Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kristoffer Glembo | 6855 | 87.26% | 2 | 4.35% |
Daniel Hellstrom | 779 | 9.92% | 10 | 21.74% |
Denis Kirjanov | 53 | 0.67% | 2 | 4.35% |
Jiri Pirko | 34 | 0.43% | 3 | 6.52% |
Philippe Reynes | 33 | 0.42% | 2 | 4.35% |
Eric Dumazet | 18 | 0.23% | 3 | 6.52% |
Andrew Lunn | 14 | 0.18% | 2 | 4.35% |
Michał Mirosław | 14 | 0.18% | 1 | 2.17% |
Tobias Klauser | 11 | 0.14% | 2 | 4.35% |
Grant C. Likely | 8 | 0.10% | 4 | 8.70% |
Alexey Dobriyan | 6 | 0.08% | 2 | 4.35% |
David S. Miller | 6 | 0.08% | 1 | 2.17% |
Ian Campbell | 6 | 0.08% | 1 | 2.17% |
Petr Štetiar | 4 | 0.05% | 1 | 2.17% |
Tejun Heo | 3 | 0.04% | 1 | 2.17% |
Luis R. Rodriguez | 2 | 0.03% | 1 | 2.17% |
Axel Lin | 2 | 0.03% | 1 | 2.17% |
Thomas Gleixner | 2 | 0.03% | 1 | 2.17% |
Florian Fainelli | 1 | 0.01% | 1 | 2.17% |
Johannes Berg | 1 | 0.01% | 1 | 2.17% |
Fabian Frederick | 1 | 0.01% | 1 | 2.17% |
Danny Kukawka | 1 | 0.01% | 1 | 2.17% |
Masanari Iida | 1 | 0.01% | 1 | 2.17% |
Jingoo Han | 1 | 0.01% | 1 | 2.17% |
Total | 7856 | 46 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC. * * 2005-2010 (c) Aeroflex Gaisler AB * * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs * available in the GRLIB VHDL IP core library. * * Full documentation of both cores can be found here: * http://www.gaisler.com/products/grlib/grip.pdf * * The Gigabit version supports scatter/gather DMA, any alignment of * buffers and checksum offloading. * * Contributors: Kristoffer Glembo * Daniel Hellstrom * Marko Isomaki */ #include <linux/dma-mapping.h> #include <linux/module.h> #include <linux/uaccess.h> #include <linux/interrupt.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/skbuff.h> #include <linux/io.h> #include <linux/crc32.h> #include <linux/mii.h> #include <linux/of_device.h> #include <linux/of_net.h> #include <linux/of_platform.h> #include <linux/slab.h> #include <asm/cacheflush.h> #include <asm/byteorder.h> #ifdef CONFIG_SPARC #include <asm/idprom.h> #endif #include "greth.h" #define GRETH_DEF_MSG_ENABLE \ (NETIF_MSG_DRV | \ NETIF_MSG_PROBE | \ NETIF_MSG_LINK | \ NETIF_MSG_IFDOWN | \ NETIF_MSG_IFUP | \ NETIF_MSG_RX_ERR | \ NETIF_MSG_TX_ERR) static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */ module_param(greth_debug, int, 0); MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value"); /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */ static int macaddr[6]; module_param_array(macaddr, int, NULL, 0); MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address"); static int greth_edcl = 1; module_param(greth_edcl, int, 0); MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used."); static int greth_open(struct net_device *dev); static netdev_tx_t greth_start_xmit(struct sk_buff *skb, struct net_device *dev); static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev); static int greth_rx(struct net_device *dev, int limit); static int greth_rx_gbit(struct net_device *dev, int limit); static void greth_clean_tx(struct net_device *dev); static void greth_clean_tx_gbit(struct net_device *dev); static irqreturn_t greth_interrupt(int irq, void *dev_id); static int greth_close(struct net_device *dev); static int greth_set_mac_add(struct net_device *dev, void *p); static void greth_set_multicast_list(struct net_device *dev); #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a)))) #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a))) #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v)))) #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v)))) #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK) #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK) #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK) static void greth_print_rx_packet(void *addr, int len) { print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1, addr, len, true); } static void greth_print_tx_packet(struct sk_buff *skb) { int i; int length; if (skb_shinfo(skb)->nr_frags == 0) length = skb->len; else length = skb_headlen(skb); print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1, skb->data, length, true); for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1, skb_frag_address(&skb_shinfo(skb)->frags[i]), skb_shinfo(skb)->frags[i].size, true); } } static inline void greth_enable_tx(struct greth_private *greth) { wmb(); GRETH_REGORIN(greth->regs->control, GRETH_TXEN); } static inline void greth_enable_tx_and_irq(struct greth_private *greth) { wmb(); /* BDs must been written to memory before enabling TX */ GRETH_REGORIN(greth->regs->control, GRETH_TXEN | GRETH_TXI); } static inline