Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jay Cliburn | 15520 | 90.52% | 21 | 21.21% |
Chris Snook | 571 | 3.33% | 3 | 3.03% |
Tony Zelenoff | 250 | 1.46% | 8 | 8.08% |
Stephen Hemminger | 128 | 0.75% | 8 | 8.08% |
Rafael J. Wysocki | 115 | 0.67% | 1 | 1.01% |
Philippe Reynes | 94 | 0.55% | 1 | 1.01% |
Sabrina Dubroca | 83 | 0.48% | 1 | 1.01% |
Luca Tettamanti | 41 | 0.24% | 2 | 2.02% |
J. K. Cliburn | 39 | 0.23% | 2 | 2.02% |
Jiri Pirko | 32 | 0.19% | 5 | 5.05% |
Alexey Dobriyan | 27 | 0.16% | 2 | 2.02% |
Jarod Wilson | 27 | 0.16% | 1 | 1.01% |
Eric Dumazet | 26 | 0.15% | 6 | 6.06% |
Danny Kukawka | 22 | 0.13% | 1 | 1.01% |
Michał Mirosław | 18 | 0.10% | 2 | 2.02% |
Alexander Chiang | 18 | 0.10% | 1 | 1.01% |
Arnaldo Carvalho de Melo | 16 | 0.09% | 4 | 4.04% |
Ben Hutchings | 15 | 0.09% | 1 | 1.01% |
Kees Cook | 14 | 0.08% | 1 | 1.01% |
Geliang Tang | 10 | 0.06% | 1 | 1.01% |
Fabio Estevam | 9 | 0.05% | 2 | 2.02% |
Patrick McHardy | 8 | 0.05% | 2 | 2.02% |
François Romieu | 8 | 0.05% | 1 | 1.01% |
Benoit Taine | 6 | 0.03% | 1 | 1.01% |
David S. Miller | 5 | 0.03% | 1 | 1.01% |
Ian Campbell | 5 | 0.03% | 2 | 2.02% |
Peter Hüwe | 5 | 0.03% | 1 | 1.01% |
Yang Hongyang | 4 | 0.02% | 1 | 1.01% |
Joe Perches | 4 | 0.02% | 2 | 2.02% |
David Decotigny | 4 | 0.02% | 1 | 1.01% |
Colin Ian King | 3 | 0.02% | 1 | 1.01% |
Hannes Eder | 3 | 0.02% | 2 | 2.02% |
Roel Kluin | 3 | 0.02% | 1 | 1.01% |
Alexander Beregalov | 2 | 0.01% | 1 | 1.01% |
Ding Tianhong | 2 | 0.01% | 1 | 1.01% |
Thomas Gleixner | 2 | 0.01% | 1 | 1.01% |
Javier Martinez Canillas | 1 | 0.01% | 1 | 1.01% |
Wei Yang | 1 | 0.01% | 1 | 1.01% |
Al Viro | 1 | 0.01% | 1 | 1.01% |
Jingoo Han | 1 | 0.01% | 1 | 1.01% |
Vitaliy Ivanov | 1 | 0.01% | 1 | 1.01% |
Arun Sharma | 1 | 0.01% | 1 | 1.01% |
Total | 17145 | 99 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved. * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com> * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com> * * Derived from Intel e1000 driver * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. * * Contact Information: * Xiong Huang <xiong.huang@atheros.com> * Jie Yang <jie.yang@atheros.com> * Chris Snook <csnook@redhat.com> * Jay Cliburn <jcliburn@gmail.com> * * This version is adapted from the Attansic reference driver. * * TODO: * Add more ethtool functions. * Fix abstruse irq enable/disable condition described here: * http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2 * * NEEDS TESTING: * VLAN * multicast * promiscuous mode * interrupt coalescing * SMP torture testing */ #include <linux/atomic.h> #include <asm/byteorder.h> #include <linux/compiler.h> #include <linux/crc32.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/etherdevice.h> #include <linux/hardirq.h> #include <linux/if_ether.h> #include <linux/if_vlan.h> #include <linux/in.h> #include <linux/interrupt.h> #include <linux/ip.h> #include <linux/irqflags.h> #include <linux/irqreturn.h> #include <linux/jiffies.h> #include <linux/mii.h> #include <linux/module.h> #include <linux/net.h> #include <linux/netdevice.h> #include <linux/pci.h> #include <linux/pci_ids.h> #include <linux/pm.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/string.h> #include <linux/tcp.h> #include <linux/timer.h> #include <linux/types.h> #include <linux/workqueue.h> #include <net/checksum.h> #include "atl1.h" #define ATLX_DRIVER_VERSION "2.1.3" MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, " "Chris Snook <csnook@redhat.com>, " "Jay Cliburn <jcliburn@gmail.com>"); MODULE_LICENSE("GPL"); MODULE_VERSION(ATLX_DRIVER_VERSION); /* Temporary hack for merging atl1 and atl2 */ #include "atlx.c" static const struct ethtool_ops atl1_ethtool_ops; /* * This is the only thing that needs to be changed to adjust the * maximum number of ports that the driver can manage. */ #define ATL1_MAX_NIC 4 #define OPTION_UNSET -1 #define OPTION_DISABLED 0 #define OPTION_ENABLED 1 #define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET } /* * Interrupt Moderate Timer in units of 2 us * * Valid Range: 10-65535 * * Default Value: 100 (200us) */ static int int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT; static unsigned int num_int_mod_timer; module_param_array_named(int_mod_timer, int_mod_timer, int, &num_int_mod_timer, 0); MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer"); #define DEFAULT_INT_MOD_CNT 100 /* 200us */ #define MAX_INT_MOD_CNT 65000 #define MIN_INT_MOD_CNT 50 struct atl1_option { enum { enable_option, range_option, list_option } type; char *name; char *err; int def; union { struct { /* range_option info */ int min; int max; } r; struct { /* list_option info */ int nr; struct atl1_opt_list { int i; char *str; } *p; } l; } arg; }; static int atl1_validate_option(int *value, struct atl1_option *opt, struct pci_dev *pdev) { if (*value == OPTION_UNSET) { *value = opt->def; return 0; } switch (opt->type) { case enable_option: switch (*value) { case OPTION_ENABLED: dev_info(&pdev->dev, "%s enabled\n", opt->name); return 0; case OPTION_DISABLED: dev_info(&pdev->dev, "%s disabled\n", opt->name); return 0; } break; case range_option: if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) { dev_info(&pdev->dev, "%s set to %i\n", opt->name, *value); return 0; } break; case list_option:{ int i; struct atl1_opt_list *ent; for (i = 0; i < opt->arg.l.nr; i++) { ent = &opt->arg.l.p[i]; if (*value == ent->i) { if (ent->str[0] != '\0') dev_info(&pdev->dev, "%s\n", ent->str); return 0; } } } break; default: break; } dev_info(&pdev->dev, "invalid %s specified (%i) %s\n", opt->name, *value, opt->err); *value = opt->def; return -1; } /** * atl1_check_options - Range Checking for Command Line Parameters * @adapter: board private structure * * This routine checks all command line parameters for valid user * input. If an invalid value is given, or if no user specified * value exists, a default value is used. The final value is stored * in a variable in the adapter structure. */ static void atl1_check_options(struct atl1_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; int bd = adapter->bd_number; if (bd >= ATL1_MAX_NIC) { dev_notice(&pdev->dev, "no configuration for board#%i\n", bd); dev_notice(&pdev->dev, "using defaults for all values\n"); } { /* Interrupt Moderate Timer */ struct atl1_option opt = { .type = range_option, .name = "Interrupt Moderator Timer", .err = "using default of " __MODULE_STRING(DEFAULT_INT_MOD_CNT), .def = DEFAULT_INT_MOD_CNT, .arg = {.r = {.min = MIN_INT_MOD_CNT, .max = MAX_INT_MOD_CNT} } }; int val; if (num_int_mod_timer > bd) { val = int_mod_timer[bd]; atl1_validate_option(&val, &opt, pdev); adapter->imt = (u16) val; } else adapter->imt = (u16) (opt.def); } } /* * atl1_pci_tbl - PCI Device ID Table */ static const struct pci_device_id atl1_pci_tbl[] = { {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)}, /* required last entry */ {0,} }; MODULE_DEVICE_TABLE(pci, atl1_pci_tbl); static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP; static int debug = -1; module_param(debug, int, 0); MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)"); /* * Reset the transmit and receive units; mask and clear all interrupts. * hw - Struct containing variables accessed by shared code * return : 0 or idle status (if error) */ static s32 atl1_reset_hw(struct atl1_hw *hw) { struct pci_dev *pdev = hw->back->pdev; struct atl1_adapter *adapter = hw->back; u32 icr; int i; /* * Clear Interrupt mask to stop board from generating * interrupts & Clear any pending interrupt events */ /* * atlx_irq_disable(adapter); * iowrite32(0xffffffff, hw->hw_addr + REG_ISR); */ /* * Issue Soft Reset to the MAC. This will reset the chip's * transmit, receive, DMA. It will not effect * the current PCI configuration. The global reset bit is self- * clearing, and should clear within a microsecond. */ iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL); ioread32(hw->hw_addr + REG_MASTER_CTRL); iowrite16(1, hw->hw_addr + REG_PHY_ENABLE); ioread16(hw->hw_addr + REG_PHY_ENABLE); /* delay about 1ms */ msleep(1); /* Wait at least 10ms for All module to be Idle */ for (i = 0; i < 10; i++) { icr = ioread32(hw->hw_addr + REG_IDLE_STATUS); if (!icr) break; /* delay 1 ms */ msleep(1); /* FIXME: still the right way to do this? */ cpu_relax(); } if (icr) { if (netif_msg_hw(adapter)) dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr); return icr; } return 0; } /* function about EEPROM * * check_eeprom_exist * return 0 if eeprom exist */ static int atl1_check_eeprom_exist(struct atl1_hw *hw) { u32 value; value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL); if (value & SPI_FLASH_CTRL_EN_VPD) { value &= ~SPI_FLASH_CTRL_EN_VPD; iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL); } value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST); return ((value & 0xFF00) == 0x6C00) ? 0 : 1; } static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value) { int i; u32 control; if (offset & 3) /* address do not align */ return false; iowrite32(0, hw->hw_addr + REG_VPD_DATA); control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT; iowrite32(control, hw->hw_addr + REG_VPD_CAP); ioread32(hw->hw_addr + REG_VPD_CAP); for (i = 0; i < 10; i++) { msleep(2); control = ioread32(hw->hw_addr + REG_VPD_CAP); if (control & VPD_CAP_VPD_FLAG) break; } if (control & VPD_CAP_VPD_FLAG) { *p_value = ioread32(hw->hw_addr + REG_VPD_DATA); return true; } /* timeout */ return false; } /* * Reads the value from a PHY register * hw - Struct containing variables accessed by shared code * reg_addr - address of the PHY register to read */ static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data) { u32 val; int i; val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT | MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; iowrite32(val, hw->hw_addr + REG_MDIO_CTRL); ioread32(hw->hw_addr + REG_MDIO_CTRL); for (i = 0; i < MDIO_WAIT_TIMES; i++) { udelay(2); val = ioread32(hw->hw_addr + REG_MDIO_CTRL); if (!(val & (MDIO_START | MDIO_BUSY))) break; } if (!(val & (MDIO_START | MDIO_BUSY))) { *phy_data = (u16) val; return 0; } return ATLX_ERR_PHY; } #define CUSTOM_SPI_CS_SETUP 2 #define CUSTOM_SPI_CLK_HI 2 #define CUSTOM_SPI_CLK_LO 2 #define CUSTOM_SPI_CS_HOLD 2 #define CUSTOM_SPI_CS_HI 3 static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf) { int i; u32 value; iowrite32(0, hw->hw_addr + REG_SPI_DATA); iowrite32(addr, hw->hw_addr + REG_SPI_ADDR); value = SPI_FLASH_CTRL_WAIT_READY | (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) << SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI & SPI_FLASH_CTRL_CLK_HI_MASK) << SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO & SPI_FLASH_CTRL_CLK_LO_MASK) << SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD & SPI_FLASH_CTRL_CS_HOLD_MASK) << SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI & SPI_FLASH_CTRL_CS_HI_MASK) << SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) << SPI_FLASH_CTRL_INS_SHIFT; iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL); value |= SPI_FLASH_CTRL_START; iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL); ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL); for (i = 0; i < 10; i++) { msleep(1); value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL); if (!