | 1.75% |
Jingoo Han | 11 | 0.17% | 1 | 1.75% |
Rusty Russell | 9 | 0.14% | 1 | 1.75% |
Giuseppe Bilotta | 6 | 0.09% | 1 | 1.75% |
Ingo Molnar | 3 | 0.05% | 1 | 1.75% |
Linus Torvalds | 2 | 0.03% | 1 | 1.75% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.75% |
Kalhan Trisal | 1 | 0.02% | 1 | 1.75% |
Jean Delvare | 1 | 0.02% | 1 | 1.75% |
Arvind Yadav | 1 | 0.02% | 1 | 1.75% |
Luis R. Rodriguez | 1 | 0.02% | 1 | 1.75% |
Al Viro | 1 | 0.02% | 1 | 1.75% |
Total | 6335 | 57 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * lis3lv02d.c - ST LIS3LV02DL accelerometer driver * * Copyright (C) 2007-2008 Yan Burman * Copyright (C) 2008 Eric Piel * Copyright (C) 2008-2009 Pavel Machek */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/sched/signal.h> #include <linux/dmi.h> #include <linux/module.h> #include <linux/types.h> #include <linux/platform_device.h> #include <linux/interrupt.h> #include <linux/input-polldev.h> #include <linux/delay.h> #include <linux/wait.h> #include <linux/poll.h> #include <linux/slab.h> #include <linux/freezer.h> #include <linux/uaccess.h> #include <linux/miscdevice.h> #include <linux/pm_runtime.h> #include <linux/atomic.h> #include <linux/of_device.h> #include "lis3lv02d.h" #define DRIVER_NAME "lis3lv02d" /* joystick device poll interval in milliseconds */ #define MDPS_POLL_INTERVAL 50 #define MDPS_POLL_MIN 0 #define MDPS_POLL_MAX 2000 #define LIS3_SYSFS_POWERDOWN_DELAY 5000 /* In milliseconds */ #define SELFTEST_OK 0 #define SELFTEST_FAIL -1 #define SELFTEST_IRQ -2 #define IRQ_LINE0 0 #define IRQ_LINE1 1 /* * The sensor can also generate interrupts (DRDY) but it's pretty pointless * because they are generated even if the data do not change. So it's better * to keep the interrupt for the free-fall event. The values are updated at * 40Hz (at the lowest frequency), but as it can be pretty time consuming on * some low processor, we poll the sensor only at 20Hz... enough for the * joystick. */ #define LIS3_PWRON_DELAY_WAI_12B (5000) #define LIS3_PWRON_DELAY_WAI_8B (3000) /* * LIS3LV02D spec says 1024 LSBs corresponds 1 G -> 1LSB is 1000/1024 mG * LIS302D spec says: 18 mG / digit * LIS3_ACCURACY is used to increase accuracy of the intermediate * calculation results. */ #define LIS3_ACCURACY 1024 /* Sensitivity values for -2G +2G scale */ #define LIS3_SENSITIVITY_12B ((LIS3_ACCURACY * 1000) / 1024) #define LIS3_SENSITIVITY_8B (18 * LIS3_ACCURACY) /* * LIS331DLH spec says 1LSBs corresponds 4G/4096 -> 1LSB is 1000/1024 mG. * Below macros defines sensitivity values for +/-2G. Dataout bits for * +/-2G range is 12 bits so 4 bits adjustment must be done to get 12bit * data from 16bit value. Currently this driver supports only 2G range. */ #define LIS3DLH_SENSITIVITY_2G ((LIS3_ACCURACY * 1000) / 1024) #define SHIFT_ADJ_2G 4 #define LIS3_DEFAULT_FUZZ_12B 3 #define LIS3_DEFAULT_FLAT_12B 3 #define LIS3_DEFAULT_FUZZ_8B 1 #define LIS3_DEFAULT_FLAT_8B 1 struct lis3lv02d lis3_dev = { .misc_wait = __WAIT_QUEUE_HEAD_INITIALIZER(lis3_dev.misc_wait), }; EXPORT_SYMBOL_GPL(lis3_dev); /* just like param_set_int() but does sanity-check so that it won't point * over the axis array size */ static int param_set_axis(const char *val, const struct kernel_param *kp) { int ret = param_set_int(val, kp); if (!ret) { int val = *(int *)kp->arg; if (val < 0) val = -val; if (!val || val > 3) return -EINVAL; } return ret; } static const struct kernel_param_ops param_ops_axis = { .set = param_set_axis, .get = param_get_int, }; #define param_check_axis(name, p) param_check_int(name, p) module_param_array_named(axes, lis3_dev.ac.as_array, axis, NULL, 0644); MODULE_PARM_DESC(axes, "Axis-mapping for x,y,z directions"); static s16 lis3lv02d_read_8(struct lis3lv02d *lis3, int reg) { s8 lo; if (lis3->read(lis3, reg, &lo) < 0) return 0; return lo; } static s16 lis3lv02d_read_12(struct lis3lv02d *lis3, int reg) { u8 lo, hi; lis3->read(lis3, reg - 1, &lo); lis3->read(lis3, reg, &hi); /* In "12 bit right justified" mode, bit 6, bit 7, bit 8 = bit 5 */ return (s16)((hi << 8) | lo); } /* 12bits for 2G range, 13 bits for 4G range and 14 bits