void greth_disable_tx(struct greth_private *greth) { GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN); } static inline void greth_enable_rx(struct greth_private *greth) { wmb(); GRETH_REGORIN(greth->regs->control, GRETH_RXEN); } static inline void greth_disable_rx(struct greth_private *greth) { GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN); } static inline void greth_enable_irqs(struct greth_private *greth) { GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI); } static inline void greth_disable_irqs(struct greth_private *greth) { GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI)); } static inline void greth_write_bd(u32 *bd, u32 val) { __raw_writel(cpu_to_be32(val), bd); } static inline u32 greth_read_bd(u32 *bd) { return be32_to_cpu(__raw_readl(bd)); } static void greth_clean_rings(struct greth_private *greth) { int i; struct greth_bd *rx_bdp = greth->rx_bd_base; struct greth_bd *tx_bdp = greth->tx_bd_base; if (greth->gbit_mac) { /* Free and unmap RX buffers */ for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) { if (greth->rx_skbuff[i] != NULL) { dev_kfree_skb(greth->rx_skbuff[i]); dma_unmap_single(greth->dev, greth_read_bd(&rx_bdp->addr), MAX_FRAME_SIZE+NET_IP_ALIGN, DMA_FROM_DEVICE); } } /* TX buffers */ while (greth->tx_free < GRETH_TXBD_NUM) { struct sk_buff *skb = greth->tx_skbuff[greth->tx_last]; int nr_frags = skb_shinfo(skb)->nr_frags; tx_bdp = greth->tx_bd_base + greth->tx_last; greth->tx_last = NEXT_TX(greth->tx_last); dma_unmap_single(greth->dev, greth_read_bd(&tx_bdp->addr), skb_headlen(skb), DMA_TO_DEVICE); for (i = 0; i < nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; tx_bdp = greth->tx_bd_base + greth->tx_last; dma_unmap_page(greth->dev, greth_read_bd(&tx_bdp->addr), skb_frag_size(frag), DMA_TO_DEVICE); greth->tx_last = NEXT_TX(greth->tx_last); } greth->tx_free += nr_frags+1; dev_kfree_skb(skb); } } else { /* 10/100 Mbps MAC */ for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) { kfree(greth->rx_bufs[i]); dma_unmap_single(greth->dev, greth_read_bd(&rx_bdp->addr), MAX_FRAME_SIZE, DMA_FROM_DEVICE); } for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) { kfree(greth->tx_bufs[i]); dma_unmap_single(greth->dev, greth_read_bd(&tx_bdp->addr), MAX_FRAME_SIZE, DMA_TO_DEVICE); } } } static int greth_init_rings(struct greth_private *greth) { struct sk_buff *skb; struct greth_bd *rx_bd, *tx_bd; u32 dma_addr; int i; rx_bd = greth->rx_bd_base; tx_bd = greth->tx_bd_base; /* Initialize descriptor rings and buffers */ if (greth->gbit_mac) { for (i = 0; i < GRETH_RXBD_NUM; i++) { skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN); if (skb == NULL) { if (netif_msg_ifup(greth)) dev_err(greth->dev, "Error allocating DMA ring.\n"); goto cleanup; } skb_reserve(skb, NET_IP_ALIGN); dma_addr = dma_map_single(greth->dev, skb->data, MAX_FRAME_SIZE+NET_IP_ALIGN, DMA_FROM_DEVICE); if (dma_mapping_error(greth->dev, dma_addr)) { if (netif_msg_ifup(greth)) dev_err(greth->dev, "Could not create initial DMA mapping\n"); goto cleanup; } greth->rx_skbuff[i] = skb; greth_write_bd(&rx_bd[i].addr, dma_addr); greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE); } } else { /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */ for (i = 0; i < GRETH_RXBD_NUM; i++) { greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL); if (greth->rx_bufs[i] == NULL) { if (netif_msg_ifup(greth)) dev_err(greth->dev, "Error allocating DMA ring.\n"); goto cleanup; } dma_addr = dma_map_single(greth->dev, greth->rx_bufs[i], MAX_FRAME_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(greth->dev, dma_addr)) { if (netif_msg_ifup(greth)) dev_err(greth->dev, "Could not create initial DMA mapping\n"); goto cleanup; } greth_write_bd(&rx_bd[i].addr, dma_addr); greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE); } for (i = 0; i < GRETH_TXBD_NUM; i++) { greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL); if (greth->tx_bufs[i] == NULL) { if (netif_msg_ifup(greth)) dev_err(greth->dev, "Error allocating DMA ring.