(value & SPI_FLASH_CTRL_START)) break; } if (value & SPI_FLASH_CTRL_START) return false; *buf = ioread32(hw->hw_addr + REG_SPI_DATA); return true; } /* * get_permanent_address * return 0 if get valid mac address, */ static int atl1_get_permanent_address(struct atl1_hw *hw) { u32 addr[2]; u32 i, control; u16 reg; u8 eth_addr[ETH_ALEN]; bool key_valid; if (is_valid_ether_addr(hw->perm_mac_addr)) return 0; /* init */ addr[0] = addr[1] = 0; if (!atl1_check_eeprom_exist(hw)) { reg = 0; key_valid = false; /* Read out all EEPROM content */ i = 0; while (1) { if (atl1_read_eeprom(hw, i + 0x100, &control)) { if (key_valid) { if (reg == REG_MAC_STA_ADDR) addr[0] = control; else if (reg == (REG_MAC_STA_ADDR + 4)) addr[1] = control; key_valid = false; } else if ((control & 0xff) == 0x5A) { key_valid = true; reg = (u16) (control >> 16); } else break; } else /* read error */ break; i += 4; } *(u32 *) ð_addr[2] = swab32(addr[0]); *(u16 *) ð_addr[0] = swab16(*(u16 *) &addr[1]); if (is_valid_ether_addr(eth_addr)) { memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN); return 0; } } /* see if SPI FLAGS exist ? */ addr[0] = addr[1] = 0; reg = 0; key_valid = false; i = 0; while (1) { if (atl1_spi_read(hw, i + 0x1f000, &control)) { if (key_valid) { if (reg == REG_MAC_STA_ADDR) addr[0] = control; else if (reg == (REG_MAC_STA_ADDR + 4)) addr[1] = control; key_valid = false; } else if ((control & 0xff) == 0x5A) { key_valid = true; reg = (u16) (control >> 16); } else /* data end */ break; } else /* read error */ break; i += 4; } *(u32 *) ð_addr[2] = swab32(addr[0]); *(u16 *) ð_addr[0] = swab16(*(u16 *) &addr[1]); if (is_valid_ether_addr(eth_addr)) { memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN); return 0; } /* * On some motherboards, the MAC address is written by the * BIOS directly to the MAC register during POST, and is * not stored in eeprom. If all else thus far has failed * to fetch the permanent MAC address, try reading it directly. */ addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR); addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4)); *(u32 *) ð_addr[2] = swab32(addr[0]); *(u16 *) ð_addr[0] = swab16(*(u16 *) &addr[1]); if (is_valid_ether_addr(eth_addr)) { memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN); return 0; } return 1; } /* * Reads the adapter's MAC address from the EEPROM * hw - Struct containing variables accessed by shared code */ static s32 atl1_read_mac_addr(struct atl1_hw *hw) { s32 ret = 0; u16 i; if (atl1_get_permanent_address(hw)) { eth_random_addr(hw->perm_mac_addr); ret = 1; } for (i = 0; i < ETH_ALEN; i++) hw->mac_addr[i] = hw->perm_mac_addr[i]; return ret; } /* * Hashes an address to determine its location in the multicast table * hw - Struct containing variables accessed by shared code * mc_addr - the multicast address to hash * * atl1_hash_mc_addr * purpose * set hash value for a multicast address * hash calcu processing : * 1. calcu 32bit CRC for multicast address * 2. reverse crc with MSB to LSB */ static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr) { u32 crc32, value = 0; int i; crc32 = ether_crc_le(6, mc_addr); for (i = 0; i < 32; i++) value |= (((crc32 >> i) & 1) << (31 - i)); return value; } /* * Sets the bit in the multicast table corresponding to the hash value. * hw - Struct containing variables accessed by shared code * hash_value - Multicast address hash value */ static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value) { u32 hash_bit, hash_reg; u32 mta; /* * The HASH Table is a register array of 2 32-bit registers. * It is treated like an array of 64 bits. We want to set * bit BitArray[hash_value]. So we figure out what register * the bit is in, read it, OR in the new bit, then write * back the new value. The register is determined by the * upper 7 bits of the hash value and the bit within that * register are determined by the lower 5 bits of the value. */ hash_reg = (hash_value >> 31) & 0x1; hash_bit = (hash_value >> 26) & 0x1F; mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2)); mta |= (1 << hash_bit); iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2)); } /* * Writes a value to a PHY register * hw - Struct containing variables accessed by shared code * reg_addr - address of the PHY register to write * data - data to write to the PHY */ static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data) { int i; u32 val; val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT | (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT | MDIO_SUP_PREAMBLE | MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; iowrite32(val, hw->hw_addr + REG_MDIO_CTRL); ioread32(hw->hw_addr + REG_MDIO_CTRL); for (i = 0; i < MDIO_WAIT_TIMES; i++) { udelay(2); val = ioread32(hw->hw_addr + REG_MDIO_CTRL); if (!(val & (MDIO_START | MDIO_BUSY))) break; } if (!(val & (MDIO_START | MDIO_BUSY))) return 0; return ATLX_ERR_PHY; } /* * Make L001's PHY out of Power Saving State (bug) * hw - Struct containing variables accessed by shared code * when power on, L001's PHY always on Power saving State * (Gigabit Link forbidden) */ static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw) { s32 ret; ret = atl1_write_phy_reg(hw, 29, 0x0029); if (ret) return ret; return atl1_write_phy_reg(hw, 30, 0); } /* * Resets the PHY and make all config validate * hw - Struct containing variables accessed by shared code * * Sets bit 15 and 12 of the MII Control regiser (for F001 bug) */ static s32 atl1_phy_reset(struct atl1_hw *hw) { struct pci_dev *pdev = hw->back->pdev; struct atl1_adapter *adapter = hw->back; s32 ret_val; u16 phy_data; if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || hw->media_type == MEDIA_TYPE_1000M_FULL) phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN; else { switch (hw->media_type) { case MEDIA_TYPE_100M_FULL: phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 | MII_CR_RESET; break; case MEDIA_TYPE_100M_HALF: phy_data = MII_CR_SPEED_100 | MII_CR_RESET; break; case MEDIA_TYPE_10M_FULL: phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET; break; default: /* MEDIA_TYPE_10M_HALF: */ phy_data = MII_CR_SPEED_10 | MII_CR_RESET; break; } } ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data); if (ret_val) { u32 val; int i; /* pcie serdes link may be down! */ if (netif_msg_hw(adapter)) dev_dbg(&pdev->dev, "pcie phy link down\n"); for (i = 0; i < 25; i++) { msleep(1); val = ioread32(hw->hw_addr + REG_MDIO_CTRL); if (!(val & (MDIO_START | MDIO_BUSY))) break; } if ((val & (MDIO_START | MDIO_BUSY)) != 0) { if (netif_msg_hw(adapter)) dev_warn(&pdev->dev, "pcie link down at least 25ms\n"); return ret_val; } } return 0; } /* * Configures PHY autoneg and flow control advertisement settings * hw - Struct containing variables accessed by shared code */ static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw) { s32 ret_val; s16 mii_autoneg_adv_reg; s16 mii_1000t_ctrl_reg; /* Read the MII Auto-Neg Advertisement Register (Address 4). */ mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK; /* Read the MII 1000Base-T Control Register (Address 9). */ mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK; /* * First we clear all the 10/100 mb speed bits in the Auto-Neg * Advertisement Register (Address 4) and the 1000 mb speed bits in * the 1000Base-T Control Register (Address 9). */ mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK; mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK; /* * Need to parse media_type and set up * the appropriate PHY registers. */ switch (hw->media_type) { case MEDIA_TYPE_AUTO_SENSOR: mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS | MII_AR_10T_FD_CAPS | MII_AR_100TX_HD_CAPS | MII_AR_100TX_FD_CAPS); mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS; break; case MEDIA_TYPE_1000M_FULL: mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS; break; case MEDIA_TYPE_100M_FULL: mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS; break; case MEDIA_TYPE_100M_HALF: mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS; break; case MEDIA_TYPE_10M_FULL: mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS; break; default: mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS; break; } /* flow control fixed to enable all */ mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE); hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg; hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg; ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg); if (ret_val) return ret_val; ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg); if (ret_val) return ret_val; return 0; } /* * Configures link settings. * hw - Struct containing variables accessed by shared code * Assumes the hardware has previously been reset and the * transmitter and receiver are not enabled. */ static s32 atl1_setup_link(struct atl1_hw *hw) { struct pci_dev *pdev = hw->back->pdev; struct atl1_adapter *adapter = hw->back; s32 ret_val; /* * Options: * PHY will advertise value(s) parsed from * autoneg_advertised and fc * no matter what autoneg is , We will not wait link result. */ ret_val = atl1_phy_setup_autoneg_adv(hw); if (ret_val) { if (netif_msg_link(adapter)) dev_dbg(&pdev->dev, "error setting up autonegotiation\n"); return ret_val; } /* SW.Reset , En-Auto-Neg if needed */ ret_val = atl1_phy_reset(hw); if (ret_val) { if (netif_msg_link(adapter)) dev_dbg(&pdev->dev, "error resetting phy\n"); return ret_val; } hw->phy_configured = true; return ret_val; } static void atl1_init_flash_opcode(struct atl1_hw *hw) { if (hw->flash_vendor >= ARRAY_SIZE(flash_table)) /* Atmel */ hw->flash_vendor = 0; /* Init OP table */ iowrite8(flash_table[hw->flash_vendor].cmd_program, hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM); iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase, hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE); iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase, hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE); iowrite8(flash_table[hw->flash_vendor].cmd_rdid, hw->hw_addr + REG_SPI_FLASH_OP_RDID); iowrite8(flash_table[hw->flash_vendor].cmd_wren, hw->hw_addr + REG_SPI_FLASH_OP_WREN); iowrite8(flash_table[hw->flash_vendor].cmd_rdsr, hw->hw_addr + REG_SPI_FLASH_OP_RDSR); iowrite8(flash_table[hw->flash_vendor].cmd_wrsr, hw->hw_addr + REG_SPI_FLASH_OP_WRSR); iowrite8(flash_table[hw->flash_vendor].cmd_read, hw->hw_addr + REG_SPI_FLASH_OP_READ); } /* * Performs basic configuration of the adapter. * hw - Struct containing variables accessed by shared code * Assumes that the controller has previously been reset and is in a * post-reset uninitialized state. Initializes multicast table, * and Calls routines to setup link * Leaves the transmit and receive units disabled and uninitialized. */ static s32 atl1_init_hw(struct atl1_hw *hw) { u32 ret_val = 0; /* Zero out the Multicast HASH table */ iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE); /* clear the old settings from the multicast hash table */ iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2)); atl1_init_flash_opcode(hw); if (!hw->phy_configured) { /* enable GPHY LinkChange Interrupt */ ret_val = atl1_write_phy_reg(hw, 18, 0xC00); if (ret_val) return ret_val; /* make PHY out of power-saving state */ ret_val = atl1_phy_leave_power_saving(hw); if (ret_val) return ret_val; /* Call a subroutine to configure the link */ ret_val = atl1_setup_link(hw); } return ret_val; } /* * Detects the current speed and duplex settings of the hardware. * hw - Struct containing variables accessed by shared code * speed - Speed of the connection * duplex - Duplex setting of the connection */ static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex) { struct pci_dev *pdev = hw->back->pdev; struct atl1_adapter *adapter = hw->back; s32 ret_val; u16 phy_data; /* ; --- Read PHY Specific Status Register (17) */ ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data); if (ret_val) return ret_val; if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED)) return ATLX_ERR_PHY_RES; switch (phy_data & MII_ATLX_PSSR_SPEED) { case MII_ATLX_PSSR_1000MBS: *speed = SPEED_1000; break; case MII_ATLX_PSSR_100MBS: *speed = SPEED_100; break; case MII_ATLX_PSSR_10MBS: *speed = SPEED_10; break; default: if (netif_msg_hw(adapter)) dev_dbg(&pdev->dev, "error getting speed\n"); return ATLX_ERR_PHY_SPEED; } if (phy_data & MII_ATLX_PSSR_DPLX) *duplex = FULL_DUPLEX; else *duplex = HALF_DUPLEX; return 0; } static void atl1_set_mac_addr(struct atl1_hw *hw) { u32 value; /* * 00-0B-6A-F6-00-DC * 0: 6AF600DC 1: 000B * low dword */ value = (((u32) hw->mac_addr[2]) << 