for 8G range */ static s16 lis331dlh_read_data(struct lis3lv02d *lis3, int reg) { u8 lo, hi; int v; lis3->read(lis3, reg - 1, &lo); lis3->read(lis3, reg, &hi); v = (int) ((hi << 8) | lo); return (s16) v >> lis3->shift_adj; } /** * lis3lv02d_get_axis - For the given axis, give the value converted * @axis: 1,2,3 - can also be negative * @hw_values: raw values returned by the hardware * * Returns the converted value. */ static inline int lis3lv02d_get_axis(s8 axis, int hw_values[3]) { if (axis > 0) return hw_values[axis - 1]; else return -hw_values[-axis - 1]; } /** * lis3lv02d_get_xyz - Get X, Y and Z axis values from the accelerometer * @lis3: pointer to the device struct * @x: where to store the X axis value * @y: where to store the Y axis value * @z: where to store the Z axis value * * Note that 40Hz input device can eat up about 10% CPU at 800MHZ */ static void lis3lv02d_get_xyz(struct lis3lv02d *lis3, int *x, int *y, int *z) { int position[3]; int i; if (lis3->blkread) { if (lis3->whoami == WAI_12B) { u16 data[3]; lis3->blkread(lis3, OUTX_L, 6, (u8 *)data); for (i = 0; i < 3; i++) position[i] = (s16)le16_to_cpu(data[i]); } else { u8 data[5]; /* Data: x, dummy, y, dummy, z */ lis3->blkread(lis3, OUTX, 5, data); for (i = 0; i < 3; i++) position[i] = (s8)data[i * 2]; } } else { position[0] = lis3->read_data(lis3, OUTX); position[1] = lis3->read_data(lis3, OUTY); position[2] = lis3->read_data(lis3, OUTZ); } for (i = 0; i < 3; i++) position[i] = (position[i] * lis3->scale) / LIS3_ACCURACY; *x = lis3lv02d_get_axis(lis3->ac.x, position); *y = lis3lv02d_get_axis(lis3->ac.y, position); *z = lis3lv02d_get_axis(lis3->ac.z, position); } /* conversion btw sampling rate and the register values */ static int lis3_12_rates[4] = {40, 160, 640, 2560}; static int lis3_8_rates[2] = {100, 400}; static int lis3_3dc_rates[16] = {0, 1, 10, 25, 50, 100, 200, 400, 1600, 5000}; static int lis3_3dlh_rates[4] = {50, 100, 400, 1000}; /* ODR is Output Data Rate */ static int lis3lv02d_get_odr(struct lis3lv02d *lis3) { u8 ctrl; int shift; lis3->read(lis3, CTRL_REG1, &ctrl); ctrl &= lis3->odr_mask; shift = ffs(lis3->odr_mask) - 1; return lis3->odrs[(ctrl >> shift)]; } static int lis3lv02d_get_pwron_wait(struct lis3lv02d *lis3) { int div = lis3lv02d_get_odr(lis3); if (WARN_ONCE(div == 0, "device returned spurious data")) return -ENXIO; /* LIS3 power on delay is quite long */ msleep(lis3->pwron_delay / div); return 0; } static int lis3lv02d_set_odr(struct lis3lv02d *lis3, int rate) { u8 ctrl; int i, len, shift; if (!rate) return -EINVAL; lis3->read(lis3, CTRL_REG1, &ctrl); ctrl &= ~lis3->odr_mask; len = 1 << hweight_long(lis3->odr_mask); /* # of possible values */ shift = ffs(lis3->odr_mask) - 1; for (i = 0; i < len; i++) if (lis3->odrs[i] == rate) { lis3->write(lis3, CTRL_REG1, ctrl | (i << shift)); return 0; } return -EINVAL; } static int lis3lv02d_selftest(struct lis3lv02d *lis3, s16 results[3]) { u8 ctlreg, reg; s16 x, y, z; u8 selftest; int ret; u8 ctrl_reg_data; unsigned char irq_cfg; mutex_lock(&lis3->mutex); irq_cfg = lis3->irq_cfg; if (lis3->whoami == WAI_8B) { lis3->data_ready_count[IRQ_LINE0] = 0; lis3->data_ready_count[IRQ_LINE1] = 0; /* Change interrupt cfg to data ready for selftest */ atomic_inc(&lis3->wake_thread); lis3->irq_cfg = LIS3_IRQ1_DATA_READY | LIS3_IRQ2_DATA_READY; lis3->read(lis3, CTRL_REG3, &ctrl_reg_data); lis3->write(lis3, CTRL_REG3, (ctrl_reg_data & ~(LIS3_IRQ1_MASK | LIS3_IRQ2_MASK)) | (LIS3_IRQ1_DATA_READY | LIS3_IRQ2_DATA_READY)); } if ((lis3->whoami == WAI_3DC) || (lis3->whoami == WAI_3DLH)) { ctlreg = CTRL_REG4; selftest = CTRL4_ST0; } else { ctlreg = CTRL_REG1; if (lis3->whoami == WAI_12B) selftest = CTRL1_ST; else selftest = CTRL1_STP; } lis3->read(lis3, ctlreg, ®); lis3->write(lis3, ctlreg, (reg | selftest)); ret = lis3lv02d_get_pwron_wait(lis3); if (ret) goto fail; /* Read directly to avoid axis remap */ x = lis3->read_data(lis3, OUTX); y = lis3->read_data(lis3, OUTY); z = lis3->read_data(lis3, OUTZ); /* back to normal settings */ lis3->write(lis3, ctlreg, reg); ret = lis3lv02d_get_pwron_wait(lis3); if (ret) goto