Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Brandon Streiff | 2355 | 81.04% | 2 | 20.00% |
Andrew Lunn | 492 | 16.93% | 5 | 50.00% |
Richard Cochran | 50 | 1.72% | 1 | 10.00% |
Colin Ian King | 7 | 0.24% | 1 | 10.00% |
Thomas Gleixner | 2 | 0.07% | 1 | 10.00% |
Total | 2906 | 10 |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644
// SPDX-License-Identifier: GPL-2.0-or-later /* * Marvell 88E6xxx Switch hardware timestamping support * * Copyright (c) 2008 Marvell Semiconductor * * Copyright (c) 2017 National Instruments * Erik Hons <erik.hons@ni.com> * Brandon Streiff <brandon.streiff@ni.com> * Dane Wagner <dane.wagner@ni.com> */ #include "chip.h" #include "global2.h" #include "hwtstamp.h" #include "ptp.h" #include <linux/ptp_classify.h> #define SKB_PTP_TYPE(__skb) (*(unsigned int *)((__skb)->cb)) static int mv88e6xxx_port_ptp_read(struct mv88e6xxx_chip *chip, int port, int addr, u16 *data, int len) { if (!chip->info->ops->avb_ops->port_ptp_read) return -EOPNOTSUPP; return chip->info->ops->avb_ops->port_ptp_read(chip, port, addr, data, len); } static int mv88e6xxx_port_ptp_write(struct mv88e6xxx_chip *chip, int port, int addr, u16 data) { if (!chip->info->ops->avb_ops->port_ptp_write) return -EOPNOTSUPP; return chip->info->ops->avb_ops->port_ptp_write(chip, port, addr, data); } static int mv88e6xxx_ptp_write(struct mv88e6xxx_chip *chip, int addr, u16 data) { if (!chip->info->ops->avb_ops->ptp_write) return -EOPNOTSUPP; return chip->info->ops->avb_ops->ptp_write(chip, addr, data); } static int mv88e6xxx_ptp_read(struct mv88e6xxx_chip *chip, int addr, u16 *data) { if (!chip->info->ops->avb_ops->ptp_read) return -EOPNOTSUPP; return chip->info->ops->avb_ops->ptp_read(chip, addr, data, 1); } /* TX_TSTAMP_TIMEOUT: This limits the time spent polling for a TX * timestamp. When working properly, hardware will produce a timestamp * within 1ms. Software may enounter delays due to MDIO contention, so * the timeout is set accordingly. */ #define TX_TSTAMP_TIMEOUT msecs_to_jiffies(40) int mv88e6xxx_get_ts_info(struct dsa_switch *ds, int port, struct ethtool_ts_info *info) { const struct mv88e6xxx_ptp_ops *ptp_ops; struct mv88e6xxx_chip *chip; chip = ds->priv; ptp_ops = chip->info->ops->ptp_ops; if (!chip->info->ptp_support) return -EOPNOTSUPP; info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE; info->phc_index = ptp_clock_index(chip->ptp_clock); info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON); info->rx_filters = ptp_ops->rx_filters; return 0; } static int mv88e6xxx_set_hwtstamp_config(struct mv88e6xxx_chip *chip, int port, struct hwtstamp_config *config) { const struct mv88e6xxx_ptp_ops *ptp_ops = chip->info->ops->ptp_ops; struct mv88e6xxx_port_hwtstamp *ps = &chip->port_hwtstamp[port]; bool tstamp_enable = false; /* Prevent the TX/RX paths from trying to interact with the * timestamp hardware while we reconfigure it. */ clear_bit_unlock(MV88E6XXX_HWTSTAMP_ENABLED, &ps->state); /* reserved for future extensions */ if (config->flags) return -EINVAL; switch (config->tx_type) { case HWTSTAMP_TX_OFF: tstamp_enable = false; break; case HWTSTAMP_TX_ON: tstamp_enable = true; break; default: return -ERANGE; } /* The switch supports timestamping both L2 and L4; one cannot be * disabled independently of the other. */ if (!