24) | (((u32) hw->mac_addr[3]) << 16) | (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5])); iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR); /* high dword */ value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1])); iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2)); } /** * atl1_sw_init - Initialize general software structures (struct atl1_adapter) * @adapter: board private structure to initialize * * atl1_sw_init initializes the Adapter private data structure. * Fields are initialized based on PCI device information and * OS network device settings (MTU size). */ static int atl1_sw_init(struct atl1_adapter *adapter) { struct atl1_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; adapter->wol = 0; device_set_wakeup_enable(&adapter->pdev->dev, false); adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7; adapter->ict = 50000; /* 100ms */ adapter->link_speed = SPEED_0; /* hardware init */ adapter->link_duplex = FULL_DUPLEX; hw->phy_configured = false; hw->preamble_len = 7; hw->ipgt = 0x60; hw->min_ifg = 0x50; hw->ipgr1 = 0x40; hw->ipgr2 = 0x60; hw->max_retry = 0xf; hw->lcol = 0x37; hw->jam_ipg = 7; hw->rfd_burst = 8; hw->rrd_burst = 8; hw->rfd_fetch_gap = 1; hw->rx_jumbo_th = adapter->rx_buffer_len / 8; hw->rx_jumbo_lkah = 1; hw->rrd_ret_timer = 16; hw->tpd_burst = 4; hw->tpd_fetch_th = 16; hw->txf_burst = 0x100; hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3; hw->tpd_fetch_gap = 1; hw->rcb_value = atl1_rcb_64; hw->dma_ord = atl1_dma_ord_enh; hw->dmar_block = atl1_dma_req_256; hw->dmaw_block = atl1_dma_req_256; hw->cmb_rrd = 4; hw->cmb_tpd = 4; hw->cmb_rx_timer = 1; /* about 2us */ hw->cmb_tx_timer = 1; /* about 2us */ hw->smb_timer = 100000; /* about 200ms */ spin_lock_init(&adapter->lock); spin_lock_init(&adapter->mb_lock); return 0; } static int mdio_read(struct net_device *netdev, int phy_id, int reg_num) { struct atl1_adapter *adapter = netdev_priv(netdev); u16 result; atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result); return result; } static void mdio_write(struct net_device *netdev, int phy_id, int reg_num, int val) { struct atl1_adapter *adapter = netdev_priv(netdev); atl1_write_phy_reg(&adapter->hw, reg_num, val); } static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { struct atl1_adapter *adapter = netdev_priv(netdev); unsigned long flags; int retval; if (!netif_running(netdev)) return -EINVAL; spin_lock_irqsave(&adapter->lock, flags); retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL); spin_unlock_irqrestore(&adapter->lock, flags); return retval; } /** * atl1_setup_mem_resources - allocate Tx / RX descriptor resources * @adapter: board private structure * * Return 0 on success, negative on failure */ static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter) { struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; struct atl1_ring_header *ring_header = &adapter->ring_header; struct pci_dev *pdev = adapter->pdev; int size; u8 offset = 0; size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count); tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL); if (unlikely(!tpd_ring->buffer_info)) { if (netif_msg_drv(adapter)) dev_err(&pdev->dev, "kzalloc failed , size = D%d\n", size); goto err_nomem; } rfd_ring->buffer_info = (tpd_ring->buffer_info + tpd_ring->count); /* * real ring DMA buffer * each ring/block may need up to 8 bytes for alignment, hence the * additional 40 bytes tacked onto the end. */ ring_header->size = size = sizeof(struct tx_packet_desc) * tpd_ring->count + sizeof(struct rx_free_desc) * rfd_ring->count + sizeof(struct rx_return_desc) * rrd_ring->count + sizeof(struct coals_msg_block) + sizeof(struct stats_msg_block) + 40; ring_header->desc = pci_alloc_consistent(pdev, ring_header->size, &ring_header->dma); if (unlikely(!ring_header->desc)) { if (netif_msg_drv(adapter)) dev_err(&pdev->dev, "pci_alloc_consistent failed\n"); goto err_nomem; } memset(ring_header->desc, 0, ring_header->size); /* init TPD ring */ tpd_ring->dma = ring_header->dma; offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0; tpd_ring->dma += offset; tpd_ring->desc = (u8 *) ring_header->desc + offset; tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count; /* init RFD ring */ rfd_ring->dma = tpd_ring->dma + tpd_ring->size; offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0; rfd_ring->dma += offset; rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset); rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count; /* init RRD ring */ rrd_ring->dma = rfd_ring->dma + rfd_ring->size; offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0; rrd_ring->dma += offset; rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset); rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count; /* init CMB */ adapter->cmb.dma = rrd_ring->dma + rrd_ring->size; offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0; adapter->cmb.dma += offset; adapter->cmb.cmb = (struct coals_msg_block *) ((u8 *) rrd_ring->desc + (rrd_ring->size + offset)); /* init SMB */ adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block); offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0; adapter->smb.dma += offset; adapter->smb.smb = (struct stats_msg_block *) ((u8 *) adapter->cmb.cmb + (sizeof(struct coals_msg_block) + offset)); return 0; err_nomem: kfree(tpd_ring->buffer_info); return -ENOMEM; } static void atl1_init_ring_ptrs(struct atl1_adapter *adapter) { struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; atomic_set(&tpd_ring->next_to_use, 0); atomic_set(&tpd_ring->next_to_clean, 0); rfd_ring->next_to_clean = 0; atomic_set(&rfd_ring->next_to_use, 0); rrd_ring->next_to_use = 0; atomic_set(&rrd_ring->next_to_clean, 0); } /** * atl1_clean_rx_ring - Free RFD Buffers * @adapter: board private structure */ static void atl1_clean_rx_ring(struct atl1_adapter *adapter) { struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; struct atl1_buffer *buffer_info; struct pci_dev *pdev = adapter->pdev; unsigned long size; unsigned int i; /* Free all the Rx ring sk_buffs */ for (i = 0; i < rfd_ring->count; i++) { buffer_info = &rfd_ring->buffer_info[i]; if (buffer_info->dma) { pci_unmap_page(pdev, buffer_info->dma, buffer_info->length, PCI_DMA_FROMDEVICE); buffer_info->dma = 0; } if (buffer_info->skb) { dev_kfree_skb(buffer_info->skb); buffer_info->skb = NULL; } } size = sizeof(struct atl1_buffer) * rfd_ring->count; memset(rfd_ring->buffer_info, 0, size); /* Zero out the descriptor ring */ memset(rfd_ring->desc, 0, rfd_ring->size); rfd_ring->next_to_clean = 0; atomic_set(&rfd_ring->next_to_use, 0); rrd_ring->next_to_use = 0; atomic_set(&rrd_ring->next_to_clean, 0); } /** * atl1_clean_tx_ring - Free Tx Buffers * @adapter: board private structure */ static void atl1_clean_tx_ring(struct atl1_adapter *adapter) { struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; struct atl1_buffer *buffer_info; struct pci_dev *pdev = adapter->pdev; unsigned long size; unsigned int i; /* Free all the Tx ring sk_buffs */ for (i = 0; i < tpd_ring->count; i++) { buffer_info = &tpd_ring->buffer_info[i]; if (buffer_info->dma) { pci_unmap_page(pdev, buffer_info->dma, buffer_info->length, PCI_DMA_TODEVICE); buffer_info->dma = 0; } } for (i = 0; i < tpd_ring->count; i++) { buffer_info = &tpd_ring->buffer_info[i]; if (buffer_info->skb) { dev_kfree_skb_any(buffer_info->skb); buffer_info->skb = NULL; } } size = sizeof(struct atl1_buffer) * tpd_ring->count; memset(tpd_ring->buffer_info, 0, size); /* Zero out the descriptor ring */ memset(tpd_ring->desc, 0, tpd_ring->size); atomic_set(&tpd_ring->next_to_use, 0); atomic_set(&tpd_ring->next_to_clean, 0); } /** * atl1_free_ring_resources - Free Tx / RX descriptor Resources * @adapter: board private structure * * Free all transmit software resources */ static void atl1_free_ring_resources(struct atl1_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; struct atl1_ring_header *ring_header = &adapter->ring_header; atl1_clean_tx_ring(adapter); atl1_clean_rx_ring(adapter); kfree(tpd_ring->buffer_info); pci_free_consistent(pdev, ring_header->size, ring_header->desc, ring_header->dma); tpd_ring->buffer_info = NULL; tpd_ring->desc = NULL; tpd_ring->dma = 0; rfd_ring->buffer_info = NULL; rfd_ring->desc = NULL; rfd_ring->dma = 0; rrd_ring->desc = NULL; rrd_ring->dma = 0; adapter->cmb.dma = 0; adapter->cmb.cmb = NULL; adapter->smb.dma = 0; adapter->smb.smb = NULL; } static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter) { u32 value; struct atl1_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; /* Config MAC CTRL Register */ value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN; /* duplex */ if (FULL_DUPLEX == adapter->link_duplex) value |= MAC_CTRL_DUPLX; /* speed */ value |= ((u32) ((SPEED_1000 == adapter->link_speed) ? MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT); /* flow control */ value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW); /* PAD & CRC */ value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD); /* preamble length */ value |= (((u32) adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT); /* vlan */ __atlx_vlan_mode(netdev->features, &value); /* rx checksum if (adapter->rx_csum) value |= MAC_CTRL_RX_CHKSUM_EN; */ /* filter mode */ value |= MAC_CTRL_BC_EN; if (netdev->flags & IFF_PROMISC) value |= MAC_CTRL_PROMIS_EN; else if (netdev->flags & IFF_ALLMULTI) value |= MAC_CTRL_MC_ALL_EN; /* value |= MAC_CTRL_LOOPBACK; */ iowrite32(value, hw->hw_addr + REG_MAC_CTRL); } static u32 atl1_check_link(struct atl1_adapter *adapter) { struct atl1_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; u32 ret_val; u16 speed, duplex, phy_data; int reconfig = 0; /* MII_BMSR must read twice */ atl1_read_phy_reg(hw, MII_BMSR, &phy_data); atl1_read_phy_reg(hw, MII_BMSR, &phy_data); if (!(phy_data & BMSR_LSTATUS)) { /* link down */ if (netif_carrier_ok(netdev)) { /* old link state: Up */ if (netif_msg_link(adapter)) dev_info(&adapter->pdev->dev, "link is down\n"); adapter->link_speed = SPEED_0; netif_carrier_off(netdev); } return 0; } /* Link Up */ ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex); if (ret_val) return ret_val; switch (hw->media_type) { case MEDIA_TYPE_1000M_FULL: if (speed != SPEED_1000 || duplex != FULL_DUPLEX) reconfig = 1; break; case MEDIA_TYPE_100M_FULL: if (speed != SPEED_100 || duplex != FULL_DUPLEX) reconfig = 1; break; case MEDIA_TYPE_100M_HALF: if (speed != SPEED_100 || duplex != HALF_DUPLEX) reconfig = 1; break; case MEDIA_TYPE_10M_FULL: if (speed != SPEED_10 || duplex != FULL_DUPLEX) reconfig = 1; break; case MEDIA_TYPE_10M_HALF: if (speed != SPEED_10 || duplex != HALF_DUPLEX) reconfig = 1; break; } /* link result is our setting */ if (!reconfig) { if (adapter->link_speed != speed || adapter->link_duplex != duplex) { adapter->link_speed = speed; adapter->link_duplex = duplex; atl1_setup_mac_ctrl(adapter); if (netif_msg_link(adapter)) dev_info(&adapter->pdev->dev, "%s link is up %d Mbps %s\n", netdev->name, adapter->link_speed, adapter->link_duplex == FULL_DUPLEX ? "full duplex" : "half duplex"); } if (!netif_carrier_ok(netdev)) { /* Link down -> Up */ netif_carrier_on(netdev); } return 0; } /* change original link status */ if (netif_carrier_ok(netdev)) { adapter->link_speed = SPEED_0; netif_carrier_off(netdev); netif_stop_queue(netdev); } if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR && hw->media_type != MEDIA_TYPE_1000M_FULL) { switch (hw->media_type) { case MEDIA_TYPE_100M_FULL: phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 | MII_CR_RESET; break; case MEDIA_TYPE_100M_HALF: phy_data = MII_CR_SPEED_100 | MII_CR_RESET; break; case MEDIA_TYPE_10M_FULL: phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET; break; default: /* MEDIA_TYPE_10M_HALF: */ phy_data = MII_CR_SPEED_10 | MII_CR_RESET; break; } atl1_write_phy_reg(hw, MII_BMCR, phy_data); return 0; } /* auto-neg, insert timer to re-config