fail; results[0] = x - lis3->read_data(lis3, OUTX); results[1] = y - lis3->read_data(lis3, OUTY); results[2] = z - lis3->read_data(lis3, OUTZ); ret = 0; if (lis3->whoami == WAI_8B) { /* Restore original interrupt configuration */ atomic_dec(&lis3->wake_thread); lis3->write(lis3, CTRL_REG3, ctrl_reg_data); lis3->irq_cfg = irq_cfg; if ((irq_cfg & LIS3_IRQ1_MASK) && lis3->data_ready_count[IRQ_LINE0] < 2) { ret = SELFTEST_IRQ; goto fail; } if ((irq_cfg & LIS3_IRQ2_MASK) && lis3->data_ready_count[IRQ_LINE1] < 2) { ret = SELFTEST_IRQ; goto fail; } } if (lis3->pdata) { int i; for (i = 0; i < 3; i++) { /* Check against selftest acceptance limits */ if ((results[i] < lis3->pdata->st_min_limits[i]) || (results[i] > lis3->pdata->st_max_limits[i])) { ret = SELFTEST_FAIL; goto fail; } } } /* test passed */ fail: mutex_unlock(&lis3->mutex); return ret; } /* * Order of registers in the list affects to order of the restore process. * Perhaps it is a good idea to set interrupt enable register as a last one * after all other configurations */ static u8 lis3_wai8_regs[] = { FF_WU_CFG_1, FF_WU_THS_1, FF_WU_DURATION_1, FF_WU_CFG_2, FF_WU_THS_2, FF_WU_DURATION_2, CLICK_CFG, CLICK_SRC, CLICK_THSY_X, CLICK_THSZ, CLICK_TIMELIMIT, CLICK_LATENCY, CLICK_WINDOW, CTRL_REG1, CTRL_REG2, CTRL_REG3}; static u8 lis3_wai12_regs[] = {FF_WU_CFG, FF_WU_THS_L, FF_WU_THS_H, FF_WU_DURATION, DD_CFG, DD_THSI_L, DD_THSI_H, DD_THSE_L, DD_THSE_H, CTRL_REG1, CTRL_REG3, CTRL_REG2}; static inline void lis3_context_save(struct lis3lv02d *lis3) { int i; for (i = 0; i < lis3->regs_size; i++) lis3->read(lis3, lis3->regs[i], &lis3->reg_cache[i]); lis3->regs_stored = true; } static inline void lis3_context_restore(struct lis3lv02d *lis3) { int i; if (lis3->regs_stored) for (i = 0; i < lis3->regs_size; i++) lis3->write(lis3, lis3->regs[i], lis3->reg_cache[i]); } void lis3lv02d_poweroff(struct lis3lv02d *lis3) { if (lis3->reg_ctrl) lis3_context_save(lis3); /* disable X,Y,Z axis and power down */ lis3->write(lis3, CTRL_REG1, 0x00); if (lis3->reg_ctrl) lis3->reg_ctrl(lis3, LIS3_REG_OFF); } EXPORT_SYMBOL_GPL(lis3lv02d_poweroff); int lis3lv02d_poweron(struct lis3lv02d *lis3) { int err; u8 reg; lis3->init(lis3); /* * Common configuration * BDU: (12 bits sensors only) LSB and MSB values are not updated until * both have been read. So the value read will always be correct. * Set BOOT bit to refresh factory tuning values. */ if (lis3->pdata) { lis3->read(lis3, CTRL_REG2, ®); if (lis3->whoami == WAI_12B) reg |= CTRL2_BDU | CTRL2_BOOT; else if (lis3->whoami == WAI_3DLH) reg |= CTRL2_BOOT_3DLH; else reg |= CTRL2_BOOT_8B; lis3->write(lis3, CTRL_REG2, reg); if (lis3->whoami == WAI_3DLH) { lis3->read(lis3, CTRL_REG4, ®); reg |= CTRL4_BDU; lis3->write(lis3, CTRL_REG4, reg); } } err = lis3lv02d_get_pwron_wait(lis3); if (err) return err; if (lis3->reg_ctrl) lis3_context_restore(lis3); return 0; } EXPORT_SYMBOL_GPL(lis3lv02d_poweron); static void lis3lv02d_joystick_poll(struct input_polled_dev *pidev) { struct lis3lv02d *lis3 = pidev->private; int x, y, z; mutex_lock(&lis3->mutex); lis3lv02d_get_xyz(lis3, &x, &y, &z); input_report_abs(pidev->input, ABS_X, x); input_report_abs(pidev->input, ABS_Y, y); input_report_abs(pidev->input, ABS_Z, z); input_sync(pidev->input); mutex_unlock(&lis3->mutex); } static void lis3lv02d_joystick_open(struct input_polled_dev *pidev) { struct lis3lv02d *lis3 = pidev->private; if (lis3->pm_dev) pm_runtime_get_sync(lis3->pm_dev); if (lis3->pdata && lis3->whoami == WAI_8B && lis3->idev) atomic_set(&lis3->wake_thread, 1); /* * Update coordinates for the case where poll interval is 0 and * the chip in running purely under interrupt control */ lis3lv02d_joystick_poll(pidev); } static void lis3lv02d_joystick_close(struct input_polled_dev *pidev) { struct lis3lv02d *lis3 = pidev->private; atomic_set(&lis3->wake_thread, 0); if (lis3->pm_dev) pm_runtime_put(lis3->pm_dev); } static irqreturn_t lis302dl_interrupt(int irq, void *data) { struct lis3lv02d *lis3 = data; if (!test_bit(0, &lis3->misc_opened)) goto out; /* * Be careful: on some HP laptops the bios force DD when on