(BIT(config->rx_filter) & ptp_ops->rx_filters)) { config->rx_filter = HWTSTAMP_FILTER_NONE; dev_dbg(chip->dev, "Unsupported rx_filter %d\n", config->rx_filter); return -ERANGE; } switch (config->rx_filter) { case HWTSTAMP_FILTER_NONE: tstamp_enable = false; break; case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; break; case HWTSTAMP_FILTER_ALL: default: config->rx_filter = HWTSTAMP_FILTER_NONE; return -ERANGE; } mutex_lock(&chip->reg_lock); if (tstamp_enable) { chip->enable_count += 1; if (chip->enable_count == 1 && ptp_ops->global_enable) ptp_ops->global_enable(chip); if (ptp_ops->port_enable) ptp_ops->port_enable(chip, port); } else { if (ptp_ops->port_disable) ptp_ops->port_disable(chip, port); chip->enable_count -= 1; if (chip->enable_count == 0 && ptp_ops->global_disable) ptp_ops->global_disable(chip); } mutex_unlock(&chip->reg_lock); /* Once hardware has been configured, enable timestamp checks * in the RX/TX paths. */ if (tstamp_enable) set_bit(MV88E6XXX_HWTSTAMP_ENABLED, &ps->state); return 0; } int mv88e6xxx_port_hwtstamp_set(struct dsa_switch *ds, int port, struct ifreq *ifr) { struct mv88e6xxx_chip *chip = ds->priv; struct mv88e6xxx_port_hwtstamp *ps = &chip->port_hwtstamp[port]; struct hwtstamp_config config; int err; if (!chip->info->ptp_support) return -EOPNOTSUPP; if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) return -EFAULT; err = mv88e6xxx_set_hwtstamp_config(chip, port, &config); if (err) return err; /* Save the chosen configuration to be returned later. */ memcpy(&ps->tstamp_config, &config, sizeof(config)); return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } int mv88e6xxx_port_hwtstamp_get(struct dsa_switch *ds, int port, struct ifreq *ifr) { struct mv88e6xxx_chip *chip = ds->priv; struct mv88e6xxx_port_hwtstamp *ps = &chip->port_hwtstamp[port]; struct hwtstamp_config *config = &ps->tstamp_config; if (!chip->info->ptp_support) return -EOPNOTSUPP; return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? -EFAULT : 0; } /* Get the start of the PTP header in this skb */ static u8 *parse_ptp_header(struct sk_buff *skb, unsigned int type) { u8 *data = skb_mac_header(skb); unsigned int offset = 0; if (type & PTP_CLASS_VLAN) offset += VLAN_HLEN; switch (type & PTP_CLASS_PMASK) { case PTP_CLASS_IPV4: offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN; break; case PTP_CLASS_IPV6: offset += ETH_HLEN + IP6_HLEN + UDP_HLEN; break; case PTP_CLASS_L2: offset += ETH_HLEN; break; default: return NULL; } /* Ensure that the entire header is present in this packet. */ if (skb->len + ETH_HLEN < offset + 34) return NULL; return data + offset; } /* Returns a pointer to the PTP header if the caller should time stamp, * or NULL if the caller should not. */ static u8 *mv88e6xxx_should_tstamp(struct mv88e6xxx_chip *chip, int port, struct sk_buff *skb, unsigned int type) { struct mv88e6xxx_port_hwtstamp *ps = &chip->port_hwtstamp[port]; u8 *hdr; if (!chip->info->ptp_support) return NULL; hdr = parse_ptp_header(skb, type); if (!hdr) return NULL; if (!test_bit(MV88E6XXX_HWTSTAMP_ENABLED, &ps->state)) return NULL; return hdr; } static int mv88e6xxx_ts_valid(u16 status) { if (!