phy */ if (!adapter->phy_timer_pending) { adapter->phy_timer_pending = true; mod_timer(&adapter->phy_config_timer, round_jiffies(jiffies + 3 * HZ)); } return 0; } static void set_flow_ctrl_old(struct atl1_adapter *adapter) { u32 hi, lo, value; /* RFD Flow Control */ value = adapter->rfd_ring.count; hi = value / 16; if (hi < 2) hi = 2; lo = value * 7 / 8; value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) | ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT); iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH); /* RRD Flow Control */ value = adapter->rrd_ring.count; lo = value / 16; hi = value * 7 / 8; if (lo < 2) lo = 2; value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) | ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT); iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH); } static void set_flow_ctrl_new(struct atl1_hw *hw) { u32 hi, lo, value; /* RXF Flow Control */ value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN); lo = value / 16; if (lo < 192) lo = 192; hi = value * 7 / 8; if (hi < lo) hi = lo + 16; value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) | ((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT); iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH); /* RRD Flow Control */ value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN); lo = value / 8; hi = value * 7 / 8; if (lo < 2) lo = 2; if (hi < lo) hi = lo + 3; value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) | ((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT); iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH); } /** * atl1_configure - Configure Transmit&Receive Unit after Reset * @adapter: board private structure * * Configure the Tx /Rx unit of the MAC after a reset. */ static u32 atl1_configure(struct atl1_adapter *adapter) { struct atl1_hw *hw = &adapter->hw; u32 value; /* clear interrupt status */ iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR); /* set MAC Address */ value = (((u32) hw->mac_addr[2]) << 24) | (((u32) hw->mac_addr[3]) << 16) | (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5])); iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR); value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1])); iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4)); /* tx / rx ring */ /* HI base address */ iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32), hw->hw_addr + REG_DESC_BASE_ADDR_HI); /* LO base address */ iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL), hw->hw_addr + REG_DESC_RFD_ADDR_LO); iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL), hw->hw_addr + REG_DESC_RRD_ADDR_LO); iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL), hw->hw_addr + REG_DESC_TPD_ADDR_LO); iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL), hw->hw_addr + REG_DESC_CMB_ADDR_LO); iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL), hw->hw_addr + REG_DESC_SMB_ADDR_LO); /* element count */ value = adapter->rrd_ring.count; value <<= 16; value += adapter->rfd_ring.count; iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE); iowrite32(adapter->tpd_ring.count, hw->hw_addr + REG_DESC_TPD_RING_SIZE); /* Load Ptr */ iowrite32(1, hw->hw_addr + REG_LOAD_PTR); /* config Mailbox */ value = ((atomic_read(&adapter->tpd_ring.next_to_use) & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) | ((atomic_read(&adapter->rrd_ring.next_to_clean) & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) | ((atomic_read(&adapter->rfd_ring.next_to_use) & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT); iowrite32(value, hw->hw_addr + REG_MAILBOX); /* config IPG/IFG */ value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK) << MAC_IPG_IFG_IPGT_SHIFT) | (((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK) << MAC_IPG_IFG_MIFG_SHIFT) | (((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK) << MAC_IPG_IFG_IPGR1_SHIFT) | (((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK) << MAC_IPG_IFG_IPGR2_SHIFT); iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG); /* config Half-Duplex Control */ value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) | (((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK) << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) | MAC_HALF_DUPLX_CTRL_EXC_DEF_EN | (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) | (((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK) << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT); iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL); /* set Interrupt Moderator Timer */ iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT); iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL); /* set Interrupt Clear Timer */ iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER); /* set max frame size hw will accept */ iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU); /* jumbo size & rrd retirement timer */ value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK) << RXQ_JMBOSZ_TH_SHIFT) | (((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK) << RXQ_JMBO_LKAH_SHIFT) | (((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK) << RXQ_RRD_TIMER_SHIFT); iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM); /* Flow Control */ switch (hw->dev_rev) { case 0x8001: case 0x9001: case 0x9002: case 0x9003: set_flow_ctrl_old(adapter); break; default: set_flow_ctrl_new(hw); break; } /* config TXQ */ value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK) << TXQ_CTRL_TPD_BURST_NUM_SHIFT) | (((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK) << TXQ_CTRL_TXF_BURST_NUM_SHIFT) | (((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK) << TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE | TXQ_CTRL_EN; iowrite32(value, hw->hw_addr + REG_TXQ_CTRL); /* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */ value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK) << TX_JUMBO_TASK_TH_SHIFT) | (((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK) << TX_TPD_MIN_IPG_SHIFT); iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG); /* config RXQ */ value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK) << RXQ_CTRL_RFD_BURST_NUM_SHIFT) | (((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK) << RXQ_CTRL_RRD_BURST_THRESH_SHIFT) | (((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK) << RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN | RXQ_CTRL_EN; iowrite32(value, hw->hw_addr + REG_RXQ_CTRL); /* config DMA Engine */ value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK) << DMA_CTRL_DMAR_BURST_LEN_SHIFT) | ((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK) << DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN | DMA_CTRL_DMAW_EN; value |= (u32) hw->dma_ord; if (atl1_rcb_128 == hw->rcb_value) value |= DMA_CTRL_RCB_VALUE; iowrite32(value, hw->hw_addr + REG_DMA_CTRL); /* config CMB / SMB */ value = (hw->cmb_tpd > adapter->tpd_ring.count) ? hw->cmb_tpd : adapter->tpd_ring.count; value <<= 16; value |= hw->cmb_rrd; iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH); value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16); iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER); iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER); /* --- enable CMB / SMB */ value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN; iowrite32(value, hw->hw_addr + REG_CSMB_CTRL); value = ioread32(adapter->hw.hw_addr + REG_ISR); if (unlikely((value & ISR_PHY_LINKDOWN) != 0)) value = 1; /* config failed */ else value = 0; /* clear all interrupt status */ iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR); iowrite32(0, adapter->hw.hw_addr + REG_ISR); return value; } /* * atl1_pcie_patch - Patch for PCIE module */ static void atl1_pcie_patch(struct atl1_adapter *adapter) { u32 value; /* much vendor magic here */ value = 0x6500; iowrite32(value, adapter->hw.hw_addr + 0x12FC); /* pcie flow control mode change */ value = ioread32(adapter->hw.hw_addr + 0x1008); value |= 0x8000; iowrite32(value, adapter->hw.hw_addr + 0x1008); } /* * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400 * on PCI Command register is disable. * The function enable this bit. * Brackett, 2006/03/15 */ static void atl1_via_workaround(struct atl1_adapter *adapter) { unsigned long value; value = ioread16(adapter->hw.hw_addr + PCI_COMMAND); if (value & PCI_COMMAND_INTX_DISABLE) value &= ~PCI_COMMAND_INTX_DISABLE; iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND); } static void atl1_inc_smb(struct atl1_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct stats_msg_block *smb = adapter->smb.smb; u64 new_rx_errors = smb->rx_frag + smb->rx_fcs_err + smb->rx_len_err + smb->rx_sz_ov + smb->rx_rxf_ov + smb->rx_rrd_ov + smb->rx_align_err; u64 new_tx_errors = smb->tx_late_col + smb->tx_abort_col + smb->tx_underrun + smb->tx_trunc; /* Fill out the OS statistics structure */ adapter->soft_stats.rx_packets += smb->rx_ok + new_rx_errors; adapter->soft_stats.tx_packets += smb->tx_ok + new_tx_errors; adapter->soft_stats.rx_bytes += smb->rx_byte_cnt; adapter->soft_stats.tx_bytes += smb->tx_byte_cnt; adapter->soft_stats.multicast += smb->rx_mcast; adapter->soft_stats.collisions += smb->tx_1_col + smb->tx_2_col + smb->tx_late_col + smb->tx_abort_col; /* Rx Errors */ adapter->soft_stats.rx_errors += new_rx_errors; adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov; adapter->soft_stats.rx_length_errors += smb->rx_len_err; adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err; adapter->soft_stats.rx_frame_errors += smb->rx_align_err; adapter->soft_stats.rx_pause += smb->rx_pause; adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov; adapter->soft_stats.rx_trunc += smb->rx_sz_ov; /* Tx Errors */ adapter->soft_stats.tx_errors += new_tx_errors; adapter->soft_stats.tx_fifo_errors += smb->tx_underrun; adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col; adapter->soft_stats.tx_window_errors += smb->tx_late_col; adapter->soft_stats.excecol += smb->tx_abort_col; adapter->soft_stats.deffer += smb->tx_defer; adapter->soft_stats.scc += smb->tx_1_col; adapter->soft_stats.mcc += smb->tx_2_col; adapter->soft_stats.latecol += smb->tx_late_col; adapter->soft_stats.tx_underrun += smb->tx_underrun; adapter->soft_stats.tx_trunc += smb->tx_trunc; adapter->soft_stats.tx_pause += smb->tx_pause; netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes; netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes; netdev->stats.multicast = adapter->soft_stats.multicast; netdev->stats.collisions = adapter->soft_stats.collisions; netdev->stats.rx_errors = adapter->soft_stats.rx_errors; netdev->stats.rx_length_errors = adapter->soft_stats.rx_length_errors; netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors; netdev->stats.rx_frame_errors = adapter->soft_stats.rx_frame_errors; netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors; netdev->stats.rx_dropped = adapter->soft_stats.rx_rrd_ov; netdev->stats.tx_errors = adapter->soft_stats.tx_errors; netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors; netdev->stats.tx_aborted_errors = adapter->soft_stats.tx_aborted_errors; netdev->stats.tx_window_errors = adapter->soft_stats.tx_window_errors; netdev->stats.tx_carrier_errors = adapter->soft_stats.tx_carrier_errors; netdev->stats.rx_packets = adapter->soft_stats.rx_packets; netdev->stats.tx_packets = adapter->soft_stats.tx_packets; } static void atl1_update_mailbox(struct atl1_adapter *adapter) { unsigned long flags; u32 tpd_next_to_use; u32 rfd_next_to_use; u32 rrd_next_to_clean; u32 value; spin_lock_irqsave(&adapter->mb_lock, flags); tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use); rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use); rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean); value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT) | ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) | ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT); iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX); spin_unlock_irqrestore(&adapter->mb_lock, flags); } static void atl1_clean_alloc_flag(struct atl1_adapter *adapter, struct rx_return_desc *rrd, u16 offset) { struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) { rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0; if (++rfd_ring->next_to_clean == rfd_ring->count) { rfd_ring->next_to_clean = 0; } } } static void atl1_update_rfd_index(struct atl1_adapter *adapter, struct rx_return_desc *rrd) { u16 num_buf; num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) / adapter->rx_buffer_len; if (rrd->num_buf == num_buf) /* clean alloc flag for bad rrd */ atl1_clean_alloc_flag(adapter, rrd, num_buf); } static void atl1_rx_checksum(struct atl1_adapter *adapter, struct rx_return_desc *rrd, struct sk_buff *skb) { struct pci_dev *pdev = adapter->pdev; /* * The L1 hardware contains a bug that erroneously sets the * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a * fragmented IP packet is received, even though the packet * is perfectly valid and its checksum is correct. There's * no way to distinguish between one of these good packets * and a packet that actually contains a TCP/UDP checksum * error, so all we can do is allow it to be handed up to * the higher layers and let it be sorted out there. */ skb_checksum_none_assert(skb); if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) { if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC | ERR_FLAG_CODE | ERR_FLAG_OV)) { adapter->hw_csum_err++; if (netif_msg_rx_err(adapter)) dev_printk(KERN_DEBUG, &pdev->dev, "rx checksum error\n"); return; } } /* not IPv4 */ if (!