battery and * the lid is closed. This leads to interrupts as soon as a little move * is done. */ atomic_inc(&lis3->count); wake_up_interruptible(&lis3->misc_wait); kill_fasync(&lis3->async_queue, SIGIO, POLL_IN); out: if (atomic_read(&lis3->wake_thread)) return IRQ_WAKE_THREAD; return IRQ_HANDLED; } static void lis302dl_interrupt_handle_click(struct lis3lv02d *lis3) { struct input_dev *dev = lis3->idev->input; u8 click_src; mutex_lock(&lis3->mutex); lis3->read(lis3, CLICK_SRC, &click_src); if (click_src & CLICK_SINGLE_X) { input_report_key(dev, lis3->mapped_btns[0], 1); input_report_key(dev, lis3->mapped_btns[0], 0); } if (click_src & CLICK_SINGLE_Y) { input_report_key(dev, lis3->mapped_btns[1], 1); input_report_key(dev, lis3->mapped_btns[1], 0); } if (click_src & CLICK_SINGLE_Z) { input_report_key(dev, lis3->mapped_btns[2], 1); input_report_key(dev, lis3->mapped_btns[2], 0); } input_sync(dev); mutex_unlock(&lis3->mutex); } static inline void lis302dl_data_ready(struct lis3lv02d *lis3, int index) { int dummy; /* Dummy read to ack interrupt */ lis3lv02d_get_xyz(lis3, &dummy, &dummy, &dummy); lis3->data_ready_count[index]++; } static irqreturn_t lis302dl_interrupt_thread1_8b(int irq, void *data) { struct lis3lv02d *lis3 = data; u8 irq_cfg = lis3->irq_cfg & LIS3_IRQ1_MASK; if (irq_cfg == LIS3_IRQ1_CLICK) lis302dl_interrupt_handle_click(lis3); else if (unlikely(irq_cfg == LIS3_IRQ1_DATA_READY)) lis302dl_data_ready(lis3, IRQ_LINE0); else lis3lv02d_joystick_poll(lis3->idev); return IRQ_HANDLED; } static irqreturn_t lis302dl_interrupt_thread2_8b(int irq, void *data) { struct lis3lv02d *lis3 = data; u8 irq_cfg = lis3->irq_cfg & LIS3_IRQ2_MASK; if (irq_cfg == LIS3_IRQ2_CLICK) lis302dl_interrupt_handle_click(lis3); else if (unlikely(irq_cfg == LIS3_IRQ2_DATA_READY)) lis302dl_data_ready(lis3, IRQ_LINE1); else lis3lv02d_joystick_poll(lis3->idev); return IRQ_HANDLED; } static int lis3lv02d_misc_open(struct inode *inode, struct file *file) { struct lis3lv02d *lis3 = container_of(file->private_data, struct lis3lv02d, miscdev); if (test_and_set_bit(0, &lis3->misc_opened)) return -EBUSY; /* already open */ if (lis3->pm_dev) pm_runtime_get_sync(lis3->pm_dev); atomic_set(&lis3->count, 0); return 0; } static int lis3lv02d_misc_release(struct inode *inode, struct file *file) { struct lis3lv02d *lis3 = container_of(file->private_data, struct lis3lv02d, miscdev); clear_bit(0, &lis3->misc_opened); /* release the device */ if (lis3->pm_dev) pm_runtime_put(lis3->pm_dev); return 0; } static ssize_t lis3lv02d_misc_read(struct file *file, char __user *buf, size_t count, loff_t *pos) { struct lis3lv02d *lis3 = container_of(file->private_data, struct lis3lv02d, miscdev); DECLARE_WAITQUEUE(wait, current); u32 data; unsigned char byte_data; ssize_t retval = 1; if (count < 1) return -EINVAL; add_wait_queue(&lis3->misc_wait, &wait); while (true) { set_current_state(TASK_INTERRUPTIBLE); data = atomic_xchg(&lis3->count, 0); if (data) break; if (file->f_flags & O_NONBLOCK) { retval = -EAGAIN; goto out; } if (signal_pending(current)) { retval = -ERESTARTSYS; goto out; } schedule(); } if (data < 255) byte_data = data; else byte_data = 255; /* make sure we are not going into copy_to_user() with * TASK_INTERRUPTIBLE state */ set_current_state(TASK_RUNNING); if (copy_to_user(buf, &byte_data, sizeof(byte_data))) retval = -EFAULT; out: __set_current_state(TASK_RUNNING); remove_wait_queue(&lis3->misc_wait, &wait); return retval; } static __poll_t lis3lv02d_misc_poll(struct file *file, poll_table *wait) { struct lis3lv02d *lis3 = container_of(file->private_data, struct lis3lv02d, miscdev); poll_wait(file, &lis3->misc_wait, wait); if (atomic_read(&lis3->count)) return EPOLLIN | EPOLLRDNORM; return 0; } static int lis3lv02d_misc_fasync(int fd, struct file *file, int on) { struct lis3lv02d *lis3 = container_of(file->private_data, struct lis3lv02d, miscdev); return fasync_helper(fd, file, on, &lis3->async_queue); } static const struct file_operations lis3lv02d_misc_fops = { .owner = THIS_MODULE, .llseek = no_llseek, .read = lis3lv02d_misc_read, .open = lis3lv02d_misc_open, .release = lis3lv02d_misc_release, .poll = lis3lv02d_misc_poll, .fasync = lis3lv02d_misc_fasync, }; int lis3lv02d_joystick_enable(struct lis3lv02d *lis3) { struct input_dev *input_dev; int err; int max_val, fuzz, flat; int btns[] = {BTN_X, BTN_Y, BTN_Z}; if (lis3->idev) return -EINVAL; lis3->idev = input_allocate_polled_device(); if (!lis3->idev) return -ENOMEM; lis3->idev->poll = lis3lv02d_joystick_poll; lis3->idev->open = lis3lv02d_joystick_open; lis3->idev->close = lis3lv02d_joystick_close; lis3->idev->poll_interval = MDPS_POLL_INTERVAL; lis3->idev->poll_interval_min = MDPS_POLL_MIN; lis3->idev->poll_interval_max = MDPS_POLL_MAX; lis3->idev->private = lis3; input_dev = lis3->idev->input; input_dev->name = "ST LIS3LV02DL Accelerometer"; input_dev->phys = DRIVER_NAME "/input0"; input_dev->id.bustype = BUS_HOST; input_dev->id.vendor = 0; input_dev->dev.parent = &lis3->pdev->dev; set_bit(EV_ABS, input_dev->evbit); max_val = (lis3->mdps_max_val * lis3->scale) / LIS3_ACCURACY; if (lis3->whoami == WAI_12B) { fuzz = LIS3_DEFAULT_FUZZ_12B; flat = LIS3_DEFAULT_FLAT_12B; } else { fuzz = LIS3_DEFAULT_FUZZ_8B; flat = LIS3_DEFAULT_FLAT_8B; } fuzz = (fuzz * lis3->scale) / LIS3_ACCURACY; flat = (flat * lis3->scale) / LIS3_ACCURACY; input_set_abs_params(input_dev, ABS_X, -max_val, max_val, fuzz, flat); input_set_abs_params(input_dev, ABS_Y, -max_val, max_val, fuzz, flat); input_set_abs_params(input_dev, ABS_Z, -max_val, max_val, fuzz, flat); lis3->mapped_btns[0] = lis3lv02d_get_axis(abs(lis3->ac.x), btns); lis3->mapped_btns[1] = lis3lv02d_get_axis(abs(lis3->ac.y), btns); lis3->mapped_btns[2] = lis3lv02d_get_axis(abs(lis3->ac.z), btns); err = input_register_polled_device(lis3->idev); if (err) { input_free_polled_device(lis3->idev); lis3->idev = NULL; } return err; } EXPORT_SYMBOL_GPL(lis3lv02d_joystick_enable); void lis3lv02d_joystick_disable(struct lis3lv02d *lis3) { if (lis3->irq) free_irq(lis3->irq, lis3); if (lis3->pdata && lis3->pdata->irq2) free_irq(lis3->pdata->irq2, lis3); if (!lis3->idev) return; if (lis3->irq) misc_deregister(&lis3->miscdev); input_unregister_polled_device(lis3->idev); input_free_polled_device(lis3->idev); lis3->idev = NULL; } EXPORT_SYMBOL_GPL(lis3lv02d_joystick_disable); /* Sysfs stuff */ static void lis3lv02d_sysfs_poweron(struct lis3lv02d *lis3) { /* * SYSFS functions are fast visitors so put-call * immediately after the get-call. However, keep * chip running for a while and schedule delayed * suspend. This way periodic sysfs calls doesn't * suffer from relatively long power up time. */ if (lis3->pm_dev) { pm_runtime_get_sync(lis3->pm_dev); pm_runtime_put_noidle(lis3->pm_dev); pm_schedule_suspend(lis3->pm_dev, LIS3_SYSFS_POWERDOWN_DELAY); } } static ssize_t lis3lv02d_selftest_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lis3lv02d *lis3 = dev_get_drvdata(dev); s16 values[3]; static const char ok[] = "OK"; static const char fail[] = "FAIL"; static const char irq[] = "FAIL_IRQ"; const char *res; lis3lv02d_sysfs_poweron(lis3); switch (lis3lv02d_selftest(lis3, values)) { case SELFTEST_FAIL: res = fail; break; case SELFTEST_IRQ: res = irq; break; case SELFTEST_OK: default: res = ok; break; } return sprintf(buf, "%s %d %d %d\n", res, values[0], values[1], values[2]); } static ssize_t lis3lv02d_position_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lis3lv02d *lis3 = dev_get_drvdata(dev); int x, y, z; lis3lv02d_sysfs_poweron(lis3); mutex_lock(&lis3->mutex); lis3lv02d_get_xyz(lis3, &x, &y, &z); mutex_unlock(&lis3->mutex); return sprintf(buf, "(%d,%d,%d)\n", x, y, z); } static ssize_t lis3lv02d_rate_show(struct device *dev, struct device_attribute *attr, char *buf) { struct lis3lv02d *lis3 = dev_get_drvdata(dev); lis3lv02d_sysfs_poweron(lis3); return sprintf(buf, "%d\n", lis3lv02d_get_odr(lis3)); } static ssize_t lis3lv02d_rate_set(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct lis3lv02d *lis3 = dev_get_drvdata(dev); unsigned long rate; int ret; ret = kstrtoul(buf, 0, &rate); if (ret) return ret; lis3lv02d_sysfs_poweron(lis3); if (lis3lv02d_set_odr(lis3, rate)) return -EINVAL; return