(status & MV88E6XXX_PTP_TS_VALID)) return 0; if (status & MV88E6XXX_PTP_TS_STATUS_MASK) return 0; return 1; } static int seq_match(struct sk_buff *skb, u16 ts_seqid) { unsigned int type = SKB_PTP_TYPE(skb); u8 *hdr = parse_ptp_header(skb, type); __be16 *seqid; seqid = (__be16 *)(hdr + OFF_PTP_SEQUENCE_ID); return ts_seqid == ntohs(*seqid); } static void mv88e6xxx_get_rxts(struct mv88e6xxx_chip *chip, struct mv88e6xxx_port_hwtstamp *ps, struct sk_buff *skb, u16 reg, struct sk_buff_head *rxq) { u16 buf[4] = { 0 }, status, seq_id; struct skb_shared_hwtstamps *shwt; struct sk_buff_head received; u64 ns, timelo, timehi; unsigned long flags; int err; /* The latched timestamp belongs to one of the received frames. */ __skb_queue_head_init(&received); spin_lock_irqsave(&rxq->lock, flags); skb_queue_splice_tail_init(rxq, &received); spin_unlock_irqrestore(&rxq->lock, flags); mutex_lock(&chip->reg_lock); err = mv88e6xxx_port_ptp_read(chip, ps->port_id, reg, buf, ARRAY_SIZE(buf)); mutex_unlock(&chip->reg_lock); if (err) pr_err("failed to get the receive time stamp\n"); status = buf[0]; timelo = buf[1]; timehi = buf[2]; seq_id = buf[3]; if (status & MV88E6XXX_PTP_TS_VALID) { mutex_lock(&chip->reg_lock); err = mv88e6xxx_port_ptp_write(chip, ps->port_id, reg, 0); mutex_unlock(&chip->reg_lock); if (err) pr_err("failed to clear the receive status\n"); } /* Since the device can only handle one time stamp at a time, * we purge any extra frames from the queue. */ for ( ; skb; skb = __skb_dequeue(&received)) { if (mv88e6xxx_ts_valid(status) && seq_match(skb, seq_id)) { ns = timehi << 16 | timelo; mutex_lock(&chip->reg_lock); ns = timecounter_cyc2time(&chip->tstamp_tc, ns); mutex_unlock(&chip->reg_lock); shwt = skb_hwtstamps(skb); memset(shwt, 0, sizeof(*shwt)); shwt->hwtstamp = ns_to_ktime(ns); status &= ~MV88E6XXX_PTP_TS_VALID; } netif_rx_ni(skb); } } static void mv88e6xxx_rxtstamp_work(struct mv88e6xxx_chip *chip, struct mv88e6xxx_port_hwtstamp *ps) { const struct mv88e6xxx_ptp_ops *ptp_ops = chip->info->ops->ptp_ops; struct sk_buff *skb; skb = skb_dequeue(&ps->rx_queue); if (skb) mv88e6xxx_get_rxts(chip, ps, skb, ptp_ops->arr0_sts_reg, &ps->rx_queue); skb = skb_dequeue(&ps->rx_queue2); if (skb) mv88e6xxx_get_rxts(chip, ps, skb, ptp_ops->arr1_sts_reg, &ps->rx_queue2); } static int is_pdelay_resp(u8 *msgtype) { return (*msgtype & 0xf) == 3; } bool mv88e6xxx_port_rxtstamp(struct dsa_switch *ds, int port, struct sk_buff *skb, unsigned int type) { struct mv88e6xxx_port_hwtstamp *ps; struct mv88e6xxx_chip *chip; u8 *hdr; chip = ds->priv; ps = &chip->port_hwtstamp[port]; if (ps->tstamp_config.rx_filter != HWTSTAMP_FILTER_PTP_V2_EVENT) return false; hdr = mv88e6xxx_should_tstamp(chip, port, skb, type); if (!hdr) return false; SKB_PTP_TYPE(skb) = type; if (is_pdelay_resp(hdr)) skb_queue_tail(&ps->rx_queue2, skb); else skb_queue_tail(&ps->rx_queue, skb); ptp_schedule_worker(chip->ptp_clock, 0); return true; } static int mv88e6xxx_txtstamp_work(struct mv88e6xxx_chip *chip, struct mv88e6xxx_port_hwtstamp *ps) { const struct mv88e6xxx_ptp_ops *ptp_ops = chip->info->ops->ptp_ops; struct skb_shared_hwtstamps shhwtstamps; u16 departure_block[4], status; struct sk_buff *tmp_skb; u32 time_raw; int err; u64 ns; if (!ps->tx_skb) return 0; mutex_lock(&chip->reg_lock); err = mv88e6xxx_port_ptp_read(chip, ps->port_id, ptp_ops->dep_sts_reg, departure_block, ARRAY_SIZE(departure_block)); mutex_unlock(&chip->reg_lock); if (err) goto free_and_clear_skb; if (!