\n"); goto cleanup; } dma_addr = dma_map_single(greth->dev, greth->tx_bufs[i], MAX_FRAME_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(greth->dev, dma_addr)) { if (netif_msg_ifup(greth)) dev_err(greth->dev, "Could not create initial DMA mapping\n"); goto cleanup; } greth_write_bd(&tx_bd[i].addr, dma_addr); greth_write_bd(&tx_bd[i].stat, 0); } } greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat, greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR); /* Initialize pointers. */ greth->rx_cur = 0; greth->tx_next = 0; greth->tx_last = 0; greth->tx_free = GRETH_TXBD_NUM; /* Initialize descriptor base address */ GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys); GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys); return 0; cleanup: greth_clean_rings(greth); return -ENOMEM; } static int greth_open(struct net_device *dev) { struct greth_private *greth = netdev_priv(dev); int err; err = greth_init_rings(greth); if (err) { if (netif_msg_ifup(greth)) dev_err(&dev->dev, "Could not allocate memory for DMA rings\n"); return err; } err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev); if (err) { if (netif_msg_ifup(greth)) dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq); greth_clean_rings(greth); return err; } if (netif_msg_ifup(greth)) dev_dbg(&dev->dev, " starting queue\n"); netif_start_queue(dev); GRETH_REGSAVE(greth->regs->status, 0xFF); napi_enable(&greth->napi); greth_enable_irqs(greth); greth_enable_tx(greth); greth_enable_rx(greth); return 0; } static int greth_close(struct net_device *dev) { struct greth_private *greth = netdev_priv(dev); napi_disable(&greth->napi); greth_disable_irqs(greth); greth_disable_tx(greth); greth_disable_rx(greth); netif_stop_queue(dev); free_irq(greth->irq, (void *) dev); greth_clean_rings(greth); return 0; } static netdev_tx_t greth_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct greth_private *greth = netdev_priv(dev); struct greth_bd *bdp; int err = NETDEV_TX_OK; u32 status, dma_addr, ctrl; unsigned long flags; /* Clean TX Ring */ greth_clean_tx(greth->netdev); if (unlikely(greth->tx_free <= 0)) { spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/ ctrl = GRETH_REGLOAD(greth->regs->control); /* Enable TX IRQ only if not already in poll() routine */ if (ctrl & GRETH_RXI) GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI); netif_stop_queue(dev); spin_unlock_irqrestore(&greth->devlock, flags); return NETDEV_TX_BUSY; } if (netif_msg_pktdata(greth)) greth_print_tx_packet(skb); if (unlikely(skb->len > MAX_FRAME_SIZE)) { dev->stats.tx_errors++; goto out; } bdp = greth->tx_bd_base + greth->tx_next; dma_addr = greth_read_bd(&bdp->addr); memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len); dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE); status = GRETH_BD_EN | GRETH_BD_IE | (skb->len & GRETH_BD_LEN); greth->tx_bufs_length[greth->tx_next] = skb->len & GRETH_BD_LEN; /* Wrap around descriptor ring */ if (greth->tx_next == GRETH_TXBD_NUM_MASK) { status |= GRETH_BD_WR; } greth->tx_next = NEXT_TX(greth->tx_next); greth->tx_free--; /* Write descriptor control word and enable transmission */ greth_write_bd(&bdp->stat, status); spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/ greth_enable_tx(greth); spin_unlock_irqrestore(&greth->devlock, flags); out: dev_kfree_skb(skb); return err; } static inline u16 greth_num_free_bds(u16 tx_last, u16 tx_next) { if (tx_next < tx_last) return (tx_last - tx_next) - 1; else return GRETH_TXBD_NUM - (tx_next - tx_last) - 1; } static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev) { struct greth_private *greth = netdev_priv(dev); struct greth_bd *bdp; u32 status, dma_addr; int curr_tx, nr_frags, i, err = NETDEV_TX_OK; unsigned long flags; u16 tx_last; nr_frags = skb_shinfo(skb)->nr_frags; tx_last = greth->tx_last; rmb(); /* tx_last is updated by the poll task */ if (greth_num_free_bds(tx_last, greth->tx_next) < nr_frags + 1) { netif_stop_queue(dev); err = NETDEV_TX_BUSY; goto out; } if (netif_msg_pktdata(greth)) greth_print_tx_packet(skb); if (unlikely(skb->len > MAX_FRAME_SIZE)) { dev->stats.tx_errors++; goto out; } /* Save skb pointer. */ greth->tx_skbuff[greth->tx_next] = skb; /* Linear buf */ if (nr_frags != 0) status = GRETH_TXBD_MORE; else status = GRETH_BD_IE; if (skb->ip_summed == CHECKSUM_PARTIAL) status |= GRETH_TXBD_CSALL; status |= skb_headlen(skb) & GRETH_BD_LEN; if (greth->tx_next == GRETH_TXBD_NUM_MASK) status |= GRETH_BD_WR; bdp = greth->tx_bd_base + greth->tx_next; greth_write_bd(&bdp->stat, status); dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(greth->dev, dma_addr))) goto map_error; greth_write_bd(&bdp->addr, dma_addr); curr_tx = NEXT_TX(greth->tx_next); /* Frags */ for (i = 0; i < nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; greth->tx_skbuff[curr_tx] = NULL; bdp = greth->tx_bd_base + curr_tx; status = GRETH_BD_EN; if (skb->ip_summed == CHECKSUM_PARTIAL) status |= GRETH_TXBD_CSALL; status |= skb_frag_size(frag) & GRETH_BD_LEN; /* Wrap around descriptor ring */ if (curr_tx == GRETH_TXBD_NUM_MASK) status |= GRETH_BD_WR; /* More fragments left */ if (i < nr_frags - 1) status |= GRETH_TXBD_MORE; else