(rrd->pkt_flg & PACKET_FLAG_IPV4)) /* checksum is invalid, but it's not an IPv4 pkt, so ok */ return; /* IPv4 packet */ if (likely(!(rrd->err_flg & (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) { skb->ip_summed = CHECKSUM_UNNECESSARY; adapter->hw_csum_good++; return; } } /** * atl1_alloc_rx_buffers - Replace used receive buffers * @adapter: address of board private structure */ static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter) { struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; struct pci_dev *pdev = adapter->pdev; struct page *page; unsigned long offset; struct atl1_buffer *buffer_info, *next_info; struct sk_buff *skb; u16 num_alloc = 0; u16 rfd_next_to_use, next_next; struct rx_free_desc *rfd_desc; next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use); if (++next_next == rfd_ring->count) next_next = 0; buffer_info = &rfd_ring->buffer_info[rfd_next_to_use]; next_info = &rfd_ring->buffer_info[next_next]; while (!buffer_info->alloced && !next_info->alloced) { if (buffer_info->skb) { buffer_info->alloced = 1; goto next; } rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use); skb = netdev_alloc_skb_ip_align(adapter->netdev, adapter->rx_buffer_len); if (unlikely(!skb)) { /* Better luck next round */ adapter->soft_stats.rx_dropped++; break; } buffer_info->alloced = 1; buffer_info->skb = skb; buffer_info->length = (u16) adapter->rx_buffer_len; page = virt_to_page(skb->data); offset = offset_in_page(skb->data); buffer_info->dma = pci_map_page(pdev, page, offset, adapter->rx_buffer_len, PCI_DMA_FROMDEVICE); rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma); rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len); rfd_desc->coalese = 0; next: rfd_next_to_use = next_next; if (unlikely(++next_next == rfd_ring->count)) next_next = 0; buffer_info = &rfd_ring->buffer_info[rfd_next_to_use]; next_info = &rfd_ring->buffer_info[next_next]; num_alloc++; } if (num_alloc) { /* * Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ wmb(); atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use); } return num_alloc; } static int atl1_intr_rx(struct atl1_adapter *adapter, int budget) { int i, count; u16 length; u16 rrd_next_to_clean; u32 value; struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring; struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring; struct atl1_buffer *buffer_info; struct rx_return_desc *rrd; struct sk_buff *skb; count = 0; rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean); while (count < budget) { rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean); i = 1; if (likely(rrd->xsz.valid)) { /* packet valid */ chk_rrd: /* check rrd status */ if (likely(rrd->num_buf == 1)) goto rrd_ok; else if (netif_msg_rx_err(adapter)) { dev_printk(KERN_DEBUG, &adapter->pdev->dev, "unexpected RRD buffer count\n"); dev_printk(KERN_DEBUG, &adapter->pdev->dev, "rx_buf_len = %d\n", adapter->rx_buffer_len); dev_printk(KERN_DEBUG, &adapter->pdev->dev, "RRD num_buf = %d\n", rrd->num_buf); dev_printk(KERN_DEBUG, &adapter->pdev->dev, "RRD pkt_len = %d\n", rrd->xsz.xsum_sz.pkt_size); dev_printk(KERN_DEBUG, &adapter->pdev->dev, "RRD pkt_flg = 0x%08X\n", rrd->pkt_flg); dev_printk(KERN_DEBUG, &adapter->pdev->dev, "RRD err_flg = 0x%08X\n", rrd->err_flg); dev_printk(KERN_DEBUG, &adapter->pdev->dev, "RRD vlan_tag = 0x%08X\n", rrd->vlan_tag); } /* rrd seems to be bad */ if (unlikely(i-- > 0)) { /* rrd may not be DMAed completely */ udelay(1); goto chk_rrd; } /* bad rrd */ if (netif_msg_rx_err(adapter)) dev_printk(KERN_DEBUG, &adapter->pdev->dev, "bad RRD\n"); /* see if update RFD index */ if (rrd->num_buf > 1) atl1_update_rfd_index(adapter, rrd); /* update rrd */ rrd->xsz.valid = 0; if (++rrd_next_to_clean == rrd_ring->count) rrd_next_to_clean = 0; count++; continue; } else { /* current rrd still not be updated */ break; } rrd_ok: /* clean alloc flag for bad rrd */ atl1_clean_alloc_flag(adapter, rrd, 0); buffer_info = &rfd_ring->buffer_info[rrd->buf_indx]; if (++rfd_ring->next_to_clean == rfd_ring->count) rfd_ring->next_to_clean = 0; /* update rrd next to clean */ if (++rrd_next_to_clean == rrd_ring->count) rrd_next_to_clean = 0; count++; if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) { if (!(rrd->err_flg & (ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM | ERR_FLAG_LEN))) { /* packet error, don't need upstream */ buffer_info->alloced = 0; rrd->xsz.valid = 0; continue; } } /* Good Receive */ pci_unmap_page(adapter->pdev, buffer_info->dma, buffer_info->length, PCI_DMA_FROMDEVICE); buffer_info->dma = 0; skb = buffer_info->skb; length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size); skb_put(skb, length - ETH_FCS_LEN); /* Receive Checksum Offload */ atl1_rx_checksum(adapter, rrd, skb); skb->protocol = eth_type_trans(skb, adapter->netdev); if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) { u16 vlan_tag = (rrd->vlan_tag >> 4) | ((rrd->vlan_tag & 7) << 13) | ((rrd->vlan_tag & 8) << 9); __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); } netif_receive_skb(skb); /* let protocol layer free skb */ buffer_info->skb = NULL; buffer_info->alloced = 0; rrd->xsz.valid = 0; } atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean); atl1_alloc_rx_buffers(adapter); /* update mailbox ? */ if (count) { u32 tpd_next_to_use; u32 rfd_next_to_use; spin_lock(&adapter->mb_lock); tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use); rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use); rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean); value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT) | ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) | ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT); iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX); spin_unlock(&adapter->mb_lock); } return count; } static int atl1_intr_tx(struct atl1_adapter *adapter) { struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; struct atl1_buffer *buffer_info; u16 sw_tpd_next_to_clean; u16 cmb_tpd_next_to_clean; int count = 0; sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean); cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx); while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) { buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean]; if (buffer_info->dma) { pci_unmap_page(adapter->pdev, buffer_info->dma, buffer_info->length, PCI_DMA_TODEVICE); buffer_info->dma = 0; } if (buffer_info->skb) { dev_consume_skb_irq(buffer_info->skb); buffer_info->skb = NULL; } if (++sw_tpd_next_to_clean == tpd_ring->count) sw_tpd_next_to_clean = 0; count++; } atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean); if (netif_queue_stopped(adapter->netdev) && netif_carrier_ok(adapter->netdev)) netif_wake_queue(adapter->netdev); return count; } static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring) { u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean); u16 next_to_use = atomic_read(&tpd_ring->next_to_use); return (next_to_clean > next_to_use) ? next_to_clean - next_to_use - 1 : tpd_ring->count + next_to_clean - next_to_use - 1; } static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb, struct tx_packet_desc *ptpd) { u8 hdr_len, ip_off; u32 real_len; if (skb_shinfo(skb)->gso_size) { int err; err = skb_cow_head(skb, 0); if (err < 0) return err; if (skb->protocol == htons(ETH_P_IP)) { struct iphdr *iph = ip_hdr(skb); real_len = (((unsigned char *)iph - skb->data) + ntohs(iph->tot_len)); if (real_len < skb->len) pskb_trim(skb, real_len); hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb)); if (skb->len == hdr_len) { iph->check = 0; tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, tcp_hdrlen(skb), IPPROTO_TCP, 0); ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) << TPD_IPHL_SHIFT; ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) & TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT; ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT; ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT; return 1; } iph->check = 0; tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0, IPPROTO_TCP, 0); ip_off = (unsigned char *)iph - (unsigned char *) skb_network_header(skb); if (ip_off == 8) /* 802.3-SNAP frame */ ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT; else if (ip_off != 0) return -2; ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) << TPD_IPHL_SHIFT; ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) & TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT; ptpd->word3 |= (skb_shinfo(skb)->gso_size & TPD_MSS_MASK) << TPD_MSS_SHIFT; ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT; return 3; } } return 0; } static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb, struct tx_packet_desc *ptpd) { u8 css, cso; if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { css = skb_checksum_start_offset(skb); cso = css + (u8) skb->csum_offset; if (unlikely(css & 0x1)) { /* L1 hardware requires an even number here */ if (netif_msg_tx_err(adapter)) dev_printk(KERN_DEBUG, &adapter->pdev->dev, "payload offset not an even number\n"); return -1; } ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) << TPD_PLOADOFFSET_SHIFT; ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) << TPD_CCSUMOFFSET_SHIFT; ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT; return true; } return 0; } static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb, struct tx_packet_desc *ptpd) { struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; struct atl1_buffer *buffer_info; u16 buf_len = skb->len; struct page *page; unsigned long offset; unsigned int nr_frags; unsigned int f; int retval; u16 next_to_use; u16 data_len; u8 hdr_len; buf_len -= skb->data_len; nr_frags = skb_shinfo(skb)->nr_frags; next_to_use = atomic_read(&tpd_ring->next_to_use); buffer_info = &tpd_ring->buffer_info[next_to_use]; BUG_ON(buffer_info->skb); /* put skb in last TPD */ buffer_info->skb = NULL; retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK; if (retval) { /* TSO */ hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); buffer_info->length = hdr_len; page = virt_to_page(skb->data); offset = offset_in_page(skb->data); buffer_info->dma = pci_map_page(adapter->pdev, page, offset, hdr_len, PCI_DMA_TODEVICE); if (++next_to_use == tpd_ring->count) next_to_use = 0; if (buf_len > hdr_len) { int i, nseg; data_len = buf_len - hdr_len; nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) / ATL1_MAX_TX_BUF_LEN; for (i = 0; i < nseg; i++) { buffer_info = &tpd_ring->buffer_info[next_to_use]; buffer_info->skb = NULL; buffer_info->length = (ATL1_MAX_TX_BUF_LEN >= data_len) ? ATL1_MAX_TX_BUF_LEN : data_len; data_len -= buffer_info->length; page = virt_to_page(skb->data + (hdr_len + i * ATL1_MAX_TX_BUF_LEN)); offset = offset_in_page(skb->data + (hdr_len + i * ATL1_MAX_TX_BUF_LEN)); buffer_info->dma = pci_map_page(adapter->pdev, page, offset, buffer_info->length, PCI_DMA_TODEVICE); if (++next_to_use == tpd_ring->count) next_to_use = 0; } } } else { /* not TSO */ buffer_info->length = buf_len; page = virt_to_page(skb->data); offset = offset_in_page(skb->data); buffer_info->dma = pci_map_page(adapter->pdev, page, offset, buf_len, PCI_DMA_TODEVICE); if (++next_to_use == tpd_ring->count) next_to_use = 0; } for (f = 0; f < nr_frags; f++) { const struct skb_frag_struct *frag; u16 i, nseg; frag = &skb_shinfo(skb)->frags[f]; buf_len = skb_frag_size(frag); nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) / ATL1_MAX_TX_BUF_LEN; for (i = 0; i < nseg; i++) { buffer_info = &tpd_ring->buffer_info[next_to_use]; BUG_ON(buffer_info->skb); buffer_info->skb = NULL; buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ? ATL1_MAX_TX_BUF_LEN : buf_len; buf_len -= buffer_info->length; buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev, frag, i * ATL1_MAX_TX_BUF_LEN, buffer_info->length, DMA_TO_DEVICE); if (++next_to_use == tpd_ring->count) next_to_use = 0; } } /* last tpd's buffer-info */ buffer_info->skb = skb; } static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count, struct tx_packet_desc *ptpd) { struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; struct atl1_buffer *buffer_info; struct tx_packet_desc *tpd; u16 j; u32 val; u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use); for (j = 0; j < count; j++) { buffer_info = &tpd_ring->buffer_info[next_to_use]; tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use); if (tpd != ptpd) memcpy(tpd, ptpd, sizeof(struct tx_packet_desc)); tpd->buffer_addr = cpu_to_le64(buffer_info->dma); tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT); tpd->word2 |= (cpu_to_le16(buffer_info->length) & TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT; /* * if this is the first packet in a TSO chain, set * TPD_HDRFLAG, otherwise, clear it. */ val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK; if (val) { if (!j) tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT; else tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT); } if (j == (count - 1)) tpd->word3 |= 1 << TPD_EOP_SHIFT; if (++next_to_use == tpd_ring->count) next_to_use = 0; } /* * Force memory writes to complete before letting h/w * know there are new descriptors to fetch. (Only * applicable for weak-ordered memory model archs, * such as IA-64). */ wmb(); atomic_set(&tpd_ring->next_to_use, next_to_use); } static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb, struct net_device *netdev) { struct atl1_adapter *adapter = netdev_priv(netdev); struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring; int len; int tso; int count = 1; int ret_val; struct tx_packet_desc *ptpd; u16 vlan_tag; unsigned int nr_frags = 0; unsigned int mss = 0; unsigned int f; unsigned int proto_hdr_len; len = skb_headlen(skb); if (unlikely(skb->len <= 0)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } nr_frags = skb_shinfo(skb)->nr_frags; for (f = 0; f < nr_frags; f++) { unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]); count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) / ATL1_MAX_TX_BUF_LEN; } mss = skb_shinfo(skb)->gso_size; if (mss) { if (skb->protocol == htons(ETH_P_IP)) { proto_hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb)); if (unlikely(proto_hdr_len > len)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } /* need additional TPD ? */ if (proto_hdr_len != len) count += (len - proto_hdr_len + ATL1_MAX_TX_BUF_LEN - 1) / ATL1_MAX_TX_BUF_LEN; } } if (atl1_tpd_avail(&adapter->tpd_ring) < count) { /* not enough descriptors */ netif_stop_queue(netdev); if (netif_msg_tx_queued(adapter)) dev_printk(KERN_DEBUG, &adapter->pdev->dev, "tx busy\n"); return NETDEV_TX_BUSY; } ptpd = ATL1_TPD_DESC(tpd_ring, (u16) atomic_read(&tpd_ring->next_to_use)); memset(ptpd, 0, sizeof(struct tx_packet_desc)); if (skb_vlan_tag_present(skb)) { vlan_tag = skb_vlan_tag_get(skb); vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) | ((vlan_tag >> 9) & 0x8); ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT; ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) << TPD_VLANTAG_SHIFT; } tso = atl1_tso(adapter, skb, ptpd); if (tso < 0) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } if (!tso) { ret_val = atl1_tx_csum(adapter, skb, ptpd); if (ret_val < 0) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } } atl1_tx_map(adapter, skb, ptpd); atl1_tx_queue(adapter, count, ptpd); atl1_update_mailbox(adapter); return NETDEV_TX_OK; } static int atl1_rings_clean(struct napi_struct *napi, int budget) { struct atl1_adapter *adapter = container_of(napi, struct atl1_adapter, napi); int work_done = atl1_intr_rx(adapter, budget); if (atl1_intr_tx(adapter)) work_done = budget; /* Let's come again to process some more packets */ if (work_done >= budget) return work_done; napi_complete_done(napi, work_done); /* re-enable Interrupt */ if (likely(adapter->int_enabled)) atlx_imr_set(adapter, IMR_NORMAL_MASK); return work_done; } static inline int atl1_sched_rings_clean(struct atl1_adapter* adapter) { if (!napi_schedule_prep(&adapter->napi)) /* It is possible in case even the RX/TX ints are disabled via IMR * register the ISR bits are set anyway (but do not produce IRQ). * To handle such situation the napi functions used to check is * something scheduled or not. */ return 0; __napi_schedule(&adapter->napi); /* * Disable RX/TX ints via IMR register if it is * allowed. NAPI handler must reenable them in same * way. */ if (!adapter->int_enabled) return 1; atlx_imr_set(adapter, IMR_NORXTX_MASK); return 1; } /** * atl1_intr - Interrupt Handler * @irq: interrupt number * @data: pointer to a network interface device structure */ static irqreturn_t atl1_intr(int irq, void *data) { struct atl1_adapter *adapter = netdev_priv(data); u32 status; status = adapter->cmb.cmb->int_stats; if (!status) return IRQ_NONE; /* clear CMB interrupt status at once, * but leave rx/tx interrupt status in case it should be dropped * only if rx/tx processing queued. In other case interrupt * can be lost. */ adapter->cmb.cmb->int_stats = status & (ISR_CMB_TX | ISR_CMB_RX); if (status & ISR_GPHY) /* clear phy status */ atlx_clear_phy_int(adapter); /* clear ISR status, and Enable CMB DMA/Disable Interrupt */ iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR); /* check if SMB intr */ if (status & ISR_SMB) atl1_inc_smb(adapter); /* check if PCIE PHY Link down */ if (status & ISR_PHY_LINKDOWN) { if (netif_msg_intr(adapter)) dev_printk(KERN_DEBUG, &adapter->pdev->dev, "pcie phy link down %x\n", status); if (netif_running(adapter->netdev)) { /* reset MAC */ atlx_irq_disable(adapter); schedule_work(&adapter->reset_dev_task); return IRQ_HANDLED; } } /* check if DMA read/write error ? */ if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) { if (netif_msg_intr(adapter)) dev_printk(KERN_DEBUG, &adapter->pdev->dev, "pcie DMA r/w error (status = 0x%x)\n", status); atlx_irq_disable(adapter); schedule_work(&adapter->reset_dev_task); return IRQ_HANDLED; } /* link event */ if (status & ISR_GPHY) { adapter->soft_stats.tx_carrier_errors++; atl1_check_for_link(adapter); } /* transmit or receive event */ if (status & (ISR_CMB_TX | ISR_CMB_RX) && atl1_sched_rings_clean(adapter)) adapter->cmb.cmb->int_stats = adapter->cmb.cmb->int_stats & ~(ISR_CMB_TX | ISR_CMB_RX); /* rx exception */ if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN | ISR_RRD_OV | ISR_HOST_RFD_UNRUN | ISR_HOST_RRD_OV))) { if (netif_msg_intr(adapter)) dev_printk(KERN_DEBUG, &adapter->pdev->dev, "rx exception, ISR = 0x%x\n", status); atl1_sched_rings_clean(adapter); } /* re-enable Interrupt */ iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR); return IRQ_HANDLED; } /** * atl1_phy_config - Timer Call-back * @data: pointer to netdev cast into an unsigned long */ static void atl1_phy_config(struct timer_list *t) { struct atl1_adapter *adapter = from_timer(adapter, t, phy_config_timer); struct atl1_hw *hw = &adapter->hw; unsigned long flags; spin_lock_irqsave(&adapter->lock, flags); adapter->phy_timer_pending = false; atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg); atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg); atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN); spin_unlock_irqrestore(&adapter->lock, flags); } /* * Orphaned vendor comment left intact here: * <vendor comment> * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT * will assert. We do soft reset <0x1400=1> according * with the SPEC. BUT, it seemes that PCIE or DMA * state-machine will not be reset. DMAR_TO_INT will * assert again and again. * </vendor comment> */ static int atl1_reset(struct atl1_adapter *adapter) { int ret; ret = atl1_reset_hw(&adapter->hw); if (ret) return ret; return atl1_init_hw(&adapter->hw); } static s32 atl1_up(struct atl1_adapter *adapter) { struct net_device *netdev = adapter->netdev; int err; int irq_flags = 0; /* hardware has been reset, we need to reload some things */ atlx_set_multi(netdev); atl1_init_ring_ptrs(adapter); atlx_restore_vlan(adapter); err = atl1_alloc_rx_buffers(adapter); if (unlikely(!err)) /* no RX BUFFER allocated */ return -ENOMEM; if (unlikely(atl1_configure(adapter))) { err = -EIO; goto err_up; } err = pci_enable_msi(adapter->pdev); if (err) { if (netif_msg_ifup(adapter)) dev_info(&adapter->pdev->dev, "Unable to enable MSI: %d\n", err); irq_flags |= IRQF_SHARED; } err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags, netdev->name, netdev); if (unlikely(err)) goto err_up; napi_enable(&adapter->napi); atlx_irq_enable(adapter); atl1_check_link(adapter); netif_start_queue(netdev); return 0; err_up: pci_disable_msi(adapter->pdev); /* free rx_buffers */ atl1_clean_rx_ring(adapter); return err; } static void atl1_down(struct atl1_adapter *adapter) { struct net_device *netdev = adapter->netdev; napi_disable(&adapter->napi); netif_stop_queue(netdev); del_timer_sync(&adapter->phy_config_timer); adapter->phy_timer_pending = false; atlx_irq_disable(adapter); free_irq(adapter->pdev->irq, netdev); pci_disable_msi(adapter->pdev); atl1_reset_hw(&adapter->hw); adapter->cmb.cmb->int_stats = 0; adapter->link_speed = SPEED_0; adapter->link_duplex = -1; netif_carrier_off(netdev); atl1_clean_tx_ring(adapter); atl1_clean_rx_ring(adapter); } static void atl1_reset_dev_task(struct work_struct *work) { struct atl1_adapter *adapter = container_of(work, struct atl1_adapter, reset_dev_task); struct net_device *netdev = adapter->netdev; netif_device_detach(netdev); atl1_down(adapter); atl1_up(adapter); netif_device_attach(netdev); } /** * atl1_change_mtu - Change the Maximum Transfer Unit * @netdev: network interface device structure * @new_mtu: new value for maximum frame size * * Returns 0 on success, negative on failure */ static int atl1_change_mtu(struct net_device *netdev, int new_mtu) { struct atl1_adapter *adapter = netdev_priv(netdev); int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; adapter->hw.max_frame_size = max_frame; adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3; adapter->rx_buffer_len = (max_frame + 7) & ~7; adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8; netdev->mtu = new_mtu; if (netif_running(netdev)) { atl1_down(adapter); atl1_up(adapter); } return 0; } /** * atl1_open - Called when a