Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Daney | 6698 | 88.20% | 14 | 32.56% |
Chad Reese | 638 | 8.40% | 1 | 2.33% |
Philippe Reynes | 55 | 0.72% | 2 | 4.65% |
Arvind Yadav | 37 | 0.49% | 1 | 2.33% |
Jiri Pirko | 25 | 0.33% | 5 | 11.63% |
Peter Chen | 24 | 0.32% | 1 | 2.33% |
Jarod Wilson | 16 | 0.21% | 1 | 2.33% |
Andrew Lunn | 15 | 0.20% | 1 | 2.33% |
Russell King | 14 | 0.18% | 1 | 2.33% |
Steven J. Hill | 14 | 0.18% | 1 | 2.33% |
Willem de Bruijn | 13 | 0.17% | 1 | 2.33% |
Alexander Sverdlin | 12 | 0.16% | 1 | 2.33% |
Aaro Koskinen | 5 | 0.07% | 1 | 2.33% |
Petr Štetiar | 5 | 0.07% | 2 | 4.65% |
Tejun Heo | 3 | 0.04% | 1 | 2.33% |
Eric Dumazet | 3 | 0.04% | 1 | 2.33% |
Alexey Dobriyan | 3 | 0.04% | 1 | 2.33% |
Miroslav Lichvar | 3 | 0.04% | 1 | 2.33% |
Florian Westphal | 3 | 0.04% | 1 | 2.33% |
Paul Gortmaker | 2 | 0.03% | 1 | 2.33% |
Jingoo Han | 2 | 0.03% | 1 | 2.33% |
Yue haibing | 2 | 0.03% | 1 | 2.33% |
Fabian Frederick | 1 | 0.01% | 1 | 2.33% |
Wei Yongjun | 1 | 0.01% | 1 | 2.33% |
Total | 7594 | 43 |
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2009-2012 Cavium, Inc */ #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/etherdevice.h> #include <linux/capability.h> #include <linux/net_tstamp.h> #include <linux/interrupt.h> #include <linux/netdevice.h> #include <linux/spinlock.h> #include <linux/if_vlan.h> #include <linux/of_mdio.h> #include <linux/module.h> #include <linux/of_net.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/phy.h> #include <linux/io.h> #include <asm/octeon/octeon.h> #include <asm/octeon/cvmx-mixx-defs.h> #include <asm/octeon/cvmx-agl-defs.h> #define DRV_NAME "octeon_mgmt" #define DRV_VERSION "2.0" #define DRV_DESCRIPTION \ "Cavium Networks Octeon MII (management) port Network Driver" #define OCTEON_MGMT_NAPI_WEIGHT 16 /* Ring sizes that are powers of two allow for more efficient modulo * opertions. */ #define OCTEON_MGMT_RX_RING_SIZE 512 #define OCTEON_MGMT_TX_RING_SIZE 128 /* Allow 8 bytes for vlan and FCS. */ #define OCTEON_MGMT_RX_HEADROOM (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN) union mgmt_port_ring_entry { u64 d64; struct { #define RING_ENTRY_CODE_DONE 0xf #define RING_ENTRY_CODE_MORE 0x10 #ifdef __BIG_ENDIAN_BITFIELD u64 reserved_62_63:2; /* Length of the buffer/packet in bytes */ u64 len:14; /* For TX, signals that the packet should be timestamped */ u64 tstamp:1; /* The RX error code */ u64 code:7; /* Physical address of the buffer */ u64 addr:40; #else u64 addr:40; u64 code:7; u64 tstamp:1; u64 len:14; u64 reserved_62_63:2; #endif } s; }; #define MIX_ORING1 0x0 #define MIX_ORING2 0x8 #define MIX_IRING1 0x10 #define MIX_IRING2 0x18 #define MIX_CTL 0x20 #define MIX_IRHWM 0x28 #define MIX_IRCNT 0x30 #define MIX_ORHWM 0x38 #define MIX_ORCNT 0x40 #define MIX_ISR 0x48 #define MIX_INTENA 0x50 #define MIX_REMCNT 0x58 #define MIX_BIST 0x78 #define AGL_GMX_PRT_CFG 0x10 #define AGL_GMX_RX_FRM_CTL 0x18 #define AGL_GMX_RX_FRM_MAX 0x30 #define AGL_GMX_RX_JABBER 0x38 #define AGL_GMX_RX_STATS_CTL 0x50 #define AGL_GMX_RX_STATS_PKTS_DRP 0xb0 #define AGL_GMX_RX_STATS_OCTS_DRP 