status |= GRETH_BD_IE; /* enable IRQ on last fragment */ greth_write_bd(&bdp->stat, status); dma_addr = skb_frag_dma_map(greth->dev, frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(greth->dev, dma_addr))) goto frag_map_error; greth_write_bd(&bdp->addr, dma_addr); curr_tx = NEXT_TX(curr_tx); } wmb(); /* Enable the descriptor chain by enabling the first descriptor */ bdp = greth->tx_bd_base + greth->tx_next; greth_write_bd(&bdp->stat, greth_read_bd(&bdp->stat) | GRETH_BD_EN); spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/ greth->tx_next = curr_tx; greth_enable_tx_and_irq(greth); spin_unlock_irqrestore(&greth->devlock, flags); return NETDEV_TX_OK; frag_map_error: /* Unmap SKB mappings that succeeded and disable descriptor */ for (i = 0; greth->tx_next + i != curr_tx; i++) { bdp = greth->tx_bd_base + greth->tx_next + i; dma_unmap_single(greth->dev, greth_read_bd(&bdp->addr), greth_read_bd(&bdp->stat) & GRETH_BD_LEN, DMA_TO_DEVICE); greth_write_bd(&bdp->stat, 0); } map_error: if (net_ratelimit()) dev_warn(greth->dev, "Could not create TX DMA mapping\n"); dev_kfree_skb(skb); out: return err; } static irqreturn_t greth_interrupt(int irq, void *dev_id) { struct net_device *dev = dev_id; struct greth_private *greth; u32 status, ctrl; irqreturn_t retval = IRQ_NONE; greth = netdev_priv(dev); spin_lock(&greth->devlock); /* Get the interrupt events that caused us to be here. */ status = GRETH_REGLOAD(greth->regs->status); /* Must see if interrupts are enabled also, INT_TX|INT_RX flags may be * set regardless of whether IRQ is enabled or not. Especially * important when shared IRQ. */ ctrl = GRETH_REGLOAD(greth->regs->control); /* Handle rx and tx interrupts through poll */ if (((status & (GRETH_INT_RE | GRETH_INT_RX)) && (ctrl & GRETH_RXI)) || ((status & (GRETH_INT_TE | GRETH_INT_TX)) && (ctrl & GRETH_TXI))) { retval = IRQ_HANDLED; /* Disable interrupts and schedule poll() */ greth_disable_irqs(greth); napi_schedule(&greth->napi); } spin_unlock(&greth->devlock); return retval; } static void greth_clean_tx(struct net_device *dev) { struct greth_private *greth; struct greth_bd *bdp; u32 stat; greth = netdev_priv(dev); while (1) { bdp = greth->tx_bd_base + greth->tx_last; GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX); mb(); stat = greth_read_bd(&bdp->stat); if (unlikely(stat & GRETH_BD_EN)) break; if (greth->tx_free == GRETH_TXBD_NUM) break; /* Check status for errors */ if (unlikely(stat & GRETH_TXBD_STATUS)) { dev->stats.tx_errors++; if (stat & GRETH_TXBD_ERR_AL) dev->stats.tx_aborted_errors++; if (stat & GRETH_TXBD_ERR_UE) dev->stats.tx_fifo_errors++; } dev->stats.tx_packets++; dev->stats.tx_bytes += greth->tx_bufs_length[greth->tx_last]; greth->tx_last = NEXT_TX(greth->tx_last); greth->tx_free++; } if (greth->tx_free > 0) { netif_wake_queue(dev); } } static inline void greth_update_tx_stats(struct net_device *dev, u32 stat) { /* Check status for errors */ if (unlikely(stat & GRETH_TXBD_STATUS)) { dev->stats.tx_errors++; if (stat & GRETH_TXBD_ERR_AL) dev->stats.tx_aborted_errors++; if (stat & GRETH_TXBD_ERR_UE) dev->stats.tx_fifo_errors++; if (stat & GRETH_TXBD_ERR_LC) dev->stats.tx_aborted_errors++; } dev->stats.tx_packets++; } static void greth_clean_tx_gbit(struct net_device *dev) { struct greth_private *greth; struct greth_bd *bdp, *bdp_last_frag; struct sk_buff *skb = NULL; u32 stat; int nr_frags, i; u16 tx_last; greth = netdev_priv(dev); tx_last = greth->tx_last; while (tx_last != greth->tx_next) { skb = greth->tx_skbuff[tx_last]; nr_frags = skb_shinfo(skb)->nr_frags; /* We only clean fully completed SKBs */ bdp_last_frag = greth->tx_bd_base + SKIP_TX(tx_last, nr_frags); GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX); mb(); stat = greth_read_bd(&bdp_last_frag->stat); if (stat & GRETH_BD_EN) break; greth->tx_skbuff[tx_last] = NULL; greth_update_tx_stats(dev, stat); dev->stats.tx_bytes += skb->len; bdp = greth->tx_bd_base + tx_last; tx_last = NEXT_TX(tx_last); dma_unmap_single(greth->dev, greth_read_bd(&bdp->addr), skb_headlen(skb), DMA_TO_DEVICE); for (i = 0; i < nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; bdp = greth->tx_bd_base + tx_last; dma_unmap_page(greth->dev, greth_read_bd(&bdp->addr), skb_frag_size(frag), DMA_TO_DEVICE); tx_last = NEXT_TX(tx_last); } dev_kfree_skb(skb); } if (skb) { /* skb is set only if the above while loop was entered */ wmb(); greth->tx_last = tx_last; if (netif_queue_stopped(dev) && (greth_num_free_bds(tx_last, greth->tx_next) > (MAX_SKB_FRAGS+1))) netif_wake_queue(dev); } } static int greth_rx(struct net_device *dev, int limit) { struct