network interface is made active * @netdev: network interface device structure * * Returns 0 on success, negative value on failure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the watchdog timer is started, * and the stack is notified that the interface is ready. */ static int atl1_open(struct net_device *netdev) { struct atl1_adapter *adapter = netdev_priv(netdev); int err; netif_carrier_off(netdev); /* allocate transmit descriptors */ err = atl1_setup_ring_resources(adapter); if (err) return err; err = atl1_up(adapter); if (err) goto err_up; return 0; err_up: atl1_reset(adapter); return err; } /** * atl1_close - Disables a network interface * @netdev: network interface device structure * * Returns 0, this is not allowed to fail * * The close entry point is called when an interface is de-activated * by the OS. The hardware is still under the drivers control, but * needs to be disabled. A global MAC reset is issued to stop the * hardware, and all transmit and receive resources are freed. */ static int atl1_close(struct net_device *netdev) { struct atl1_adapter *adapter = netdev_priv(netdev); atl1_down(adapter); atl1_free_ring_resources(adapter); return 0; } #ifdef CONFIG_PM_SLEEP static int atl1_suspend(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct net_device *netdev = pci_get_drvdata(pdev); struct atl1_adapter *adapter = netdev_priv(netdev); struct atl1_hw *hw = &adapter->hw; u32 ctrl = 0; u32 wufc = adapter->wol; u32 val; u16 speed; u16 duplex; netif_device_detach(netdev); if (netif_running(netdev)) atl1_down(adapter); atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl); atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl); val = ctrl & BMSR_LSTATUS; if (val) wufc &= ~ATLX_WUFC_LNKC; if (!wufc) goto disable_wol; if (val) { val = atl1_get_speed_and_duplex(hw, &speed, &duplex); if (val) { if (netif_msg_ifdown(adapter)) dev_printk(KERN_DEBUG, &pdev->dev, "error getting speed/duplex\n"); goto disable_wol; } ctrl = 0; /* enable magic packet WOL */ if (wufc & ATLX_WUFC_MAG) ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN); iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL); ioread32(hw->hw_addr + REG_WOL_CTRL); /* configure the mac */ ctrl = MAC_CTRL_RX_EN; ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT); if (duplex == FULL_DUPLEX) ctrl |= MAC_CTRL_DUPLX; ctrl |= (((u32)adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT); __atlx_vlan_mode(netdev->features, &ctrl); if (wufc & ATLX_WUFC_MAG) ctrl |= MAC_CTRL_BC_EN; iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL); ioread32(hw->hw_addr + REG_MAC_CTRL); /* poke the PHY */ ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC); ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC); ioread32(hw->hw_addr + REG_PCIE_PHYMISC); } else { ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN); iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL); ioread32(hw->hw_addr + REG_WOL_CTRL); iowrite32(0, hw->hw_addr + REG_MAC_CTRL); ioread32(hw->hw_addr + REG_MAC_CTRL); hw->phy_configured = false; } return 0; disable_wol: iowrite32(0, hw->hw_addr + REG_WOL_CTRL); ioread32(hw->hw_addr + REG_WOL_CTRL); ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC); ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC); ioread32(hw->hw_addr + REG_PCIE_PHYMISC); hw->phy_configured = false; return 0; } static int atl1_resume(struct device *dev) { struct pci_dev *pdev = to_pci_dev(dev); struct net_device *netdev = pci_get_drvdata(pdev); struct atl1_adapter *adapter = netdev_priv(netdev); iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL); atl1_reset_hw(&adapter->hw); if (netif_running(netdev)) { adapter->cmb.cmb->int_stats = 0; atl1_up(adapter); } netif_device_attach(netdev); return 0; } #endif static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume); static void atl1_shutdown(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1_adapter *adapter = netdev_priv(netdev); #ifdef CONFIG_PM_SLEEP atl1_suspend(&pdev->dev); #endif pci_wake_from_d3(pdev, adapter->wol); pci_set_power_state(pdev, PCI_D3hot); } #ifdef CONFIG_NET_POLL_CONTROLLER static void atl1_poll_controller(struct net_device *netdev) { disable_irq(netdev->irq); atl1_intr(netdev->irq, netdev); enable_irq(netdev->irq); } #endif static const struct net_device_ops atl1_netdev_ops = { .ndo_open = atl1_open, .ndo_stop = atl1_close, .ndo_start_xmit = atl1_xmit_frame, .ndo_set_rx_mode = atlx_set_multi, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = atl1_set_mac, .ndo_change_mtu = atl1_change_mtu, .ndo_fix_features = atlx_fix_features, .ndo_set_features = atlx_set_features, .ndo_do_ioctl = atlx_ioctl, .ndo_tx_timeout = atlx_tx_timeout, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = atl1_poll_controller, #endif }; /** * atl1_probe - Device Initialization Routine * @pdev: PCI device information struct * @ent: entry in atl1_pci_tbl * * Returns 0 on success, negative on failure * * atl1_probe initializes an adapter identified by a pci_dev structure. * The OS initialization, configuring of the adapter private structure, * and a hardware reset occur. */ static int atl1_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *netdev; struct atl1_adapter *adapter; static int cards_found = 0; int err; err = pci_enable_device(pdev); if (err) return err; /* * The atl1 chip can DMA to 64-bit addresses, but it uses a single * shared register for the high 32 bits, so only a single, aligned, * 4 GB physical address range can be used at a time. * * Supporting 64-bit DMA on this hardware is more trouble than it's * worth. It is far easier to limit to 32-bit DMA than update * various kernel subsystems to support the mechanics required by a * fixed-high-32-bit system. */ err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "no usable DMA configuration\n"); goto err_dma; } /* * Mark all PCI regions associated with PCI device * pdev as being reserved by owner atl1_driver_name */ err = pci_request_regions(pdev, ATLX_DRIVER_NAME); if (err) goto err_request_regions; /* * Enables bus-mastering on the device and calls * pcibios_set_master to do the needed arch specific settings */ pci_set_master(pdev); netdev = alloc_etherdev(sizeof(struct atl1_adapter)); if (!netdev) { err = -ENOMEM; goto err_alloc_etherdev; } SET_NETDEV_DEV(netdev, &pdev->dev); pci_set_drvdata(pdev, netdev); adapter = netdev_priv(netdev); adapter->netdev = netdev; adapter->pdev = pdev; adapter->hw.back = adapter; adapter->msg_enable = netif_msg_init(debug, atl1_default_msg); adapter->hw.hw_addr = pci_iomap(pdev, 0, 0); if (!adapter->hw.hw_addr) { err = -EIO; goto err_pci_iomap; } /* get device revision number */ adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr + (REG_MASTER_CTRL + 2)); if (netif_msg_probe(adapter)) dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION); /* set default ring resource counts */ adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD; adapter->tpd_ring.count = ATL1_DEFAULT_TPD; adapter->mii.dev = netdev; adapter->mii.mdio_read = mdio_read; adapter->mii.mdio_write = mdio_write; adapter->mii.phy_id_mask = 0x1f; adapter->mii.reg_num_mask = 0x1f; netdev->netdev_ops = &atl1_netdev_ops; netdev->watchdog_timeo = 5 * HZ; netif_napi_add(netdev, &adapter->napi, atl1_rings_clean, 64); netdev->ethtool_ops = &atl1_ethtool_ops; adapter->bd_number = cards_found; /* setup the private structure */ err = atl1_sw_init(adapter); if (err) goto err_common; netdev->features = NETIF_F_HW_CSUM; netdev->features |= NETIF_F_SG; netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX); netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_RX; /* is this valid? see atl1_setup_mac_ctrl() */ netdev->features |= NETIF_F_RXCSUM; /* MTU range: 42 - 10218 */ netdev->min_mtu = ETH_ZLEN - (ETH_HLEN + VLAN_HLEN); netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); /* * patch for some L1 of old version, * the final version of L1 may not need these * patches */ /* atl1_pcie_patch(adapter); */ /* really reset GPHY core */ iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE); /* * reset the controller to * put the device in a known good starting state */ if (atl1_reset_hw(&adapter->hw)) { err = -EIO; goto err_common; } /* copy the MAC address out of the EEPROM */ if (atl1_read_mac_addr(&adapter->hw)) { /* mark random mac */ netdev->addr_assign_type = NET_ADDR_RANDOM; } memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len); if (!is_valid_ether_addr(netdev->dev_addr)) { err = -EIO; goto err_common; } atl1_check_options(adapter); /* pre-init the MAC, and setup link */ err = atl1_init_hw(&adapter->hw); if (err) { err = -EIO; goto err_common; } atl1_pcie_patch(adapter); /* assume we have no link for now */ netif_carrier_off(netdev); timer_setup(&adapter->phy_config_timer, atl1_phy_config, 0); adapter->phy_timer_pending = false; INIT_WORK(&adapter->reset_dev_task, atl1_reset_dev_task); INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task); err = register_netdev(netdev); if (err) goto err_common; cards_found++; atl1_via_workaround(adapter); return 0; err_common: pci_iounmap(pdev, adapter->hw.hw_addr); err_pci_iomap: free_netdev(netdev); err_alloc_etherdev: pci_release_regions(pdev); err_dma: err_request_regions: pci_disable_device(pdev); return err; } /** * atl1_remove - Device Removal Routine * @pdev: PCI device information struct * * atl1_remove is called by the PCI subsystem to alert the driver * that it should release a PCI device. The could be caused by a * Hot-Plug event, or because the driver is going to be removed from * memory. */ static void atl1_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1_adapter *adapter; /* Device not available. Return. */ if (!netdev) return; adapter = netdev_priv(netdev); /* * Some atl1 boards lack persistent storage for their MAC, and get it * from the BIOS during POST. If we've been messing with the MAC * address, we need to save the permanent one. */ if (!ether_addr_equal_unaligned(adapter->hw.mac_addr, adapter->hw.perm_mac_addr)) { memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr, ETH_ALEN); atl1_set_mac_addr(&adapter->hw); } iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE); unregister_netdev(netdev); pci_iounmap(pdev, adapter->hw.hw_addr); pci_release_regions(pdev); free_netdev(netdev); pci_disable_device(pdev); } static struct pci_driver atl1_driver = { .name = ATLX_DRIVER_NAME, .id_table = atl1_pci_tbl, .probe = atl1_probe, .remove = atl1_remove, .shutdown = atl1_shutdown, .driver.pm = &atl1_pm_ops, }; struct atl1_stats { char stat_string[ETH_GSTRING_LEN]; int sizeof_stat; int stat_offset; }; #define ATL1_STAT(m) \ sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m) static struct atl1_stats atl1_gstrings_stats[] = { {"rx_packets", ATL1_STAT(soft_stats.rx_packets)}, {"tx_packets", ATL1_STAT(soft_stats.tx_packets)}, {"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)}, {"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)}, {"rx_errors", ATL1_STAT(soft_stats.rx_errors)}, {"tx_errors", ATL1_STAT(soft_stats.tx_errors)}, {"multicast", ATL1_STAT(soft_stats.multicast)}, {"collisions", ATL1_STAT(soft_stats.collisions)}, {"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)}, {"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)}, {"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)}, {"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)}, {"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)}, {"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)}, {"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)}, {"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)}, {"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)}, {"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)}, {"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)}, {"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)}, {"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)}, {"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)}, {"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)}, {"tx_underrun", ATL1_STAT(soft_stats.tx_underrun)}, {"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)}, {"tx_pause", ATL1_STAT(soft_stats.tx_pause)}, {"rx_pause", ATL1_STAT(soft_stats.rx_pause)}, {"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)}, {"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)} }; static