0xb8 #define AGL_GMX_RX_STATS_PKTS_BAD 0xc0 #define AGL_GMX_RX_ADR_CTL 0x100 #define AGL_GMX_RX_ADR_CAM_EN 0x108 #define AGL_GMX_RX_ADR_CAM0 0x180 #define AGL_GMX_RX_ADR_CAM1 0x188 #define AGL_GMX_RX_ADR_CAM2 0x190 #define AGL_GMX_RX_ADR_CAM3 0x198 #define AGL_GMX_RX_ADR_CAM4 0x1a0 #define AGL_GMX_RX_ADR_CAM5 0x1a8 #define AGL_GMX_TX_CLK 0x208 #define AGL_GMX_TX_STATS_CTL 0x268 #define AGL_GMX_TX_CTL 0x270 #define AGL_GMX_TX_STAT0 0x280 #define AGL_GMX_TX_STAT1 0x288 #define AGL_GMX_TX_STAT2 0x290 #define AGL_GMX_TX_STAT3 0x298 #define AGL_GMX_TX_STAT4 0x2a0 #define AGL_GMX_TX_STAT5 0x2a8 #define AGL_GMX_TX_STAT6 0x2b0 #define AGL_GMX_TX_STAT7 0x2b8 #define AGL_GMX_TX_STAT8 0x2c0 #define AGL_GMX_TX_STAT9 0x2c8 struct octeon_mgmt { struct net_device *netdev; u64 mix; u64 agl; u64 agl_prt_ctl; int port; int irq; bool has_rx_tstamp; u64 *tx_ring; dma_addr_t tx_ring_handle; unsigned int tx_next; unsigned int tx_next_clean; unsigned int tx_current_fill; /* The tx_list lock also protects the ring related variables */ struct sk_buff_head tx_list; /* RX variables only touched in napi_poll. No locking necessary. */ u64 *rx_ring; dma_addr_t rx_ring_handle; unsigned int rx_next; unsigned int rx_next_fill; unsigned int rx_current_fill; struct sk_buff_head rx_list; spinlock_t lock; unsigned int last_duplex; unsigned int last_link; unsigned int last_speed; struct device *dev; struct napi_struct napi; struct tasklet_struct tx_clean_tasklet; struct device_node *phy_np; resource_size_t mix_phys; resource_size_t mix_size; resource_size_t agl_phys; resource_size_t agl_size; resource_size_t agl_prt_ctl_phys; resource_size_t agl_prt_ctl_size; }; static void octeon_mgmt_set_rx_irq(struct octeon_mgmt *p, int enable) { union cvmx_mixx_intena mix_intena; unsigned long flags; spin_lock_irqsave(&p->lock, flags); mix_intena.u64 = cvmx_read_csr(p->mix + MIX_INTENA); mix_intena.s.ithena = enable ? 1 : 0; cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64); spin_unlock_irqrestore(&p->lock, flags); } static void octeon_mgmt_set_tx_irq(struct octeon_mgmt *p, int enable) { union cvmx_mixx_intena mix_intena; unsigned long flags; spin_lock_irqsave(&p->lock, flags); mix_intena.u64 = cvmx_read_csr(p->mix + MIX_INTENA); mix_intena.s.othena = enable ? 1 : 0; cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64); spin_unlock_irqrestore(&p->lock, flags); } static void octeon_mgmt_enable_rx_irq(struct octeon_mgmt *p) { octeon_mgmt_set_rx_irq(p, 1); } static void octeon_mgmt_disable_rx_irq(struct octeon_mgmt *p) { octeon_mgmt_set_rx_irq(p, 0); } static void octeon_mgmt_enable_tx_irq(struct octeon_mgmt *p) { octeon_mgmt_set_tx_irq(p, 1); } static void octeon_mgmt_disable_tx_irq(struct octeon_mgmt *p) { octeon_mgmt_set_tx_irq(p, 0); } static unsigned int ring_max_fill(unsigned int ring_size) { return ring_size - 8; } static unsigned int ring_size_to_bytes(unsigned int ring_size) { return ring_size * sizeof(union mgmt_port_ring_entry); } static void octeon_mgmt_rx_fill_ring(struct net_device *netdev) { struct octeon_mgmt *p = netdev_priv(netdev); while (p->rx_current_fill < ring_max_fill(OCTEON_MGMT_RX_RING_SIZE)) { unsigned int size; union mgmt_port_ring_entry re; struct sk_buff *skb; /* CN56XX pass 1 needs 8 bytes of padding. */ size = netdev->mtu + OCTEON_MGMT_RX_HEADROOM + 8 + NET_IP_ALIGN; skb = netdev_alloc_skb(netdev, size); if (!skb) break; skb_reserve(skb, NET_IP_ALIGN); __skb_queue_tail(&p->rx_list, skb); re.d64 = 0; re.s.len = size; re.s.addr = dma_map_single(p->dev, skb->data, size, DMA_FROM_DEVICE); /* Put it in the ring. */ p->rx_ring[p->rx_next_fill] = re.d64; dma_sync_single_for_device(p->dev, p->rx_ring_handle, ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), DMA_BIDIRECTIONAL); p->rx_next_fill = (p->rx_next_fill + 1) % OCTEON_MGMT_RX_RING_SIZE; p->rx_current_fill++; /* Ring the bell. */ cvmx_write_csr(p->mix + MIX_IRING2, 1); } } static void octeon_mgmt_clean_tx_buffers(struct octeon_mgmt *p) { union cvmx_mixx_orcnt mix_orcnt; union mgmt_port_ring_entry re; struct sk_buff *skb; int cleaned = 0; unsigned long flags; mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT); while (mix_orcnt.s.orcnt) { spin_lock_irqsave(&p->tx_list.lock, flags); mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT); if (mix_orcnt.s.orcnt == 0) { spin_unlock_irqrestore(&p->tx_list.lock, flags); break; } dma_sync_single_for_cpu(p->dev, p->tx_ring_handle, ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), DMA_BIDIRECTIONAL); re.d64 = p->tx_ring[p->tx_next_clean]; p->tx_next_clean = (p->tx_next_clean + 1) % OCTEON_MGMT_TX_RING_SIZE; skb = __skb_dequeue(&p->tx_list); mix_orcnt.u64 = 0; mix_orcnt.s.orcnt = 1; /* Acknowledge to hardware that we have the buffer. */ cvmx_write_csr(p->mix + MIX_ORCNT, mix_orcnt.u64); p->tx_current_fill--; spin_unlock_irqrestore(&p->tx_list.lock, flags); dma_unmap_single(p->dev, re.s.addr, re.s.len, DMA_TO_DEVICE); /* Read the hardware TX timestamp if one was recorded */ if (unlikely(re.s.tstamp)) { struct skb_shared_hwtstamps ts; u64 ns; memset(&ts, 0, sizeof(ts)); /* Read the timestamp */ ns = cvmx_read_csr(CVMX_MIXX_TSTAMP(p->port)); /* Remove the timestamp from the FIFO */ cvmx_write_csr(CVMX_MIXX_TSCTL(p->port), 0); /* Tell the kernel about the timestamp */ ts.hwtstamp = ns_to_ktime(ns); skb_tstamp_tx(skb, &ts); } dev_kfree_skb_any(skb); cleaned++; mix_orcnt.u64 = cvmx_read_csr(p->mix + MIX_ORCNT); } if (cleaned && netif_queue_stopped(p->netdev)) netif_wake_queue(p->netdev); } static void octeon_mgmt_clean_tx_tasklet(unsigned long arg) { struct octeon_mgmt *p = (struct octeon_mgmt *)arg; octeon_mgmt_clean_tx_buffers(p); octeon_mgmt_enable_tx_irq(p); } static void octeon_mgmt_update_rx_stats(struct net_device *netdev) { struct octeon_mgmt *p = netdev_priv(netdev); unsigned long flags; u64 drop, bad; /* These reads also clear the count registers. */ drop = cvmx_read_csr(p->agl + AGL_GMX_RX_STATS_PKTS_DRP); bad = cvmx_read_csr(p->agl + AGL_GMX_RX_STATS_PKTS_BAD); if (drop || bad) { /* Do an atomic update. */ spin_lock_irqsave(&p->lock, flags); netdev->stats.rx_errors += bad; netdev->stats.rx_dropped += drop; spin_unlock_irqrestore(&p->lock, flags); } } static void octeon_mgmt_update_tx_stats(struct net_device *netdev) { struct octeon_mgmt *p = netdev_priv(netdev); unsigned long flags; union cvmx_agl_gmx_txx_stat0 s0; union cvmx_agl_gmx_txx_stat1 s1; /* These reads also clear the count registers. */ s0.