(departure_block[0] & MV88E6XXX_PTP_TS_VALID)) { if (time_is_before_jiffies(ps->tx_tstamp_start + TX_TSTAMP_TIMEOUT)) { dev_warn(chip->dev, "p%d: clearing tx timestamp hang\n", ps->port_id); goto free_and_clear_skb; } /* The timestamp should be available quickly, while getting it * is high priority and time bounded to only 10ms. A poll is * warranted so restart the work. */ return 1; } /* We have the timestamp; go ahead and clear valid now */ mutex_lock(&chip->reg_lock); mv88e6xxx_port_ptp_write(chip, ps->port_id, ptp_ops->dep_sts_reg, 0); mutex_unlock(&chip->reg_lock); status = departure_block[0] & MV88E6XXX_PTP_TS_STATUS_MASK; if (status != MV88E6XXX_PTP_TS_STATUS_NORMAL) { dev_warn(chip->dev, "p%d: tx timestamp overrun\n", ps->port_id); goto free_and_clear_skb; } if (departure_block[3] != ps->tx_seq_id) { dev_warn(chip->dev, "p%d: unexpected seq. id\n", ps->port_id); goto free_and_clear_skb; } memset(&shhwtstamps, 0, sizeof(shhwtstamps)); time_raw = ((u32)departure_block[2] << 16) | departure_block[1]; mutex_lock(&chip->reg_lock); ns = timecounter_cyc2time(&chip->tstamp_tc, time_raw); mutex_unlock(&chip->reg_lock); shhwtstamps.hwtstamp = ns_to_ktime(ns); dev_dbg(chip->dev, "p%d: txtstamp %llx status 0x%04x skb ID 0x%04x hw ID 0x%04x\n", ps->port_id, ktime_to_ns(shhwtstamps.hwtstamp), departure_block[0], ps->tx_seq_id, departure_block[3]); /* skb_complete_tx_timestamp() will free up the client to make * another timestamp-able transmit. We have to be ready for it * -- by clearing the ps->tx_skb "flag" -- beforehand. */ tmp_skb = ps->tx_skb; ps->tx_skb = NULL; clear_bit_unlock(MV88E6XXX_HWTSTAMP_TX_IN_PROGRESS, &ps->state); skb_complete_tx_timestamp(tmp_skb, &shhwtstamps); return 0; free_and_clear_skb: dev_kfree_skb_any(ps->tx_skb); ps->tx_skb = NULL; clear_bit_unlock(MV88E6XXX_HWTSTAMP_TX_IN_PROGRESS, &ps->state); return 0; } long mv88e6xxx_hwtstamp_work(struct ptp_clock_info *ptp) { struct mv88e6xxx_chip *chip = ptp_to_chip(ptp); struct dsa_switch *ds = chip->ds; struct mv88e6xxx_port_hwtstamp *ps; int i, restart = 0; for (i = 0; i < ds->num_ports; i++) { if (!dsa_is_user_port(ds, i)) continue; ps = &chip->port_hwtstamp[i]; if (test_bit(MV88E6XXX_HWTSTAMP_TX_IN_PROGRESS, &ps->state)) restart |= mv88e6xxx_txtstamp_work(chip, ps); mv88e6xxx_rxtstamp_work(chip, ps); } return restart ? 1 : -1; } bool mv88e6xxx_port_txtstamp(struct dsa_switch *ds, int port, struct sk_buff *clone, unsigned int type) { struct mv88e6xxx_chip *chip = ds->priv; struct mv88e6xxx_port_hwtstamp *ps = &chip->port_hwtstamp[port]; __be16 *seq_ptr; u8 *hdr; if (!