greth_private *greth; struct greth_bd *bdp; struct sk_buff *skb; int pkt_len; int bad, count; u32 status, dma_addr; unsigned long flags; greth = netdev_priv(dev); for (count = 0; count < limit; ++count) { bdp = greth->rx_bd_base + greth->rx_cur; GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX); mb(); status = greth_read_bd(&bdp->stat); if (unlikely(status & GRETH_BD_EN)) { break; } dma_addr = greth_read_bd(&bdp->addr); bad = 0; /* Check status for errors. */ if (unlikely(status & GRETH_RXBD_STATUS)) { if (status & GRETH_RXBD_ERR_FT) { dev->stats.rx_length_errors++; bad = 1; } if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) { dev->stats.rx_frame_errors++; bad = 1; } if (status & GRETH_RXBD_ERR_CRC) { dev->stats.rx_crc_errors++; bad = 1; } } if (unlikely(bad)) { dev->stats.rx_errors++; } else { pkt_len = status & GRETH_BD_LEN; skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN); if (unlikely(skb == NULL)) { if (net_ratelimit()) dev_warn(&dev->dev, "low on memory - " "packet dropped\n"); dev->stats.rx_dropped++; } else { skb_reserve(skb, NET_IP_ALIGN); dma_sync_single_for_cpu(greth->dev, dma_addr, pkt_len, DMA_FROM_DEVICE); if (netif_msg_pktdata(greth)) greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len); skb_put_data(skb, phys_to_virt(dma_addr), pkt_len); skb->protocol = eth_type_trans(skb, dev); dev->stats.rx_bytes += pkt_len; dev->stats.rx_packets++; netif_receive_skb(skb); } } status = GRETH_BD_EN | GRETH_BD_IE; if (greth->rx_cur == GRETH_RXBD_NUM_MASK) { status |= GRETH_BD_WR; } wmb(); greth_write_bd(&bdp->stat, status); dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE); spin_lock_irqsave(&greth->devlock, flags); /* save from XMIT */ greth_enable_rx(greth); spin_unlock_irqrestore(&greth->devlock, flags); greth->rx_cur = NEXT_RX(greth->rx_cur); } return count; } static inline int hw_checksummed(u32 status) { if (status & GRETH_RXBD_IP_FRAG) return 0; if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR) return 0; if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR) return 0; if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR) return 0; return 1; } static int greth_rx_gbit(struct net_device *dev, int limit) { struct greth_private *greth; struct greth_bd *bdp; struct sk_buff *skb, *newskb; int pkt_len; int bad, count = 0; u32 status, dma_addr; unsigned long flags; greth = netdev_priv(dev); for (count = 0; count < limit; ++count) { bdp = greth->rx_bd_base + greth->rx_cur; skb = greth->rx_skbuff[greth->rx_cur]; GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX); mb(); status = greth_read_bd(&bdp->stat); bad = 0; if (status & GRETH_BD_EN) break; /* Check status for errors. */ if (unlikely(status & GRETH_RXBD_STATUS)) { if (status & GRETH_RXBD_ERR_FT) { dev->stats.rx_length_errors++; bad = 1; } else if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) { dev->stats.rx_frame_errors++; bad = 1; } else if (status & GRETH_RXBD_ERR_CRC) { dev->stats.rx_crc_errors++; bad = 1; } } /* Allocate new skb to replace current, not needed if the * current skb can be reused */ if (!bad && (newskb=netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN))) { skb_reserve(newskb, NET_IP_ALIGN); dma_addr = dma_map_single(greth->dev, newskb->data, MAX_FRAME_SIZE + NET_IP_ALIGN, DMA_FROM_DEVICE); if (!dma_mapping_error(greth->dev, dma_addr)) { /* Process the incoming frame. */ pkt_len = status & GRETH_BD_LEN; dma_unmap_single(greth->dev, greth_read_bd(&bdp->addr), MAX_FRAME_SIZE + NET_IP_ALIGN, DMA_FROM_DEVICE); if (netif_msg_pktdata(greth)) greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len); skb_put(skb, pkt_len); if (dev->features & NETIF_F_RXCSUM && hw_checksummed(status)) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb_checksum_none_assert(skb); skb->protocol = eth_type_trans(skb, dev); dev->stats.rx_packets++; dev->stats.rx_bytes += pkt_len; netif_receive_skb(skb); greth->rx_skbuff[greth->rx_cur] = newskb; greth_write_bd(&bdp->addr, dma_addr); } else { if (net_ratelimit()) dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n"); dev_kfree_skb(newskb); /* reusing current skb, so it is a drop */ dev->stats.rx_dropped++; } } else if (bad) { /* Bad Frame transfer, the skb is reused */ dev->stats.rx_dropped++; } else { /* Failed Allocating a new skb. This is rather stupid * but the current "filled" skb is reused, as if * transfer failure. One could argue that RX descriptor * table handling should be divided into cleaning and * filling as the TX part of the driver */ if (net_ratelimit()) dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n"); /* reusing