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_STAT0); s1.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_STAT1); if (s0.s.xsdef || s0.s.xscol || s1.s.scol || s1.s.mcol) { /* Do an atomic update. */ spin_lock_irqsave(&p->lock, flags); netdev->stats.tx_errors += s0.s.xsdef + s0.s.xscol; netdev->stats.collisions += s1.s.scol + s1.s.mcol; spin_unlock_irqrestore(&p->lock, flags); } } /* * Dequeue a receive skb and its corresponding ring entry. The ring * entry is returned, *pskb is updated to point to the skb. */ static u64 octeon_mgmt_dequeue_rx_buffer(struct octeon_mgmt *p, struct sk_buff **pskb) { union mgmt_port_ring_entry re; dma_sync_single_for_cpu(p->dev, p->rx_ring_handle, ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), DMA_BIDIRECTIONAL); re.d64 = p->rx_ring[p->rx_next]; p->rx_next = (p->rx_next + 1) % OCTEON_MGMT_RX_RING_SIZE; p->rx_current_fill--; *pskb = __skb_dequeue(&p->rx_list); dma_unmap_single(p->dev, re.s.addr, ETH_FRAME_LEN + OCTEON_MGMT_RX_HEADROOM, DMA_FROM_DEVICE); return re.d64; } static int octeon_mgmt_receive_one(struct octeon_mgmt *p) { struct net_device *netdev = p->netdev; union cvmx_mixx_ircnt mix_ircnt; union mgmt_port_ring_entry re; struct sk_buff *skb; struct sk_buff *skb2; struct sk_buff *skb_new; union mgmt_port_ring_entry re2; int rc = 1; re.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb); if (likely(re.s.code == RING_ENTRY_CODE_DONE)) { /* A good packet, send it up. */ skb_put(skb, re.s.len); good: /* Process the RX timestamp if it was recorded */ if (p->has_rx_tstamp) { /* The first 8 bytes are the timestamp */ u64 ns = *(u64 *)skb->data; struct skb_shared_hwtstamps *ts; ts = skb_hwtstamps(skb); ts->hwtstamp = ns_to_ktime(ns); __skb_pull(skb, 8); } skb->protocol = eth_type_trans(skb, netdev); netdev->stats.rx_packets++; netdev->stats.rx_bytes += skb->len; netif_receive_skb(skb); rc = 0; } else if (re.s.code == RING_ENTRY_CODE_MORE) { /* Packet split across skbs. This can happen if we * increase the MTU. Buffers that are already in the * rx ring can then end up being too small. As the rx * ring is refilled, buffers sized for the new MTU * will be used and we should go back to the normal * non-split case. */ skb_put(skb, re.s.len); do { re2.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb2); if (re2.s.code != RING_ENTRY_CODE_MORE && re2.s.code != RING_ENTRY_CODE_DONE) goto split_error; skb_put(skb2, re2.s.len); skb_new = skb_copy_expand(skb, 0, skb2->len, GFP_ATOMIC); if (!skb_new) goto split_error; if (skb_copy_bits(skb2, 0, skb_tail_pointer(skb_new), skb2->len)) goto split_error; skb_put(skb_new, skb2->len); dev_kfree_skb_any(skb); dev_kfree_skb_any(skb2); skb = skb_new; } while (re2.s.code == RING_ENTRY_CODE_MORE); goto good; } else { /* Some other error, discard it. */ dev_kfree_skb_any(skb); /* Error