Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Florian Fainelli | 5703 | 99.18% | 62 | 83.78% |
Vivien Didelot | 33 | 0.57% | 6 | 8.11% |
Wolfram Sang | 4 | 0.07% | 1 | 1.35% |
Dan Carpenter | 3 | 0.05% | 1 | 1.35% |
Kangjie Lu | 3 | 0.05% | 1 | 1.35% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.35% |
Wei Yongjun | 1 | 0.02% | 1 | 1.35% |
Bhumika Goyal | 1 | 0.02% | 1 | 1.35% |
Total | 5750 | 74 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Broadcom Starfighter 2 DSA switch driver * * Copyright (C) 2014, Broadcom Corporation */ #include <linux/list.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/phy.h> #include <linux/phy_fixed.h> #include <linux/phylink.h> #include <linux/mii.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/of_address.h> #include <linux/of_net.h> #include <linux/of_mdio.h> #include <net/dsa.h> #include <linux/ethtool.h> #include <linux/if_bridge.h> #include <linux/brcmphy.h> #include <linux/etherdevice.h> #include <linux/platform_data/b53.h> #include "bcm_sf2.h" #include "bcm_sf2_regs.h" #include "b53/b53_priv.h" #include "b53/b53_regs.h" static void bcm_sf2_imp_setup(struct dsa_switch *ds, int port) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); unsigned int i; u32 reg, offset; if (priv->type == BCM7445_DEVICE_ID) offset = CORE_STS_OVERRIDE_IMP; else offset = CORE_STS_OVERRIDE_IMP2; /* Enable the port memories */ reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL); reg &= ~P_TXQ_PSM_VDD(port); core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL); /* Enable Broadcast, Multicast, Unicast forwarding to IMP port */ reg = core_readl(priv, CORE_IMP_CTL); reg |= (RX_BCST_EN | RX_MCST_EN | RX_UCST_EN); reg &= ~(RX_DIS | TX_DIS); core_writel(priv, reg, CORE_IMP_CTL); /* Enable forwarding */ core_writel(priv, SW_FWDG_EN, CORE_SWMODE); /* Enable IMP port in dumb mode */ reg = core_readl(priv, CORE_SWITCH_CTRL); reg |= MII_DUMB_FWDG_EN; core_writel(priv, reg, CORE_SWITCH_CTRL); /* Configure Traffic Class to QoS mapping, allow each priority to map * to a different queue number */ reg = core_readl(priv, CORE_PORT_TC2_QOS_MAP_PORT(port)); for (i = 0; i < SF2_NUM_EGRESS_QUEUES; i++) reg |= i << (PRT_TO_QID_SHIFT * i); core_writel(priv, reg, CORE_PORT_TC2_QOS_MAP_PORT(port)); b53_brcm_hdr_setup(ds, port); /* Force link status for IMP port */ reg = core_readl(priv, offset); reg |= (MII_SW_OR | LINK_STS); core_writel(priv, reg, offset); } static void bcm_sf2_gphy_enable_set(struct dsa_switch *ds, bool enable) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); u32 reg; reg = reg_readl(priv, REG_SPHY_CNTRL); if (enable) { reg |= PHY_RESET; reg &= ~(EXT_PWR_DOWN | IDDQ_BIAS | IDDQ_GLOBAL_PWR | CK25_DIS); reg_writel(priv, reg, REG_SPHY_CNTRL); udelay(21); reg = reg_readl(priv, REG_SPHY_CNTRL); reg &= ~PHY_RESET; } else { reg |= EXT_PWR_DOWN | IDDQ_BIAS | PHY_RESET; reg_writel(priv, reg, REG_SPHY_CNTRL); mdelay(1); reg |= CK25_DIS; } reg_writel(priv, reg, REG_SPHY_CNTRL); /* Use PHY-driven LED signaling */ if (!enable) { reg = reg_readl(priv, REG_LED_CNTRL(0)); reg |= SPDLNK_SRC_SEL; reg_writel(priv, reg, REG_LED_CNTRL(0)); } } static inline void bcm_sf2_port_intr_enable(struct bcm_sf2_priv *priv, int port) { unsigned int off; switch (port) { case 7: off = P7_IRQ_OFF; break; case 0: /* Port 0 interrupts are located on the first bank */ intrl2_0_mask_clear(priv, P_IRQ_MASK(P0_IRQ_OFF)); return; default: off = P_IRQ_OFF(port); break; } intrl2_1_mask_clear(priv, P_IRQ_MASK(off)); } static inline void bcm_sf2_port_intr_disable(struct bcm_sf2_priv *priv, int port) { unsigned int off; switch (port) { case 7: off = P7_IRQ_OFF; break; case 0: /* Port 0 interrupts are located on the first bank */ intrl2_0_mask_set(priv, P_IRQ_MASK(P0_IRQ_OFF)); intrl2_0_writel(priv, P_IRQ_MASK(P0_IRQ_OFF), INTRL2_CPU_CLEAR); return; default: off = P_IRQ_OFF(port); break; } intrl2_1_mask_set(priv, P_IRQ_MASK(off)); intrl2_1_writel(priv, P_IRQ_MASK(off), INTRL2_CPU_CLEAR); } static int bcm_sf2_port_setup(struct dsa_switch *ds, int port, struct phy_device *phy) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); unsigned int i; u32 reg; /* Clear the memory power down */ reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL); reg &= ~P_TXQ_PSM_VDD(port); core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL); /* Enable learning */ reg = core_readl(priv, CORE_DIS_LEARN); reg &= ~BIT(port); core_writel(priv, reg, CORE_DIS_LEARN); /* Enable Broadcom tags for that port if requested */ if (priv->brcm_tag_mask & BIT(port)) b53_brcm_hdr_setup(ds, port); /* Configure Traffic Class to QoS mapping, allow each priority to map * to a different queue number */ reg = core_readl(priv, CORE_PORT_TC2_QOS_MAP_PORT(port)); for (i = 0; i < SF2_NUM_EGRESS_QUEUES; i++) reg |= i << (PRT_TO_QID_SHIFT * i); core_writel(priv, reg, CORE_PORT_TC2_QOS_MAP_PORT(port)); /* Re-enable the GPHY and re-apply workarounds */ if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1) { bcm_sf2_gphy_enable_set(ds, true); if (phy) { /* if phy_stop() has been called before, phy * will be in halted state, and phy_start() * will call resume. * * the resume path does not configure back * autoneg settings, and since we hard reset * the phy manually here, we need to reset the * state machine also. */ phy->state = PHY_READY; phy_init_hw(phy); } } /* Enable MoCA port interrupts to get notified */ if (port == priv->moca_port) bcm_sf2_port_intr_enable(priv, port); /* Set per-queue pause threshold to 32 */ core_writel(priv, 32, CORE_TXQ_THD_PAUSE_QN_PORT(port)); /* Set ACB threshold to 24 */ for (i = 0; i < SF2_NUM_EGRESS_QUEUES; i++) { reg = acb_readl(priv, ACB_QUEUE_CFG(port * SF2_NUM_EGRESS_QUEUES + i)); reg &= ~XOFF_THRESHOLD_MASK; reg |= 24; acb_writel(priv, reg, ACB_QUEUE_CFG(port * SF2_NUM_EGRESS_QUEUES + i)); } return b53_enable_port(ds, port, phy); } static void bcm_sf2_port_disable(struct dsa_switch *ds, int port) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); u32 reg; /* Disable learning while in WoL mode */ if (priv->wol_ports_mask & (1 << port)) { reg = core_readl(priv, CORE_DIS_LEARN); reg |= BIT(port); core_writel(priv, reg, CORE_DIS_LEARN); return; } if (port == priv->moca_port) bcm_sf2_port_intr_disable(priv, port); if (priv->int_phy_mask & 1 << port && priv->hw_params.num_gphy == 1) bcm_sf2_gphy_enable_set(ds, false); b53_disable_port(ds, port); /* Power down the port memory */ reg = core_readl(priv, CORE_MEM_PSM_VDD_CTRL); reg |= P_TXQ_PSM_VDD(port); core_writel(priv, reg, CORE_MEM_PSM_VDD_CTRL); } static int bcm_sf2_sw_indir_rw(struct bcm_sf2_priv *priv, int op, int addr, int regnum, u16 val) { int ret = 0; u32 reg; reg = reg_readl(priv, REG_SWITCH_CNTRL); reg |= MDIO_MASTER_SEL; reg_writel(priv, reg, REG_SWITCH_CNTRL); /* Page << 8 | offset */ reg = 0x70; reg <<= 2; core_writel(priv, addr, reg); /* Page << 8 | offset */ reg = 0x80 << 8 | regnum << 1; reg <<= 2; if (op) ret = core_readl(priv, reg); else core_writel(priv, val, reg); reg = reg_readl(priv, REG_SWITCH_CNTRL); reg &= ~MDIO_MASTER_SEL; reg_writel(priv, reg, REG_SWITCH_CNTRL); return ret & 0xffff; } static int bcm_sf2_sw_mdio_read(struct mii_bus *bus, int addr, int regnum) { struct bcm_sf2_priv *priv = bus->priv; /* Intercept reads from Broadcom pseudo-PHY address, else, send * them to our master MDIO bus controller */ if (addr == BRCM_PSEUDO_PHY_ADDR && priv->indir_phy_mask & BIT(addr)) return bcm_sf2_sw_indir_rw(priv, 1, addr, regnum, 0); else return mdiobus_read_nested(priv->master_mii_bus, addr, regnum); } static int bcm_sf2_sw_mdio_write(struct mii_bus *bus, int addr, int regnum, u16 val) { struct bcm_sf2_priv *priv = bus->priv; /* Intercept writes to the Broadcom pseudo-PHY address, else, * send them to our master MDIO bus controller */ if (addr == BRCM_PSEUDO_PHY_ADDR && priv->indir_phy_mask & BIT(addr)) return bcm_sf2_sw_indir_rw(priv, 0, addr, regnum, val); else return mdiobus_write_nested(priv->master_mii_bus, addr, regnum, val); } static irqreturn_t bcm_sf2_switch_0_isr(int irq, void *dev_id) { struct dsa_switch *ds = dev_id; struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) & ~priv->irq0_mask; intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR); return IRQ_HANDLED; } static irqreturn_t bcm_sf2_switch_1_isr(int irq, void *dev_id) { struct dsa_switch *ds = dev_id; struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) & ~priv->irq1_mask; intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR); if (priv->irq1_stat & P_LINK_UP_IRQ(P7_IRQ_OFF)) { priv->port_sts[7].link = true; dsa_port_phylink_mac_change(ds, 7, true); } if (priv->irq1_stat & P_LINK_DOWN_IRQ(P7_IRQ_OFF)) { priv->port_sts[7].link = false; dsa_port_phylink_mac_change(ds, 7, false); } return IRQ_HANDLED; } static int bcm_sf2_sw_rst(struct bcm_sf2_priv *priv) { unsigned int timeout = 1000; u32 reg; reg = core_readl(priv, CORE_WATCHDOG_CTRL); reg |= SOFTWARE_RESET | EN_CHIP_RST | EN_SW_RESET; core_writel(priv, reg, CORE_WATCHDOG_CTRL); do { reg = core_readl(priv, CORE_WATCHDOG_CTRL); if (!(reg & SOFTWARE_RESET)) break; usleep_range(1000, 2000); } while (timeout-- > 0); if (timeout == 0) return -ETIMEDOUT; return 0; } static void bcm_sf2_intr_disable(struct bcm_sf2_priv *priv) { intrl2_0_mask_set(priv, 0xffffffff); intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR); intrl2_1_mask_set(priv, 0xffffffff); intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR); } static void bcm_sf2_identify_ports(struct bcm_sf2_priv *priv, struct device_node *dn) { struct device_node *port; int mode; unsigned int port_num; priv->moca_port = -1; for_each_available_child_of_node(dn, port) { if (of_property_read_u32(port, "reg", &port_num)) continue; /* Internal PHYs get assigned a specific 'phy-mode' property * value: "internal" to help flag them before MDIO probing * has completed, since they might be turned off at that * time */ mode = of_get_phy_mode(port); if (mode < 0) continue; if (mode == PHY_INTERFACE_MODE_INTERNAL) priv->int_phy_mask |= 1 << port_num; if (mode == PHY_INTERFACE_MODE_MOCA) priv->moca_port = port_num; if (of_property_read_bool(port, "brcm,use-bcm-hdr")) priv->brcm_tag_mask |= 1 << port_num; } } static int bcm_sf2_mdio_register(struct dsa_switch *ds) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); struct device_node *dn; static int index; int err; /* Find our integrated MDIO bus node */ dn = of_find_compatible_node(NULL, NULL, "brcm,unimac-mdio"); priv->master_mii_bus = of_mdio_find_bus(dn); if (!priv->master_mii_bus) return -EPROBE_DEFER; get_device(&priv->master_mii_bus->dev); priv->master_mii_dn = dn; priv->slave_mii_bus = devm_mdiobus_alloc(ds->dev); if (!priv->slave_mii_bus) return -ENOMEM; priv->slave_mii_bus->priv = priv; priv->slave_mii_bus->name = "sf2 slave mii"; priv->slave_mii_bus->read = bcm_sf2_sw_mdio_read; priv->slave_mii_bus->write = bcm_sf2_sw_mdio_write; snprintf(priv->slave_mii_bus->id, MII_BUS_ID_SIZE, "sf2-%d", index++); priv->slave_mii_bus->dev.of_node = dn; /* Include the pseudo-PHY address to divert reads towards our * workaround. This is only required for 7445D0, since 7445E0 * disconnects the internal switch pseudo-PHY such that we can use the * regular SWITCH_MDIO master controller instead. * * Here we flag the pseudo PHY as needing special treatment and would * otherwise make all other PHY read/writes go to the master MDIO bus * controller that comes with this switch backed by the "mdio-unimac" * driver. */ if (of_machine_is_compatible("brcm,bcm7445d0")) priv->indir_phy_mask |= (1 << BRCM_PSEUDO_PHY_ADDR); else priv->indir_phy_mask = 0; ds->phys_mii_mask = priv->indir_phy_mask; ds->slave_mii_bus = priv->slave_mii_bus; priv->slave_mii_bus->parent = ds->dev->parent; priv->slave_mii_bus->phy_mask = ~priv->indir_phy_mask; err = of_mdiobus_register(priv->slave_mii_bus, dn); if (err && dn) of_node_put(dn); return err; } static void bcm_sf2_mdio_unregister(struct bcm_sf2_priv *priv) { mdiobus_unregister(priv->slave_mii_bus); of_node_put(priv->master_mii_dn); } static u32 bcm_sf2_sw_get_phy_flags(struct dsa_switch *ds, int port) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); /* The BCM7xxx PHY driver expects to find the integrated PHY revision * in bits 15:8 and the patch level in bits 7:0 which is exactly what * the REG_PHY_REVISION register layout is. */ return priv->hw_params.gphy_rev; } static void bcm_sf2_sw_validate(struct dsa_switch *ds, int port, unsigned long *supported, struct phylink_link_state *state) { __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; if (!phy_interface_mode_is_rgmii(state->interface) && state->interface != PHY_INTERFACE_MODE_MII && state->interface != PHY_INTERFACE_MODE_REVMII && state->interface != PHY_INTERFACE_MODE_GMII && state->interface != PHY_INTERFACE_MODE_INTERNAL && state->interface != PHY_INTERFACE_MODE_MOCA) { bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS); dev_err(ds->dev, "Unsupported interface: %d\n", state->interface); return; } /* Allow all the expected bits */ phylink_set(mask, Autoneg); phylink_set_port_modes(mask); phylink_set(mask, Pause); phylink_set(mask, Asym_Pause); /* With the exclusion of MII and Reverse MII, we support Gigabit, * including Half duplex */ if (state->interface != PHY_INTERFACE_MODE_MII && state->interface != PHY_INTERFACE_MODE_REVMII) { phylink_set(mask, 1000baseT_Full); phylink_set(mask, 1000baseT_Half); } phylink_set(mask, 10baseT_Half); phylink_set(mask, 10baseT_Full); phylink_set(mask, 100baseT_Half); phylink_set(mask, 100baseT_Full); bitmap_and(supported, supported, mask, __ETHTOOL_LINK_MODE_MASK_NBITS); bitmap_and(state->advertising, state->advertising, mask, __ETHTOOL_LINK_MODE_MASK_NBITS); } static void bcm_sf2_sw_mac_config(struct dsa_switch *ds, int port, unsigned int mode, const struct phylink_link_state *state) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); u32 id_mode_dis = 0, port_mode; u32 reg, offset; if (priv->type == BCM7445_DEVICE_ID) offset = CORE_STS_OVERRIDE_GMIIP_PORT(port); else offset = CORE_STS_OVERRIDE_GMIIP2_PORT(port); switch (state->interface) { case PHY_INTERFACE_MODE_RGMII: id_mode_dis = 1; /* fallthrough */ case PHY_INTERFACE_MODE_RGMII_TXID: port_mode = EXT_GPHY; break; case PHY_INTERFACE_MODE_MII: port_mode = EXT_EPHY; break; case PHY_INTERFACE_MODE_REVMII: port_mode = EXT_REVMII; break; default: /* all other PHYs: internal and MoCA */ goto force_link; } /* Clear id_mode_dis bit, and the existing port mode, let * RGMII_MODE_EN bet set by mac_link_{up,down} */ reg = reg_readl(priv, REG_RGMII_CNTRL_P(port)); reg &= ~ID_MODE_DIS; reg &= ~(PORT_MODE_MASK << PORT_MODE_SHIFT); reg &= ~(RX_PAUSE_EN | TX_PAUSE_EN); reg |= port_mode; if (id_mode_dis) reg |= ID_MODE_DIS; if (state->pause & MLO_PAUSE_TXRX_MASK) { if (state->pause & MLO_PAUSE_TX) reg |= TX_PAUSE_EN; reg |= RX_PAUSE_EN; } reg_writel(priv, reg, REG_RGMII_CNTRL_P(port)); force_link: /* Force link settings detected from the PHY */ reg = SW_OVERRIDE; switch (state->speed) { case SPEED_1000: reg |= SPDSTS_1000 << SPEED_SHIFT; break; case SPEED_100: reg |= SPDSTS_100 << SPEED_SHIFT; break; } if (state->link) reg |= LINK_STS; if (state->duplex == DUPLEX_FULL) reg |= DUPLX_MODE; core_writel(priv, reg, offset); } static void bcm_sf2_sw_mac_link_set(struct dsa_switch *ds, int port, phy_interface_t interface, bool link) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); u32 reg; if (!phy_interface_mode_is_rgmii(interface) && interface != PHY_INTERFACE_MODE_MII && interface != PHY_INTERFACE_MODE_REVMII) return; /* If the link is down, just disable the interface to conserve power */ reg = reg_readl(priv, REG_RGMII_CNTRL_P(port)); if (link) reg |= RGMII_MODE_EN; else reg &= ~RGMII_MODE_EN; reg_writel(priv, reg, REG_RGMII_CNTRL_P(port)); } static void bcm_sf2_sw_mac_link_down(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface) { bcm_sf2_sw_mac_link_set(ds, port, interface, false); } static void bcm_sf2_sw_mac_link_up(struct dsa_switch *ds, int port, unsigned int mode, phy_interface_t interface, struct phy_device *phydev) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); struct ethtool_eee *p = &priv->dev->ports[port].eee; bcm_sf2_sw_mac_link_set(ds, port, interface, true); if (mode == MLO_AN_PHY && phydev) p->eee_enabled = b53_eee_init(ds, port, phydev); } static void bcm_sf2_sw_fixed_state(struct dsa_switch *ds, int port, struct phylink_link_state *status) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); status->link = false; /* MoCA port is special as we do not get link status from CORE_LNKSTS, * which means that we need to force the link at the port override * level to get the data to flow. We do use what the interrupt handler * did determine before. * * For the other ports, we just force the link status, since this is * a fixed PHY device. */ if (port == priv->moca_port) { status->link = priv->port_sts[port].link; /* For MoCA interfaces, also force a link down notification * since some version of the user-space daemon (mocad) use * cmd->autoneg to force the link, which messes up the PHY * state machine and make it go in PHY_FORCING state instead. */ if (!status->link) netif_carrier_off(ds->ports[port].slave); status->duplex = DUPLEX_FULL; } else { status->link = true; } } static void bcm_sf2_enable_acb(struct dsa_switch *ds) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); u32 reg; /* Enable ACB globally */ reg = acb_readl(priv, ACB_CONTROL); reg |= (ACB_FLUSH_MASK << ACB_FLUSH_SHIFT); acb_writel(priv, reg, ACB_CONTROL); reg &= ~(ACB_FLUSH_MASK << ACB_FLUSH_SHIFT); reg |= ACB_EN | ACB_ALGORITHM; acb_writel(priv, reg, ACB_CONTROL); } static int bcm_sf2_sw_suspend(struct dsa_switch *ds) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); unsigned int port; bcm_sf2_intr_disable(priv); /* Disable all ports physically present including the IMP * port, the other ones have already been disabled during * bcm_sf2_sw_setup */ for (port = 0; port < ds->num_ports; port++) { if (dsa_is_user_port(ds, port) || dsa_is_cpu_port(ds, port)) bcm_sf2_port_disable(ds, port); } return 0; } static int bcm_sf2_sw_resume(struct dsa_switch *ds) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); int ret; ret = bcm_sf2_sw_rst(priv); if (ret) { pr_err("%s: failed to software reset switch\n", __func__); return ret; } ret = bcm_sf2_cfp_resume(ds); if (ret) return ret; if (priv->hw_params.num_gphy == 1) bcm_sf2_gphy_enable_set(ds, true); ds->ops->setup(ds); return 0; } static void bcm_sf2_sw_get_wol(struct dsa_switch *ds, int port, struct ethtool_wolinfo *wol) { struct net_device *p = ds->ports[port].cpu_dp->master; struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); struct ethtool_wolinfo pwol = { }; /* Get the parent device WoL settings */ if (p->ethtool_ops->get_wol) p->ethtool_ops->get_wol(p, &pwol); /* Advertise the parent device supported settings */ wol->supported = pwol.supported; memset(&wol->sopass, 0, sizeof(wol->sopass)); if (pwol.wolopts & WAKE_MAGICSECURE) memcpy(&wol->sopass, pwol.sopass, sizeof(wol->sopass)); if (priv->wol_ports_mask & (1 << port)) wol->wolopts = pwol.wolopts; else wol->wolopts = 0; } static int bcm_sf2_sw_set_wol(struct dsa_switch *ds, int port, struct ethtool_wolinfo *wol) { struct net_device *p = ds->ports[port].cpu_dp->master; struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); s8 cpu_port = ds->ports[port].cpu_dp->index; struct ethtool_wolinfo pwol = { }; if (p->ethtool_ops->get_wol) p->ethtool_ops->get_wol(p, &pwol); if (wol->wolopts & ~pwol.supported) return -EINVAL; if (wol->wolopts) priv->wol_ports_mask |= (1 << port); else priv->wol_ports_mask &= ~(1 << port); /* If we have at least one port enabled, make sure the CPU port * is also enabled. If the CPU port is the last one enabled, we disable * it since this configuration does not make sense. */ if (priv->wol_ports_mask && priv->wol_ports_mask != (1 << cpu_port)) priv->wol_ports_mask |= (1 << cpu_port); else priv->wol_ports_mask &= ~(1 << cpu_port); return p->ethtool_ops->set_wol(p, wol); } static int bcm_sf2_sw_setup(struct dsa_switch *ds) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); unsigned int port; /* Enable all valid ports and