current skb, so it is a drop */ dev->stats.rx_dropped++; } status = GRETH_BD_EN | GRETH_BD_IE; if (greth->rx_cur == GRETH_RXBD_NUM_MASK) { status |= GRETH_BD_WR; } wmb(); greth_write_bd(&bdp->stat, status); spin_lock_irqsave(&greth->devlock, flags); greth_enable_rx(greth); spin_unlock_irqrestore(&greth->devlock, flags); greth->rx_cur = NEXT_RX(greth->rx_cur); } return count; } static int greth_poll(struct napi_struct *napi, int budget) { struct greth_private *greth; int work_done = 0; unsigned long flags; u32 mask, ctrl; greth = container_of(napi, struct greth_private, napi); restart_txrx_poll: if (greth->gbit_mac) { greth_clean_tx_gbit(greth->netdev); work_done += greth_rx_gbit(greth->netdev, budget - work_done); } else { if (netif_queue_stopped(greth->netdev)) greth_clean_tx(greth->netdev); work_done += greth_rx(greth->netdev, budget - work_done); } if (work_done < budget) { spin_lock_irqsave(&greth->devlock, flags); ctrl = GRETH_REGLOAD(greth->regs->control); if ((greth->gbit_mac && (greth->tx_last != greth->tx_next)) || (!greth->gbit_mac && netif_queue_stopped(greth->netdev))) { GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI | GRETH_RXI); mask = GRETH_INT_RX | GRETH_INT_RE | GRETH_INT_TX | GRETH_INT_TE; } else { GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_RXI); mask = GRETH_INT_RX | GRETH_INT_RE; } if (GRETH_REGLOAD(greth->regs->status) & mask) { GRETH_REGSAVE(greth->regs->control, ctrl); spin_unlock_irqrestore(&greth->devlock, flags); goto restart_txrx_poll; } else { napi_complete_done(napi, work_done); spin_unlock_irqrestore(&greth->devlock, flags); } } return work_done; } static int greth_set_mac_add(struct net_device *dev, void *p) { struct sockaddr *addr = p; struct greth_private *greth; struct greth_regs *regs; greth = netdev_priv(dev); regs = greth->regs; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]); GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 | dev->dev_addr[4] << 8 | dev->dev_addr[5]); return 0; } static u32 greth_hash_get_index(__u8 *addr) { return (ether_crc(6, addr)) & 0x3F; } static void greth_set_hash_filter(struct net_device *dev) { struct netdev_hw_addr *ha; struct greth_private *greth = netdev_priv(dev); struct greth_regs *regs = greth->regs; u32 mc_filter[2]; unsigned int bitnr; mc_filter[0] = mc_filter[1] = 0; netdev_for_each_mc_addr(ha, dev) { bitnr = greth_hash_get_index(ha->addr); mc_filter[bitnr >> 5] |= 1 << (bitnr & 31); } GRETH_REGSAVE(regs->hash_msb, mc_filter[1]); GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]); } static void greth_set_multicast_list(struct net_device *dev) { int cfg; struct greth_private *greth = netdev_priv(dev); struct greth_regs *regs = greth->regs; cfg = GRETH_REGLOAD(regs->control); if (dev->flags & IFF_PROMISC) cfg |= GRETH_CTRL_PR; else cfg &= ~GRETH_CTRL_PR; if (greth->multicast) { if (dev->flags & IFF_ALLMULTI) { GRETH_REGSAVE(regs->hash_msb, -1); GRETH_REGSAVE(regs->hash_lsb, -1); cfg |= GRETH_CTRL_MCEN; GRETH_REGSAVE(regs->control, cfg); return; } if (netdev_mc_empty(dev)) { cfg &= ~GRETH_CTRL_MCEN; GRETH_REGSAVE(regs->control, cfg); return; } /* Setup multicast filter */ greth_set_hash_filter(dev); cfg |= GRETH_CTRL_MCEN; } GRETH_REGSAVE(regs->control, cfg); } static u32 greth_get_msglevel(struct net_device *dev) { struct greth_private *greth = netdev_priv(dev); return greth->msg_enable; } static void greth_set_msglevel(struct net_device *dev, u32 value) { struct greth_private *greth = netdev_priv(dev); greth->msg_enable = value; } static int greth_get_regs_len(struct net_device *dev) { return sizeof(struct greth_regs); } static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct greth_private *greth = netdev_priv(dev); strlcpy(info->driver, dev_driver_string(greth->dev), sizeof(info->driver)); strlcpy(info->version, "revision: 1.0", sizeof(info->version)); strlcpy(info->bus_info, greth->dev->bus->name, sizeof(info->bus_info)); strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); } static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p) { int i; struct greth_private *greth = netdev_priv(dev); u32 __iomem *greth_regs = (u32 __iomem *) greth->regs; u32 *buff = p; for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++) buff[i] = greth_read_bd(&greth_regs[i]); } static const struct ethtool_ops greth_ethtool_ops = { .get_msglevel = greth_get_msglevel, .set_msglevel = greth_set_msglevel, .get_drvinfo = greth_get_drvinfo, .get_regs_len = greth_get_regs_len, .get_regs = greth_get_regs, .get_link = ethtool_op_get_link, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, }; static struct