statistics are accumulated in * octeon_mgmt_update_rx_stats. */ } goto done; split_error: /* Discard the whole mess. */ dev_kfree_skb_any(skb); dev_kfree_skb_any(skb2); while (re2.s.code == RING_ENTRY_CODE_MORE) { re2.d64 = octeon_mgmt_dequeue_rx_buffer(p, &skb2); dev_kfree_skb_any(skb2); } netdev->stats.rx_errors++; done: /* Tell the hardware we processed a packet. */ mix_ircnt.u64 = 0; mix_ircnt.s.ircnt = 1; cvmx_write_csr(p->mix + MIX_IRCNT, mix_ircnt.u64); return rc; } static int octeon_mgmt_receive_packets(struct octeon_mgmt *p, int budget) { unsigned int work_done = 0; union cvmx_mixx_ircnt mix_ircnt; int rc; mix_ircnt.u64 = cvmx_read_csr(p->mix + MIX_IRCNT); while (work_done < budget && mix_ircnt.s.ircnt) { rc = octeon_mgmt_receive_one(p); if (!rc) work_done++; /* Check for more packets. */ mix_ircnt.u64 = cvmx_read_csr(p->mix + MIX_IRCNT); } octeon_mgmt_rx_fill_ring(p->netdev); return work_done; } static int octeon_mgmt_napi_poll(struct napi_struct *napi, int budget) { struct octeon_mgmt *p = container_of(napi, struct octeon_mgmt, napi); struct net_device *netdev = p->netdev; unsigned int work_done = 0; work_done = octeon_mgmt_receive_packets(p, budget); if (work_done < budget) { /* We stopped because no more packets were available. */ napi_complete_done(napi, work_done); octeon_mgmt_enable_rx_irq(p); } octeon_mgmt_update_rx_stats(netdev); return work_done; } /* Reset the hardware to clean state. */ static void octeon_mgmt_reset_hw(struct octeon_mgmt *p) { union cvmx_mixx_ctl mix_ctl; union cvmx_mixx_bist mix_bist; union cvmx_agl_gmx_bist agl_gmx_bist; mix_ctl.u64 = 0; cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64); do { mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL); } while (mix_ctl.s.busy); mix_ctl.s.reset = 1; cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64); cvmx_read_csr(p->mix + MIX_CTL); octeon_io_clk_delay(64); mix_bist.u64 = cvmx_read_csr(p->mix + MIX_BIST); if (mix_bist.u64) dev_warn(p->dev, "MIX failed BIST (0x%016llx)\n", (unsigned long long)mix_bist.u64); agl_gmx_bist.u64 = cvmx_read_csr(CVMX_AGL_GMX_BIST); if (agl_gmx_bist.u64) dev_warn(p->dev, "AGL failed BIST (0x%016llx)\n", (unsigned long long)agl_gmx_bist.u64); } struct octeon_mgmt_cam_state { u64 cam[6]; u64 cam_mask; int cam_index; }; static void octeon_mgmt_cam_state_add(struct octeon_mgmt_cam_state *cs, unsigned char *addr) { int i; for (i = 0; i < 6; i++) cs->cam[i] |= (u64)addr[i] << (8 * (cs->cam_index)); cs->cam_mask |= (1ULL << cs->cam_index); cs->cam_index++; } static void octeon_mgmt_set_rx_filtering(struct net_device *netdev) { struct octeon_mgmt *p = netdev_priv(netdev); union cvmx_agl_gmx_rxx_adr_ctl adr_ctl; union cvmx_agl_gmx_prtx_cfg agl_gmx_prtx; unsigned long flags; unsigned int prev_packet_enable; unsigned int cam_mode = 1; /* 1 - Accept on CAM match */ unsigned int multicast_mode = 1; /* 1 - Reject all multicast. */ struct octeon_mgmt_cam_state cam_state; struct netdev_hw_addr *ha; int available_cam_entries; memset(&cam_state, 0, sizeof(cam_state)); if ((netdev->flags & IFF_PROMISC) || netdev->uc.count > 