(skb_shinfo(clone)->tx_flags & SKBTX_HW_TSTAMP)) return false; hdr = mv88e6xxx_should_tstamp(chip, port, clone, type); if (!hdr) return false; seq_ptr = (__be16 *)(hdr + OFF_PTP_SEQUENCE_ID); if (test_and_set_bit_lock(MV88E6XXX_HWTSTAMP_TX_IN_PROGRESS, &ps->state)) return false; ps->tx_skb = clone; ps->tx_tstamp_start = jiffies; ps->tx_seq_id = be16_to_cpup(seq_ptr); ptp_schedule_worker(chip->ptp_clock, 0); return true; } int mv88e6165_global_disable(struct mv88e6xxx_chip *chip) { u16 val; int err; err = mv88e6xxx_ptp_read(chip, MV88E6165_PTP_CFG, &val); if (err) return err; val |= MV88E6165_PTP_CFG_DISABLE_PTP; return mv88e6xxx_ptp_write(chip, MV88E6165_PTP_CFG, val); } int mv88e6165_global_enable(struct mv88e6xxx_chip *chip) { u16 val; int err; err = mv88e6xxx_ptp_read(chip, MV88E6165_PTP_CFG, &val); if (err) return err; val &= ~(MV88E6165_PTP_CFG_DISABLE_PTP | MV88E6165_PTP_CFG_TSPEC_MASK); return mv88e6xxx_ptp_write(chip, MV88E6165_PTP_CFG, val); } int mv88e6352_hwtstamp_port_disable(struct mv88e6xxx_chip *chip, int port) { return mv88e6xxx_port_ptp_write(chip, port, MV88E6XXX_PORT_PTP_CFG0, MV88E6XXX_PORT_PTP_CFG0_DISABLE_PTP); } int mv88e6352_hwtstamp_port_enable(struct mv88e6xxx_chip *chip, int port) { return mv88e6xxx_port_ptp_write(chip, port, MV88E6XXX_PORT_PTP_CFG0, MV88E6XXX_PORT_PTP_CFG0_DISABLE_TSPEC_MATCH); } static int mv88e6xxx_hwtstamp_port_setup(struct mv88e6xxx_chip *chip, int port) { const struct mv88e6xxx_ptp_ops *ptp_ops = chip->info->ops->ptp_ops; struct mv88e6xxx_port_hwtstamp *ps = &chip->port_hwtstamp[port]; ps->port_id = port; skb_queue_head_init(&ps->rx_queue); skb_queue_head_init(&ps->rx_queue2); if (ptp_ops->port_disable) return ptp_ops->port_disable(chip, port); return 0; } int mv88e6xxx_hwtstamp_setup(struct mv88e6xxx_chip *chip) { const struct mv88e6xxx_ptp_ops *ptp_ops = chip->info->ops->ptp_ops; int err; int i; /* Disable timestamping on all ports. */ for (i = 0; i < mv88e6xxx_num_ports(chip); ++i) { err = mv88e6xxx_hwtstamp_port_setup(chip, i); if (err) return err; } /* Disable PTP globally */ if (ptp_ops->global_disable) { err = ptp_ops->global_disable(chip); if (err) return err; } /* Set the ethertype of L2 PTP messages */ err = mv88e6xxx_ptp_write(chip, MV88E6XXX_PTP_GC_ETYPE, ETH_P_1588); if (err) return err; /* MV88E6XXX_PTP_MSG_TYPE is a mask of PTP message types to * timestamp. This affects all ports that have timestamping enabled, * but the timestamp config is per-port; thus we configure all events * here and only support the HWTSTAMP_FILTER_*_EVENT filter types. */ err = mv88e6xxx_ptp_write(chip, MV88E6XXX_PTP_MSGTYPE, MV88E6XXX_PTP_MSGTYPE_ALL_EVENT); if (err) return err; /* Use ARRIVAL1 for peer delay response messages. */ err = mv88e6xxx_ptp_write(chip, MV88E6XXX_PTP_TS_ARRIVAL_PTR, MV88E6XXX_PTP_MSGTYPE_PDLAY_RES); if (err) return err; /* 88E6341 devices default to timestamping at the PHY, but this has * a hardware issue that results in unreliable timestamps. Force * these devices to timestamp at the MAC. */ if (chip->info->family == MV88E6XXX_FAMILY_6341) { u16 val = MV88E6341_PTP_CFG_UPDATE | MV88E6341_PTP_CFG_MODE_IDX | MV88E6341_PTP_CFG_MODE_TS_AT_MAC; err = mv88e6xxx_ptp_write(chip, MV88E6341_PTP_CFG, val); if (err) return err; } return 0; } void mv88e6xxx_hwtstamp_free(struct mv88e6xxx_chip *chip) { }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1