net_device_ops greth_netdev_ops = { .ndo_open = greth_open, .ndo_stop = greth_close, .ndo_start_xmit = greth_start_xmit, .ndo_set_mac_address = greth_set_mac_add, .ndo_validate_addr = eth_validate_addr, }; static inline int wait_for_mdio(struct greth_private *greth) { unsigned long timeout = jiffies + 4*HZ/100; while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) { if (time_after(jiffies, timeout)) return 0; } return 1; } static int greth_mdio_read(struct mii_bus *bus, int phy, int reg) { struct greth_private *greth = bus->priv; int data; if (!wait_for_mdio(greth)) return -EBUSY; GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2); if (!wait_for_mdio(greth)) return -EBUSY; if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) { data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF; return data; } else { return -1; } } static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val) { struct greth_private *greth = bus->priv; if (!wait_for_mdio(greth)) return -EBUSY; GRETH_REGSAVE(greth->regs->mdio, ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1); if (!wait_for_mdio(greth)) return -EBUSY; return 0; } static void greth_link_change(struct net_device *dev) { struct greth_private *greth = netdev_priv(dev); struct phy_device *phydev = dev->phydev; unsigned long flags; int status_change = 0; u32 ctrl; spin_lock_irqsave(&greth->devlock, flags); if (phydev->link) { if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) { ctrl = GRETH_REGLOAD(greth->regs->control) & ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB); if (phydev->duplex) ctrl |= GRETH_CTRL_FD; if (phydev->speed == SPEED_100) ctrl |= GRETH_CTRL_SP; else if (phydev->speed == SPEED_1000) ctrl |= GRETH_CTRL_GB; GRETH_REGSAVE(greth->regs->control, ctrl); greth->speed = phydev->speed; greth->duplex = phydev->duplex; status_change = 1; } } if (phydev->link != greth->link) { if (!phydev->link) { greth->speed = 0; greth->duplex = -1; } greth->link = phydev->link; status_change = 1; } spin_unlock_irqrestore(&greth->devlock, flags); if (status_change) { if (phydev->link) pr_debug("%s: link up (%d/%s)\n", dev->name, phydev->speed, DUPLEX_FULL == phydev->duplex ? "Full" : "Half"); else pr_debug("%s: link down\n", dev->name); } } static int greth_mdio_probe(struct net_device *dev) { struct greth_private *greth = netdev_priv(dev); struct phy_device *phy = NULL; int ret; /* Find the first PHY */ phy = phy_find_first(greth->mdio); if (!phy) { if (netif_msg_probe(greth)) dev_err(&dev->dev, "no PHY found\n"); return -ENXIO; } ret = phy_connect_direct(dev, phy, &greth_link_change, greth->gbit_mac ? PHY_INTERFACE_MODE_GMII : PHY_INTERFACE_MODE_MII); if (ret) { if (netif_msg_ifup(greth)) dev_err(&dev->dev, "could not attach to PHY\n"); return ret; } if (greth->gbit_mac) phy_set_max_speed(phy, SPEED_1000); else phy_set_max_speed(phy, SPEED_100); linkmode_copy(phy->advertising, phy->supported); greth->link = 0; greth->speed = 0; greth->duplex = -1; return 0; } static int greth_mdio_init(struct greth_private *greth) { int ret; unsigned long timeout; struct net_device *ndev = greth->netdev; greth->mdio = mdiobus_alloc(); if (!greth->mdio) { return -ENOMEM; } greth->mdio->name = "greth-mdio"; snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq); greth->mdio->read = greth_mdio_read; greth->mdio->write = greth_mdio_write; greth->mdio->priv = greth; ret = mdiobus_register(greth->mdio); if (ret) { goto error; } ret = greth_mdio_probe(greth->netdev); if (ret) { if (netif_msg_probe(greth)) dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n"); goto unreg_mdio; } phy_start(ndev->phydev); /* If Ethernet debug link is used make autoneg happen right away */ if (greth->edcl && greth_edcl == 1) { phy_start_aneg(ndev->phydev); timeout = jiffies + 6*HZ; while (!phy_aneg_done(ndev->phydev) && time_before(jiffies, timeout)) { } phy_read_status(ndev->phydev); greth_link_change(greth->netdev); } return 0; unreg_mdio: mdiobus_unregister(greth->mdio); error: mdiobus_free(greth->mdio); return ret; } /* Initialize the GRETH MAC */ static int greth_of_probe(struct platform_device *ofdev) { struct net_device *dev; struct greth_private *greth; struct greth_regs *regs; int i; int err; int tmp; unsigned long timeout; dev = alloc_etherdev(sizeof(struct greth_private)); if (dev == NULL) return -ENOMEM; greth = netdev_priv(dev); greth->netdev = dev; greth->dev = &ofdev->dev; if (greth_debug > 0) greth->msg_enable = greth_debug; else greth->msg_enable = GRETH_DEF_MSG_ENABLE; spin_lock_init(&greth->devlock); greth->regs = of_ioremap(&ofdev->resource[0], 0, resource_size(&ofdev->resource[0]), "grlib-greth regs"); if (greth->regs == NULL) { if (netif_msg_probe(greth)) dev_err(greth->dev, "ioremap failure.