disable those unused */ for (port = 0; port < priv->hw_params.num_ports; port++) { /* IMP port receives special treatment */ if (dsa_is_user_port(ds, port)) bcm_sf2_port_setup(ds, port, NULL); else if (dsa_is_cpu_port(ds, port)) bcm_sf2_imp_setup(ds, port); else bcm_sf2_port_disable(ds, port); } b53_configure_vlan(ds); bcm_sf2_enable_acb(ds); return 0; } /* The SWITCH_CORE register space is managed by b53 but operates on a page + * register basis so we need to translate that into an address that the * bus-glue understands. */ #define SF2_PAGE_REG_MKADDR(page, reg) ((page) << 10 | (reg) << 2) static int bcm_sf2_core_read8(struct b53_device *dev, u8 page, u8 reg, u8 *val) { struct bcm_sf2_priv *priv = dev->priv; *val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg)); return 0; } static int bcm_sf2_core_read16(struct b53_device *dev, u8 page, u8 reg, u16 *val) { struct bcm_sf2_priv *priv = dev->priv; *val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg)); return 0; } static int bcm_sf2_core_read32(struct b53_device *dev, u8 page, u8 reg, u32 *val) { struct bcm_sf2_priv *priv = dev->priv; *val = core_readl(priv, SF2_PAGE_REG_MKADDR(page, reg)); return 0; } static int bcm_sf2_core_read64(struct b53_device *dev, u8 page, u8 reg, u64 *val) { struct bcm_sf2_priv *priv = dev->priv; *val = core_readq(priv, SF2_PAGE_REG_MKADDR(page, reg)); return 0; } static int bcm_sf2_core_write8(struct b53_device *dev, u8 page, u8 reg, u8 value) { struct bcm_sf2_priv *priv = dev->priv; core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg)); return 0; } static int bcm_sf2_core_write16(struct b53_device *dev, u8 page, u8 reg, u16 value) { struct bcm_sf2_priv *priv = dev->priv; core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg)); return 0; } static int bcm_sf2_core_write32(struct b53_device *dev, u8 page, u8 reg, u32 value) { struct bcm_sf2_priv *priv = dev->priv; core_writel(priv, value, SF2_PAGE_REG_MKADDR(page, reg)); return 0; } static int bcm_sf2_core_write64(struct b53_device *dev, u8 page, u8 reg, u64 value) { struct bcm_sf2_priv *priv = dev->priv; core_writeq(priv, value, SF2_PAGE_REG_MKADDR(page, reg)); return 0; } static const struct b53_io_ops bcm_sf2_io_ops = { .read8 = bcm_sf2_core_read8, .read16 = bcm_sf2_core_read16, .read32 = bcm_sf2_core_read32, .read48 = bcm_sf2_core_read64, .read64 = bcm_sf2_core_read64, .write8 = bcm_sf2_core_write8, .write16 = bcm_sf2_core_write16, .write32 = bcm_sf2_core_write32, .write48 = bcm_sf2_core_write64, .write64 = bcm_sf2_core_write64, }; static void bcm_sf2_sw_get_strings(struct dsa_switch *ds, int port, u32 stringset, uint8_t *data) { int cnt = b53_get_sset_count(ds, port, stringset); b53_get_strings(ds, port, stringset, data); bcm_sf2_cfp_get_strings(ds, port, stringset, data + cnt * ETH_GSTRING_LEN); } static void bcm_sf2_sw_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data) { int cnt = b53_get_sset_count(ds, port, ETH_SS_STATS); b53_get_ethtool_stats(ds, port, data); bcm_sf2_cfp_get_ethtool_stats(ds, port, data + cnt); } static int bcm_sf2_sw_get_sset_count(struct dsa_switch *ds, int port, int sset) { int cnt = b53_get_sset_count(ds, port, sset); if (cnt < 0) return cnt; cnt += bcm_sf2_cfp_get_sset_count(ds, port, sset); return cnt; } static const struct dsa_switch_ops bcm_sf2_ops = { .get_tag_protocol = b53_get_tag_protocol, .setup = bcm_sf2_sw_setup, .get_strings = bcm_sf2_sw_get_strings, .get_ethtool_stats = bcm_sf2_sw_get_ethtool_stats, .get_sset_count = bcm_sf2_sw_get_sset_count, .get_ethtool_phy_stats = b53_get_ethtool_phy_stats, .get_phy_flags = bcm_sf2_sw_get_phy_flags, .phylink_validate = bcm_sf2_sw_validate, .phylink_mac_config = bcm_sf2_sw_mac_config, .phylink_mac_link_down = bcm_sf2_sw_mac_link_down, .phylink_mac_link_up = bcm_sf2_sw_mac_link_up, .phylink_fixed_state = bcm_sf2_sw_fixed_state, .suspend = bcm_sf2_sw_suspend, .resume = bcm_sf2_sw_resume, .get_wol = bcm_sf2_sw_get_wol, .set_wol = bcm_sf2_sw_set_wol, .port_enable = bcm_sf2_port_setup, .port_disable = bcm_sf2_port_disable, .get_mac_eee = b53_get_mac_eee, .set_mac_eee = b53_set_mac_eee, .port_bridge_join = b53_br_join, .port_bridge_leave = b53_br_leave, .port_stp_state_set = b53_br_set_stp_state, .port_fast_age = b53_br_fast_age, .port_vlan_filtering = b53_vlan_filtering, .port_vlan_prepare = b53_vlan_prepare, .port_vlan_add = b53_vlan_add, .port_vlan_del = b53_vlan_del, .port_fdb_dump = b53_fdb_dump, .port_fdb_add = b53_fdb_add, .port_fdb_del = b53_fdb_del, .get_rxnfc = bcm_sf2_get_rxnfc, .set_rxnfc = bcm_sf2_set_rxnfc, .port_mirror_add = b53_mirror_add, .port_mirror_del = b53_mirror_del, }; struct bcm_sf2_of_data { u32 type; const u16 *reg_offsets; unsigned int core_reg_align; unsigned int num_cfp_rules; }; /* Register offsets for the SWITCH_REG_* block */ static const u16 bcm_sf2_7445_reg_offsets[] = { [REG_SWITCH_CNTRL] = 0x00, [REG_SWITCH_STATUS] = 0x04, [REG_DIR_DATA_WRITE] = 0x08, [REG_DIR_DATA_READ] = 0x0C, [REG_SWITCH_REVISION] = 0x18, [REG_PHY_REVISION] = 0x1C, [REG_SPHY_CNTRL] = 0x2C, [REG_RGMII_0_CNTRL] = 0x34, [REG_RGMII_1_CNTRL] = 0x40, [REG_RGMII_2_CNTRL] = 0x4c, [REG_LED_0_CNTRL] = 0x90, [REG_LED_1_CNTRL] = 0x94, [REG_LED_2_CNTRL] = 0x98, }; static const struct bcm_sf2_of_data bcm_sf2_7445_data = { .type = BCM7445_DEVICE_ID, .core_reg_align = 0, .reg_offsets = bcm_sf2_7445_reg_offsets, .num_cfp_rules = 256, }; static const u16 bcm_sf2_7278_reg_offsets[] = { [REG_SWITCH_CNTRL] = 0x00, [REG_SWITCH_STATUS] = 0x04, [REG_DIR_DATA_WRITE] = 0x08, [REG_DIR_DATA_READ] = 0x0c, [REG_SWITCH_REVISION] = 0x10, [REG_PHY_REVISION] = 0x14, [REG_SPHY_CNTRL] = 0x24, [REG_RGMII_0_CNTRL] = 0xe0, [REG_RGMII_1_CNTRL] = 0xec, [REG_RGMII_2_CNTRL] = 0xf8, [REG_LED_0_CNTRL] = 0x40, [REG_LED_1_CNTRL] = 0x4c, [REG_LED_2_CNTRL] = 0x58, }; static const struct bcm_sf2_of_data bcm_sf2_7278_data = { .type = BCM7278_DEVICE_ID, .core_reg_align = 1, .reg_offsets = bcm_sf2_7278_reg_offsets, .num_cfp_rules = 128, }; static const struct of_device_id bcm_sf2_of_match[] = { { .compatible = "brcm,bcm7445-switch-v4.0", .data = &bcm_sf2_7445_data }, { .compatible = "brcm,bcm7278-switch-v4.0", .data = &bcm_sf2_7278_data }, { .compatible = "brcm,bcm7278-switch-v4.8", .data = &bcm_sf2_7278_data }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, bcm_sf2_of_match); static int bcm_sf2_sw_probe(struct platform_device *pdev) { const char *reg_names[BCM_SF2_REGS_NUM] = BCM_SF2_REGS_NAME; struct device_node *dn = pdev->dev.of_node; const struct of_device_id *of_id = NULL; const struct bcm_sf2_of_data *data; struct b53_platform_data *pdata; struct dsa_switch_ops *ops; struct bcm_sf2_priv *priv; struct b53_device *dev; struct dsa_switch *ds; void __iomem **base; struct resource *r; unsigned int i; u32 reg, rev; int ret; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; ops = devm_kzalloc(&pdev->dev, sizeof(*ops), GFP_KERNEL); if (!ops) return -ENOMEM; dev = b53_switch_alloc(&pdev->dev, &bcm_sf2_io_ops, priv); if (!dev) return -ENOMEM; pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return -ENOMEM; of_id = of_match_node(bcm_sf2_of_match, dn); if (!of_id || !of_id->data) return -EINVAL; data = of_id->data; /* Set SWITCH_REG register offsets and SWITCH_CORE align factor */ priv->type = data->type; priv->reg_offsets = data->reg_offsets; priv->core_reg_align = data->core_reg_align; priv->num_cfp_rules = data->num_cfp_rules; /* Auto-detection using standard registers will not work, so * provide an indication of what kind of device we are for * b53_common to work with */ pdata->chip_id = priv->type; dev->pdata = pdata; priv->dev = dev; ds = dev->ds; ds->ops = &bcm_sf2_ops; /* Advertise the 8 egress queues */ ds->num_tx_queues = SF2_NUM_EGRESS_QUEUES; dev_set_drvdata(&pdev->dev, priv); spin_lock_init(&priv->indir_lock); mutex_init(&priv->cfp.lock); INIT_LIST_HEAD(&priv->cfp.rules_list); /* CFP rule #0 cannot be used for specific classifications, flag it as * permanently used */ set_bit(0, priv->cfp.used); set_bit(0, priv->cfp.unique); bcm_sf2_identify_ports(priv, dn->child); priv->irq0 = irq_of_parse_and_map(dn, 0); priv->irq1 = irq_of_parse_and_map(dn, 1); base = &priv->core; for (i = 0; i < BCM_SF2_REGS_NUM; i++) { r = platform_get_resource(pdev, IORESOURCE_MEM, i); *base = devm_ioremap_resource(&pdev->dev, r); if (IS_ERR(*base)) { pr_err("unable to find register: %s\n", reg_names[i]); return PTR_ERR(*base); } base++; } ret = bcm_sf2_sw_rst(priv); if (ret) { pr_err("unable to software reset switch: %d\n", ret); return ret; } bcm_sf2_gphy_enable_set(priv->dev->ds, true); ret = bcm_sf2_mdio_register(ds); if (ret) { pr_err("failed to register MDIO bus\n"); return ret; } bcm_sf2_gphy_enable_set(priv->dev->ds, false); ret = bcm_sf2_cfp_rst(priv); if (ret) { pr_err("failed to reset CFP\n"); goto out_mdio; } /* Disable all interrupts and request them */ bcm_sf2_intr_disable(priv); ret = devm_request_irq(&pdev->dev, priv->irq0, bcm_sf2_switch_0_isr, 0, "switch_0", ds); if (ret < 0) { pr_err("failed to request switch_0 IRQ\n"); goto out_mdio; } ret = devm_request_irq(&pdev->dev, priv->irq1, bcm_sf2_switch_1_isr, 0, "switch_1", ds); if (ret < 0) { pr_err("failed to request switch_1 IRQ\n"); goto out_mdio; } /* Reset the MIB counters */ reg = core_readl(priv, CORE_GMNCFGCFG); reg |= RST_MIB_CNT; core_writel(priv, reg, CORE_GMNCFGCFG); reg &= ~RST_MIB_CNT; core_writel(priv, reg, CORE_GMNCFGCFG); /* Get the maximum number of ports for this switch */ priv->hw_params.num_ports = core_readl(priv, CORE_IMP0_PRT_ID) + 1; if (priv->hw_params.num_ports > DSA_MAX_PORTS) priv->hw_params.num_ports = DSA_MAX_PORTS; /* Assume a single GPHY setup if we can't read that property */ if (of_property_read_u32(dn, "brcm,num-gphy", &priv->hw_params.num_gphy)) priv->hw_params.num_gphy = 1; rev = reg_readl(priv, REG_SWITCH_REVISION); priv->hw_params.top_rev = (rev >> SWITCH_TOP_REV_SHIFT) & SWITCH_TOP_REV_MASK; priv->hw_params.core_rev = (rev & SF2_REV_MASK); rev = reg_readl(priv, REG_PHY_REVISION); priv->hw_params.gphy_rev = rev & PHY_REVISION_MASK; ret = b53_switch_register(dev); if (ret) goto out_mdio; dev_info(&pdev->dev, "Starfighter 2 top: %x.%02x, core: %x.%02x, IRQs: %d, %d\n", priv->hw_params.top_rev >> 8, priv->hw_params.top_rev & 0xff, priv->hw_params.core_rev >> 8, priv->hw_params.core_rev & 0xff, priv->irq0, priv->irq1); return 0; out_mdio: bcm_sf2_mdio_unregister(priv); return ret; } static int bcm_sf2_sw_remove(struct platform_device *pdev) { struct bcm_sf2_priv *priv = platform_get_drvdata(pdev); priv->wol_ports_mask = 0; dsa_unregister_switch(priv->dev->ds); bcm_sf2_cfp_exit(priv->dev->ds); /* Disable all ports and interrupts */ bcm_sf2_sw_suspend(priv->dev->ds); bcm_sf2_mdio_unregister(priv); return 0; } static void bcm_sf2_sw_shutdown(struct platform_device *pdev) { struct bcm_sf2_priv *priv = platform_get_drvdata(pdev); /* For a kernel about to be kexec'd we want to keep the GPHY on for a * successful MDIO bus scan to occur. If we did turn off the GPHY * before (e.g: port_disable), this will also power it back on. * * Do not rely on kexec_in_progress, just power the PHY on. */ if (priv->hw_params.num_gphy == 1) bcm_sf2_gphy_enable_set(priv->dev->ds, true); } #ifdef CONFIG_PM_SLEEP static int bcm_sf2_suspend(struct device *dev) { struct bcm_sf2_priv *priv = dev_get_drvdata(dev); return dsa_switch_suspend(priv->dev->ds); } static int bcm_sf2_resume(struct device *dev) { struct bcm_sf2_priv *priv = dev_get_drvdata(dev); return dsa_switch_resume(priv->dev->ds); } #endif /* CONFIG_PM_SLEEP */ static SIMPLE_DEV_PM_OPS(bcm_sf2_pm_ops, bcm_sf2_suspend, bcm_sf2_resume); static struct platform_driver bcm_sf2_driver = { .probe = bcm_sf2_sw_probe, .remove = bcm_sf2_sw_remove, .shutdown = bcm_sf2_sw_shutdown, .driver = { .name = "brcm-sf2", .of_match_table = bcm_sf2_of_match, .pm = &bcm_sf2_pm_ops, }, }; module_platform_driver(bcm_sf2_driver); MODULE_AUTHOR("Broadcom Corporation"); MODULE_DESCRIPTION("Driver for Broadcom Starfighter 2 ethernet switch chip"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:brcm-sf2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1