void atl1_get_ethtool_stats(struct net_device *netdev, struct ethtool_stats *stats, u64 *data) { struct atl1_adapter *adapter = netdev_priv(netdev); int i; char *p; for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) { p = (char *)adapter+atl1_gstrings_stats[i].stat_offset; data[i] = (atl1_gstrings_stats[i].sizeof_stat == sizeof(u64)) ? *(u64 *)p : *(u32 *)p; } } static int atl1_get_sset_count(struct net_device *netdev, int sset) { switch (sset) { case ETH_SS_STATS: return ARRAY_SIZE(atl1_gstrings_stats); default: return -EOPNOTSUPP; } } static int atl1_get_link_ksettings(struct net_device *netdev, struct ethtool_link_ksettings *cmd) { struct atl1_adapter *adapter = netdev_priv(netdev); struct atl1_hw *hw = &adapter->hw; u32 supported, advertising; supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_TP); advertising = ADVERTISED_TP; if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || hw->media_type == MEDIA_TYPE_1000M_FULL) { advertising |= ADVERTISED_Autoneg; if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) { advertising |= ADVERTISED_Autoneg; advertising |= (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full); } else advertising |= (ADVERTISED_1000baseT_Full); } cmd->base.port = PORT_TP; cmd->base.phy_address = 0; if (netif_carrier_ok(adapter->netdev)) { u16 link_speed, link_duplex; atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex); cmd->base.speed = link_speed; if (link_duplex == FULL_DUPLEX) cmd->base.duplex = DUPLEX_FULL; else cmd->base.duplex = DUPLEX_HALF; } else { cmd->base.speed = SPEED_UNKNOWN; cmd->base.duplex = DUPLEX_UNKNOWN; } if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || hw->media_type == MEDIA_TYPE_1000M_FULL) cmd->base.autoneg = AUTONEG_ENABLE; else cmd->base.autoneg = AUTONEG_DISABLE; ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, supported); ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, advertising); return 0; } static int atl1_set_link_ksettings(struct net_device *netdev, const struct ethtool_link_ksettings *cmd) { struct atl1_adapter *adapter = netdev_priv(netdev); struct atl1_hw *hw = &adapter->hw; u16 phy_data; int ret_val = 0; u16 old_media_type = hw->media_type; if (netif_running(adapter->netdev)) { if (netif_msg_link(adapter)) dev_dbg(&adapter->pdev->dev, "ethtool shutting down adapter\n"); atl1_down(adapter); } if (cmd->base.autoneg == AUTONEG_ENABLE) hw->media_type = MEDIA_TYPE_AUTO_SENSOR; else { u32 speed = cmd->base.speed; if (speed == SPEED_1000) { if (cmd->base.duplex != DUPLEX_FULL) { if (netif_msg_link(adapter)) dev_warn(&adapter->pdev->dev, "1000M half is invalid\n"); ret_val = -EINVAL; goto exit_sset; } hw->media_type = MEDIA_TYPE_1000M_FULL; } else if (speed == SPEED_100) { if (cmd->base.duplex == DUPLEX_FULL) hw->media_type = MEDIA_TYPE_100M_FULL; else hw->media_type = MEDIA_TYPE_100M_HALF; } else { if (cmd->base.duplex == DUPLEX_FULL) hw->media_type = MEDIA_TYPE_10M_FULL; else hw->media_type = MEDIA_TYPE_10M_HALF; } } if (atl1_phy_setup_autoneg_adv(hw)) { ret_val = -EINVAL; if (netif_msg_link(adapter)) dev_warn(&adapter->pdev->dev, "invalid ethtool speed/duplex setting\n"); goto exit_sset; } if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || hw->media_type == MEDIA_TYPE_1000M_FULL) phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN; else { switch (hw->media_type) { case MEDIA_TYPE_100M_FULL: phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 | MII_CR_RESET; break; case MEDIA_TYPE_100M_HALF: phy_data = MII_CR_SPEED_100 | MII_CR_RESET; break; case MEDIA_TYPE_10M_FULL: phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET; break; default: /* MEDIA_TYPE_10M_HALF: */ phy_data = MII_CR_SPEED_10 | MII_CR_RESET; break; } } atl1_write_phy_reg(hw, MII_BMCR, phy_data); exit_sset: if (ret_val) hw->media_type = old_media_type; if (netif_running(adapter->netdev)) { if (netif_msg_link(adapter)) dev_dbg(&adapter->pdev->dev, "ethtool starting adapter\n"); atl1_up(adapter); } else if (!ret_val) { if (netif_msg_link(adapter)) dev_dbg(&adapter->pdev->dev, "ethtool resetting adapter\n"); atl1_reset(adapter); } return ret_val; } static void atl1_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo) { struct atl1_adapter *adapter = netdev_priv(netdev); strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver)); strlcpy(drvinfo->version, ATLX_DRIVER_VERSION, sizeof(drvinfo->version)); strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), sizeof(drvinfo->bus_info)); } static void atl1_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) { struct atl1_adapter *adapter = netdev_priv(netdev); wol->supported = WAKE_MAGIC; wol->wolopts = 0; if (adapter->wol & ATLX_WUFC_MAG) wol->wolopts |= WAKE_MAGIC; } static int atl1_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) { struct atl1_adapter *adapter = netdev_priv(netdev); if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_ARP | WAKE_MAGICSECURE)) return -EOPNOTSUPP; adapter->wol = 0; if (wol->wolopts & WAKE_MAGIC) adapter->wol |= ATLX_WUFC_MAG; device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); return 0; } static u32 atl1_get_msglevel(struct net_device *netdev) { struct atl1_adapter *adapter = netdev_priv(netdev); return adapter->msg_enable; } static void atl1_set_msglevel(struct net_device *netdev, u32 value) { struct atl1_adapter *adapter = netdev_priv(netdev); adapter->msg_enable = value; } static int atl1_get_regs_len(struct net_device *netdev) { return ATL1_REG_COUNT * sizeof(u32); } static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p) { struct atl1_adapter *adapter = netdev_priv(netdev); struct atl1_hw *hw = &adapter->hw; unsigned int i; u32 *regbuf = p; for (i = 0; i < ATL1_REG_COUNT; i++) { /* * This switch statement avoids reserved regions * of register space. */ switch (i) { case 6 ... 9: case 14: case 29 ... 31: case 34 ... 63: case 75 ... 127: case 136 ... 1023: case 1027 ... 1087: case 1091 ... 1151: case 1194 ... 1195: case 1200 ... 1201: case 1206 ... 1213: case 1216 ... 1279: case 1290 ... 1311: case 1323 ... 1343: case 1358 ... 1359: case 1368 ... 1375: case 1378 ... 1383: case 1388 ... 1391: case 1393 ... 1395: case 1402 ... 1403: case 1410 ... 1471: case 1522 ... 1535: /* reserved region; don't read it */ regbuf[i] = 0; break; default: /* unreserved region */ regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32))); } } } static void atl1_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) { struct atl1_adapter *adapter = netdev_priv(netdev); struct atl1_tpd_ring *txdr = &adapter->tpd_ring; struct atl1_rfd_ring *rxdr = &adapter->rfd_ring; ring->rx_max_pending = ATL1_MAX_RFD; ring->tx_max_pending = ATL1_MAX_TPD; ring->rx_pending = rxdr->count; ring->tx_pending = txdr->count; } static int atl1_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) { struct atl1_adapter *adapter = netdev_priv(netdev); struct atl1_tpd_ring *tpdr = &adapter->tpd_ring; struct atl1_rrd_ring *rrdr = &adapter->rrd_ring; struct atl1_rfd_ring *rfdr = &adapter->rfd_ring; struct atl1_tpd_ring tpd_old, tpd_new; struct atl1_rfd_ring rfd_old, rfd_new; struct atl1_rrd_ring rrd_old, rrd_new; struct atl1_ring_header rhdr_old, rhdr_new; struct atl1_smb smb; struct atl1_cmb cmb; int err; tpd_old = adapter->tpd_ring; rfd_old = adapter->rfd_ring; rrd_old = adapter->rrd_ring; rhdr_old = adapter->ring_header; if (netif_running(adapter->netdev)) atl1_down(adapter); rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD); rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD : rfdr->count; rfdr->count = (rfdr->count + 3) & ~3; rrdr->count = rfdr->count; tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD); tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD : tpdr->count; tpdr->count = (tpdr->count + 3) & ~3; if (netif_running(adapter->netdev)) { /* try to get new resources before deleting old */ err = atl1_setup_ring_resources(adapter); if (err) goto err_setup_ring; /* * save the new, restore the old in order to free it, * then restore the new back again */ rfd_new = adapter->rfd_ring; rrd_new = adapter->rrd_ring; tpd_new = adapter->tpd_ring; rhdr_new = adapter->ring_header; adapter->rfd_ring = rfd_old; adapter->rrd_ring = rrd_old; adapter->tpd_ring = tpd_old; adapter->ring_header = rhdr_old; /* * Save SMB and CMB, since atl1_free_ring_resources * will clear them. */ smb = adapter->smb; cmb = adapter->cmb; atl1_free_ring_resources(adapter); adapter->rfd_ring = rfd_new; adapter->rrd_ring = rrd_new; adapter->tpd_ring = tpd_new; adapter->ring_header = rhdr_new; adapter->smb = smb; adapter->cmb = cmb; err = atl1_up(adapter); if (err) return err; } return 0; err_setup_ring: adapter->rfd_ring = rfd_old; adapter->rrd_ring = rrd_old; adapter->tpd_ring = tpd_old; adapter->ring_header = rhdr_old; atl1_up(adapter); return err; } static void atl1_get_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *epause) { struct atl1_adapter *adapter = netdev_priv(netdev); struct atl1_hw *hw = &adapter->hw; if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || hw->media_type == MEDIA_TYPE_1000M_FULL) { epause->autoneg = AUTONEG_ENABLE; } else { epause->autoneg = AUTONEG_DISABLE; } epause->rx_pause = 1; epause->tx_pause = 1; } static int atl1_set_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *epause) { struct atl1_adapter *adapter = netdev_priv(netdev); struct atl1_hw *hw = &adapter->hw; if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || hw->media_type == MEDIA_TYPE_1000M_FULL) { epause->autoneg = AUTONEG_ENABLE; } else { epause->autoneg = AUTONEG_DISABLE; } epause->rx_pause = 1; epause->tx_pause = 1; return 0; } static void atl1_get_strings(struct net_device *netdev, u32 stringset, u8 *data) { u8 *p = data; int i; switch (stringset) { case ETH_SS_STATS: for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) { memcpy(p, atl1_gstrings_stats[i].stat_string, ETH_GSTRING_LEN); p += ETH_GSTRING_LEN; } break; } } static int atl1_nway_reset(struct net_device *netdev) { struct atl1_adapter *adapter = netdev_priv(netdev); struct atl1_hw *hw = &adapter->hw; if (netif_running(netdev)) { u16 phy_data; atl1_down(adapter); if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR || hw->media_type == MEDIA_TYPE_1000M_FULL) { phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN; } else { switch (hw->media_type) { case MEDIA_TYPE_100M_FULL: phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 | MII_CR_RESET; break; case MEDIA_TYPE_100M_HALF: phy_data = MII_CR_SPEED_100 | MII_CR_RESET; break; case MEDIA_TYPE_10M_FULL: phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET; break; default: /* MEDIA_TYPE_10M_HALF */ phy_data = MII_CR_SPEED_10 | MII_CR_RESET; } } atl1_write_phy_reg(hw, MII_BMCR, phy_data); atl1_up(adapter); } return 0; } static const struct ethtool_ops atl1_ethtool_ops = { .get_drvinfo = atl1_get_drvinfo, .get_wol = atl1_get_wol, .set_wol = atl1_set_wol, .get_msglevel = atl1_get_msglevel, .set_msglevel = atl1_set_msglevel, .get_regs_len = atl1_get_regs_len, .get_regs = atl1_get_regs, .get_ringparam = atl1_get_ringparam, .set_ringparam = atl1_set_ringparam, .get_pauseparam = atl1_get_pauseparam, .set_pauseparam = atl1_set_pauseparam, .get_link = ethtool_op_get_link, .get_strings = atl1_get_strings, .nway_reset = atl1_nway_reset, .get_ethtool_stats = atl1_get_ethtool_stats, .get_sset_count = atl1_get_sset_count, .get_link_ksettings = atl1_get_link_ksettings, .set_link_ksettings = atl1_set_link_ksettings, }; module_pci_driver(atl1_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1