count; } static DEVICE_ATTR(selftest, S_IRUSR, lis3lv02d_selftest_show, NULL); static DEVICE_ATTR(position, S_IRUGO, lis3lv02d_position_show, NULL); static DEVICE_ATTR(rate, S_IRUGO | S_IWUSR, lis3lv02d_rate_show, lis3lv02d_rate_set); static struct attribute *lis3lv02d_attributes[] = { &dev_attr_selftest.attr, &dev_attr_position.attr, &dev_attr_rate.attr, NULL }; static const struct attribute_group lis3lv02d_attribute_group = { .attrs = lis3lv02d_attributes }; static int lis3lv02d_add_fs(struct lis3lv02d *lis3) { lis3->pdev = platform_device_register_simple(DRIVER_NAME, -1, NULL, 0); if (IS_ERR(lis3->pdev)) return PTR_ERR(lis3->pdev); platform_set_drvdata(lis3->pdev, lis3); return sysfs_create_group(&lis3->pdev->dev.kobj, &lis3lv02d_attribute_group); } int lis3lv02d_remove_fs(struct lis3lv02d *lis3) { sysfs_remove_group(&lis3->pdev->dev.kobj, &lis3lv02d_attribute_group); platform_device_unregister(lis3->pdev); if (lis3->pm_dev) { /* Barrier after the sysfs remove */ pm_runtime_barrier(lis3->pm_dev); /* SYSFS may have left chip running. Turn off if necessary */ if (!pm_runtime_suspended(lis3->pm_dev)) lis3lv02d_poweroff(lis3); pm_runtime_disable(lis3->pm_dev); pm_runtime_set_suspended(lis3->pm_dev); } kfree(lis3->reg_cache); return 0; } EXPORT_SYMBOL_GPL(lis3lv02d_remove_fs); static void lis3lv02d_8b_configure(struct lis3lv02d *lis3, struct lis3lv02d_platform_data *p) { int err; int ctrl2 = p->hipass_ctrl; if (p->click_flags) { lis3->write(lis3, CLICK_CFG, p->click_flags); lis3->write(lis3, CLICK_TIMELIMIT, p->click_time_limit); lis3->write(lis3, CLICK_LATENCY, p->click_latency); lis3->write(lis3, CLICK_WINDOW, p->click_window); lis3->write(lis3, CLICK_THSZ, p->click_thresh_z & 0xf); lis3->write(lis3, CLICK_THSY_X, (p->click_thresh_x & 0xf) | (p->click_thresh_y << 4)); if (lis3->idev) { struct input_dev *input_dev = lis3->idev->input; input_set_capability(input_dev, EV_KEY, BTN_X); input_set_capability(input_dev, EV_KEY, BTN_Y); input_set_capability(input_dev, EV_KEY, BTN_Z); } } if (p->wakeup_flags) { lis3->write(lis3, FF_WU_CFG_1, p->wakeup_flags); lis3->write(lis3, FF_WU_THS_1, p->wakeup_thresh & 0x7f); /* pdata value + 1 to keep this backward compatible*/ lis3->write(lis3, FF_WU_DURATION_1, p->duration1 + 1); ctrl2 ^= HP_FF_WU1; /* Xor to keep compatible with old pdata*/ } if (p->wakeup_flags2) { lis3->write(lis3, FF_WU_CFG_2, p->wakeup_flags2); lis3->write(lis3, FF_WU_THS_2, p->wakeup_thresh2 & 0x7f); /* pdata value + 1 to keep this backward compatible*/ lis3->write(lis3, FF_WU_DURATION_2, p->duration2 + 1); ctrl2 ^= HP_FF_WU2; /* Xor to keep compatible with old pdata*/ } /* Configure hipass filters */ lis3->write(lis3, CTRL_REG2, ctrl2); if (p->irq2) { err = request_threaded_irq(p->irq2, NULL, lis302dl_interrupt_thread2_8b, IRQF_TRIGGER_RISING | IRQF_ONESHOT | (p->irq_flags2 & IRQF_TRIGGER_MASK), DRIVER_NAME, lis3); if (err < 0) pr_err("No second IRQ. Limited functionality\n"); } } #ifdef CONFIG_OF int lis3lv02d_init_dt(struct lis3lv02d *lis3) { struct lis3lv02d_platform_data *pdata; struct device_node *np = lis3->of_node; u32 val; s32 sval; if (!lis3->of_node) return 0; pdata = kzalloc(sizeof(*pdata), GFP_KERNEL); if (!pdata) return -ENOMEM; if (of_get_property(np, "st,click-single-x", NULL)) pdata->click_flags |= LIS3_CLICK_SINGLE_X; if (of_get_property(np, "st,click-double-x", NULL)) pdata->click_flags |= LIS3_CLICK_DOUBLE_X; if (of_get_property(np, "st,click-single-y", NULL)) pdata->click_flags |= LIS3_CLICK_SINGLE_Y; if (of_get_property(np, "st,click-double-y", NULL)) pdata->click_flags |= LIS3_CLICK_DOUBLE_Y; if (of_get_property(np, "st,click-single-z", NULL)) pdata->click_flags |= LIS3_CLICK_SINGLE_Z; if (of_get_property(np, "st,click-double-z", NULL)) pdata->click_flags |= LIS3_CLICK_DOUBLE_Z; if (!of_property_read_u32(np, "st,click-threshold-x", &val)) pdata->click_thresh_x = val; if (!of_property_read_u32(np, "st,click-threshold-y", &val)) pdata->click_thresh_y = val; if (!of_property_read_u32(np, "st,click-threshold-z", &val)) pdata->click_thresh_z = val; if (!of_property_read_u32(np, "st,click-time-limit", &val)) pdata->click_time_limit = val; if (!of_property_read_u32(np, "st,click-latency", &val)) pdata->click_latency = val; if (!of_property_read_u32(np, "st,click-window", &val)) pdata->click_window = val; if (of_get_property(np, "st,irq1-disable", NULL)) pdata->irq_cfg |= LIS3_IRQ1_DISABLE; if (of_get_property(np, "st,irq1-ff-wu-1", NULL)) pdata->irq_cfg |= LIS3_IRQ1_FF_WU_1; if (of_get_property(np, "st,irq1-ff-wu-2", NULL)) pdata->irq_cfg |= LIS3_IRQ1_FF_WU_2; if (of_get_property(np, "st,irq1-data-ready", NULL)) pdata->irq_cfg |= LIS3_IRQ1_DATA_READY; if (of_get_property(np, "st,irq1-click", NULL)) pdata->irq_cfg |= LIS3_IRQ1_CLICK; if (of_get_property(np, "st,irq2-disable", NULL)) pdata->irq_cfg |= LIS3_IRQ2_DISABLE; if (of_get_property(np, "st,irq2-ff-wu-1", NULL)) pdata->irq_cfg |= LIS3_IRQ2_FF_WU_1; if (of_get_property(np, "st,irq2-ff-wu-2", NULL)) pdata->irq_cfg |= LIS3_IRQ2_FF_WU_2; if (of_get_property(np, "st,irq2-data-ready", NULL)) pdata->irq_cfg |= LIS3_IRQ2_DATA_READY; if (of_get_property(np, "st,irq2-click", NULL)) pdata->irq_cfg |= LIS3_IRQ2_CLICK; if (of_get_property(np, "st,irq-open-drain", NULL)) pdata->irq_cfg |= LIS3_IRQ_OPEN_DRAIN; if (of_get_property(np, "st,irq-active-low", NULL)) pdata->irq_cfg |= LIS3_IRQ_ACTIVE_LOW; if (!of_property_read_u32(np, "st,wu-duration-1", &val)) pdata->duration1 = val; if (!of_property_read_u32(np, "st,wu-duration-2", &val)) pdata->duration2 = val; if (of_get_property(np, "st,wakeup-x-lo", NULL)) pdata->wakeup_flags |= LIS3_WAKEUP_X_LO; if (of_get_property(np, "st,wakeup-x-hi", NULL)) pdata->wakeup_flags |= LIS3_WAKEUP_X_HI; if (of_get_property(np, "st,wakeup-y-lo", NULL)) pdata->wakeup_flags |= LIS3_WAKEUP_Y_LO; if (of_get_property(np, "st,wakeup-y-hi", NULL)) pdata->wakeup_flags |= LIS3_WAKEUP_Y_HI; if (of_get_property(np, "st,wakeup-z-lo", NULL)) pdata->wakeup_flags |= LIS3_WAKEUP_Z_LO; if (of_get_property(np, "st,wakeup-z-hi", NULL)) pdata->wakeup_flags |= LIS3_WAKEUP_Z_HI; if (of_get_property(np, "st,wakeup-threshold", &val)) pdata->wakeup_thresh = val; if (of_get_property(np, "st,wakeup2-x-lo", NULL)) pdata->wakeup_flags2 |= LIS3_WAKEUP_X_LO; if (of_get_property(np, "st,wakeup2-x-hi", NULL)) pdata->wakeup_flags2 |= LIS3_WAKEUP_X_HI; if (of_get_property(np, "st,wakeup2-y-lo", NULL)) pdata->wakeup_flags2 |= LIS3_WAKEUP_Y_LO; if (of_get_property(np, "st,wakeup2-y-hi", NULL)) pdata->wakeup_flags2 |= LIS3_WAKEUP_Y_HI; if (of_get_property(np, "st,wakeup2-z-lo", NULL)) pdata->wakeup_flags2 |= LIS3_WAKEUP_Z_LO; if (of_get_property(np, "st,wakeup2-z-hi", NULL)) pdata->wakeup_flags2 |= LIS3_WAKEUP_Z_HI; if (of_get_property(np, "st,wakeup2-threshold", &val)) pdata->wakeup_thresh2 = val; if (!of_property_read_u32(np, "st,highpass-cutoff-hz", &val)) { switch (val) { case 1: pdata->hipass_ctrl = LIS3_HIPASS_CUTFF_1HZ; break; case 2: pdata->hipass_ctrl = LIS3_HIPASS_CUTFF_2HZ; break; case 4: pdata->hipass_ctrl = LIS3_HIPASS_CUTFF_4HZ; break; case 8: pdata->hipass_ctrl = LIS3_HIPASS_CUTFF_8HZ; break; } } if (of_get_property(np, "st,hipass1-disable", NULL)) pdata->hipass_ctrl |= LIS3_HIPASS1_DISABLE; if (of_get_property(np, "st,hipass2-disable", NULL)) pdata->hipass_ctrl |= LIS3_HIPASS2_DISABLE; if (of_property_read_s32(np, "st,axis-x", &sval) == 0) pdata->axis_x = sval; if (of_property_read_s32(np, "st,axis-y", &sval) == 0) pdata->axis_y = sval; if (of_property_read_s32(np, "st,axis-z", &sval) == 0) pdata->axis_z = sval; if (of_get_property(np, "st,default-rate", NULL)) pdata->default_rate = val; if (of_property_read_s32(np, "st,min-limit-x", &sval) == 0) pdata->st_min_limits[0] = sval; if (of_property_read_s32(np, "st,min-limit-y", &sval) == 0) pdata->st_min_limits[1] = sval; if (of_property_read_s32(np, "st,min-limit-z", &sval) == 0) pdata->st_min_limits[2] = sval; if (of_property_read_s32(np, "st,max-limit-x", &sval) == 0) pdata->st_max_limits[0] = sval; if (of_property_read_s32(np, "st,max-limit-y", &sval) == 0) pdata->st_max_limits[1] = sval; if (of_property_read_s32(np, "st,max-limit-z", &sval) == 0) pdata->st_max_limits[2] = sval; lis3->pdata = pdata; return 0; } #else int