\n"); err = -EIO; goto error1; } regs = greth->regs; greth->irq = ofdev->archdata.irqs[0]; dev_set_drvdata(greth->dev, dev); SET_NETDEV_DEV(dev, greth->dev); if (netif_msg_probe(greth)) dev_dbg(greth->dev, "resetting controller.\n"); /* Reset the controller. */ GRETH_REGSAVE(regs->control, GRETH_RESET); /* Wait for MAC to reset itself */ timeout = jiffies + HZ/100; while (GRETH_REGLOAD(regs->control) & GRETH_RESET) { if (time_after(jiffies, timeout)) { err = -EIO; if (netif_msg_probe(greth)) dev_err(greth->dev, "timeout when waiting for reset.\n"); goto error2; } } /* Get default PHY address */ greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F; /* Check if we have GBIT capable MAC */ tmp = GRETH_REGLOAD(regs->control); greth->gbit_mac = (tmp >> 27) & 1; /* Check for multicast capability */ greth->multicast = (tmp >> 25) & 1; greth->edcl = (tmp >> 31) & 1; /* If we have EDCL we disable the EDCL speed-duplex FSM so * it doesn't interfere with the software */ if (greth->edcl != 0) GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX); /* Check if MAC can handle MDIO interrupts */ greth->mdio_int_en = (tmp >> 26) & 1; err = greth_mdio_init(greth); if (err) { if (netif_msg_probe(greth)) dev_err(greth->dev, "failed to register MDIO bus\n"); goto error2; } /* Allocate TX descriptor ring in coherent memory */ greth->tx_bd_base = dma_alloc_coherent(greth->dev, 1024, &greth->tx_bd_base_phys, GFP_KERNEL); if (!greth->tx_bd_base) { err = -ENOMEM; goto error3; } /* Allocate RX descriptor ring in coherent memory */ greth->rx_bd_base = dma_alloc_coherent(greth->dev, 1024, &greth->rx_bd_base_phys, GFP_KERNEL); if (!greth->rx_bd_base) { err = -ENOMEM; goto error4; } /* Get MAC address from: module param, OF property or ID prom */ for (i = 0; i < 6; i++) { if (macaddr[i] != 0) break; } if (i == 6) { const u8 *addr; addr = of_get_mac_address(ofdev->dev.of_node); if (!IS_ERR(addr)) { for (i = 0; i < 6; i++) macaddr[i] = (unsigned int) addr[i]; } else { #ifdef CONFIG_SPARC for (i = 0; i < 6; i++) macaddr[i] = (unsigned int) idprom->id_ethaddr[i]; #endif } } for (i = 0; i < 6; i++) dev->dev_addr[i] = macaddr[i]; macaddr[5]++; if (!is_valid_ether_addr(&dev->dev_addr[0])) { if (netif_msg_probe(greth)) dev_err(greth->dev, "no valid ethernet address, aborting.\n"); err = -EINVAL; goto error5; } GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]); GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 | dev->dev_addr[4] << 8 | dev->dev_addr[5]); /* Clear all pending interrupts except PHY irq */ GRETH_REGSAVE(regs->status, 0xFF); if (greth->gbit_mac) { dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_RXCSUM; dev->features = dev->hw_features | NETIF_F_HIGHDMA; greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit; } if (greth->multicast) { greth_netdev_ops.ndo_set_rx_mode = greth_set_multicast_list; dev->flags |= IFF_MULTICAST; } else { dev->flags &= ~IFF_MULTICAST; } dev->netdev_ops = &greth_netdev_ops; dev->ethtool_ops = &greth_ethtool_ops; err = register_netdev(dev); if (err) { if (netif_msg_probe(greth)) dev_err(greth->dev, "netdevice registration failed.\n"); goto error5; } /* setup NAPI */ netif_napi_add(dev, &greth->napi, greth_poll, 64); return 0; error5: dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys); error4: dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys); error3: mdiobus_unregister(greth->mdio); error2: of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0])); error1: free_netdev(dev); return err; } static int greth_of_remove(struct platform_device *of_dev) { struct net_device *ndev = platform_get_drvdata(of_dev); struct greth_private *greth = netdev_priv(ndev); /* Free descriptor areas */ dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys); dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys); if (ndev->phydev) phy_stop(ndev->phydev); mdiobus_unregister(greth->mdio); unregister_netdev(ndev); free_netdev(ndev); of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0])); return 0; } static const struct of_device_id greth_of_match[] = { { .name = "GAISLER_ETHMAC", }, { .name = "01_01d", }, {}, }; MODULE_DEVICE_TABLE(of, greth_of_match); static struct platform_driver greth_of_driver = { .driver = { .name = "grlib-greth", .of_match_table = greth_of_match, }, .probe = greth_of_probe, .remove = greth_of_remove, }; module_platform_driver(greth_of_driver); MODULE_AUTHOR("Aeroflex Gaisler AB."); MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1