lis3lv02d_init_dt(struct lis3lv02d *lis3) { return 0; } #endif EXPORT_SYMBOL_GPL(lis3lv02d_init_dt); /* * Initialise the accelerometer and the various subsystems. * Should be rather independent of the bus system. */ int lis3lv02d_init_device(struct lis3lv02d *lis3) { int err; irq_handler_t thread_fn; int irq_flags = 0; lis3->whoami = lis3lv02d_read_8(lis3, WHO_AM_I); switch (lis3->whoami) { case WAI_12B: pr_info("12 bits sensor found\n"); lis3->read_data = lis3lv02d_read_12; lis3->mdps_max_val = 2048; lis3->pwron_delay = LIS3_PWRON_DELAY_WAI_12B; lis3->odrs = lis3_12_rates; lis3->odr_mask = CTRL1_DF0 | CTRL1_DF1; lis3->scale = LIS3_SENSITIVITY_12B; lis3->regs = lis3_wai12_regs; lis3->regs_size = ARRAY_SIZE(lis3_wai12_regs); break; case WAI_8B: pr_info("8 bits sensor found\n"); lis3->read_data = lis3lv02d_read_8; lis3->mdps_max_val = 128; lis3->pwron_delay = LIS3_PWRON_DELAY_WAI_8B; lis3->odrs = lis3_8_rates; lis3->odr_mask = CTRL1_DR; lis3->scale = LIS3_SENSITIVITY_8B; lis3->regs = lis3_wai8_regs; lis3->regs_size = ARRAY_SIZE(lis3_wai8_regs); break; case WAI_3DC: pr_info("8 bits 3DC sensor found\n"); lis3->read_data = lis3lv02d_read_8; lis3->mdps_max_val = 128; lis3->pwron_delay = LIS3_PWRON_DELAY_WAI_8B; lis3->odrs = lis3_3dc_rates; lis3->odr_mask = CTRL1_ODR0|CTRL1_ODR1|CTRL1_ODR2|CTRL1_ODR3; lis3->scale = LIS3_SENSITIVITY_8B; break; case WAI_3DLH: pr_info("16 bits lis331dlh sensor found\n"); lis3->read_data = lis331dlh_read_data; lis3->mdps_max_val = 2048; /* 12 bits for 2G */ lis3->shift_adj = SHIFT_ADJ_2G; lis3->pwron_delay = LIS3_PWRON_DELAY_WAI_8B; lis3->odrs = lis3_3dlh_rates; lis3->odr_mask = CTRL1_DR0 | CTRL1_DR1; lis3->scale = LIS3DLH_SENSITIVITY_2G; break; default: pr_err("unknown sensor type 0x%X\n", lis3->whoami); return -EINVAL; } lis3->reg_cache = kzalloc(max(sizeof(lis3_wai8_regs), sizeof(lis3_wai12_regs)), GFP_KERNEL); if (lis3->reg_cache == NULL) { printk(KERN_ERR DRIVER_NAME "out of memory\n"); return -ENOMEM; } mutex_init(&lis3->mutex); atomic_set(&lis3->wake_thread, 0); lis3lv02d_add_fs(lis3); err = lis3lv02d_poweron(lis3); if (err) { lis3lv02d_remove_fs(lis3); return err; } if (lis3->pm_dev) { pm_runtime_set_active(lis3->pm_dev); pm_runtime_enable(lis3->pm_dev); } if (lis3lv02d_joystick_enable(lis3)) pr_err("joystick initialization failed\n"); /* passing in platform specific data is purely optional and only * used by the SPI transport layer at the moment */ if (lis3->pdata) { struct lis3lv02d_platform_data *p = lis3->pdata; if (lis3->whoami == WAI_8B) lis3lv02d_8b_configure(lis3, p); irq_flags = p->irq_flags1 & IRQF_TRIGGER_MASK; lis3->irq_cfg = p->irq_cfg; if (p->irq_cfg) lis3->write(lis3, CTRL_REG3, p->irq_cfg); if (p->default_rate) lis3lv02d_set_odr(lis3, p->default_rate); } /* bail if we did not get an IRQ from the bus layer */ if (!lis3->irq) { pr_debug("No IRQ. Disabling /dev/freefall\n"); goto out; } /* * The sensor can generate interrupts for free-fall and direction * detection (distinguishable with FF_WU_SRC and DD_SRC) but to keep * the things simple and _fast_ we activate it only for free-fall, so * no need to read register (very slow with ACPI). For the same reason, * we forbid shared interrupts. * * IRQF_TRIGGER_RISING seems pointless on HP laptops because the * io-apic is not configurable (and generates a warning) but I keep it * in case of support for other hardware. */ if (lis3->pdata && lis3->whoami == WAI_8B) thread_fn = lis302dl_interrupt_thread1_8b; else thread_fn = NULL; err = request_threaded_irq(lis3->irq, lis302dl_interrupt, thread_fn, IRQF_TRIGGER_RISING | IRQF_ONESHOT | irq_flags, DRIVER_NAME, lis3); if (err < 0) { pr_err("Cannot get IRQ\n"); goto out; } lis3->miscdev.minor = MISC_DYNAMIC_MINOR; lis3->miscdev.name = "freefall"; lis3->miscdev.fops = &lis3lv02d_misc_fops; if (misc_register(&lis3->miscdev)) pr_err("misc_register failed\n"); out: return 0; } EXPORT_SYMBOL_GPL(lis3lv02d_init_device); MODULE_DESCRIPTION("ST LIS3LV02Dx three-axis digital accelerometer driver"); MODULE_AUTHOR("Yan Burman, Eric Piel, Pavel Machek"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1