7) { cam_mode = 0; available_cam_entries = 8; } else { /* One CAM entry for the primary address, leaves seven * for the secondary addresses. */ available_cam_entries = 7 - netdev->uc.count; } if (netdev->flags & IFF_MULTICAST) { if (cam_mode == 0 || (netdev->flags & IFF_ALLMULTI) || netdev_mc_count(netdev) > available_cam_entries) multicast_mode = 2; /* 2 - Accept all multicast. */ else multicast_mode = 0; /* 0 - Use CAM. */ } if (cam_mode == 1) { /* Add primary address. */ octeon_mgmt_cam_state_add(&cam_state, netdev->dev_addr); netdev_for_each_uc_addr(ha, netdev) octeon_mgmt_cam_state_add(&cam_state, ha->addr); } if (multicast_mode == 0) { netdev_for_each_mc_addr(ha, netdev) octeon_mgmt_cam_state_add(&cam_state, ha->addr); } spin_lock_irqsave(&p->lock, flags); /* Disable packet I/O. */ agl_gmx_prtx.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); prev_packet_enable = agl_gmx_prtx.s.en; agl_gmx_prtx.s.en = 0; cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, agl_gmx_prtx.u64); adr_ctl.u64 = 0; adr_ctl.s.cam_mode = cam_mode; adr_ctl.s.mcst = multicast_mode; adr_ctl.s.bcst = 1; /* Allow broadcast */ cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CTL, adr_ctl.u64); cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM0, cam_state.cam[0]); cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM1, cam_state.cam[1]); cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM2, cam_state.cam[2]); cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM3, cam_state.cam[3]); cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM4, cam_state.cam[4]); cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM5, cam_state.cam[5]); cvmx_write_csr(p->agl + AGL_GMX_RX_ADR_CAM_EN, cam_state.cam_mask); /* Restore packet I/O. */ agl_gmx_prtx.s.en = prev_packet_enable; cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, agl_gmx_prtx.u64); spin_unlock_irqrestore(&p->lock, flags); } static int octeon_mgmt_set_mac_address(struct net_device *netdev, void *addr) { int r = eth_mac_addr(netdev, addr); if (r) return r; octeon_mgmt_set_rx_filtering(netdev); return 0; } static int octeon_mgmt_change_mtu(struct net_device *netdev, int new_mtu) { struct octeon_mgmt *p = netdev_priv(netdev); int max_packet = new_mtu + ETH_HLEN + ETH_FCS_LEN; netdev->mtu = new_mtu; /* HW lifts the limit if the frame is VLAN tagged * (+4 bytes per each tag, up to two tags) */ cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_MAX, max_packet); /* Set the hardware to truncate packets larger than the MTU. The jabber * register must be set to a multiple of 8 bytes, so round up. JABBER is * an unconditional limit, so we need to account for two possible VLAN * tags. */ cvmx_write_csr(p->agl + AGL_GMX_RX_JABBER, (max_packet + 7 + VLAN_HLEN * 2) & 0xfff8); return 0; } static irqreturn_t octeon_mgmt_interrupt(int cpl, void *dev_id) { struct net_device *netdev = dev_id; struct octeon_mgmt *p = netdev_priv(netdev); union cvmx_mixx_isr mixx_isr; mixx_isr.u64 = cvmx_read_csr(p->mix + MIX_ISR); /* Clear any pending interrupts */ cvmx_write_csr(p->mix + MIX_ISR, mixx_isr.u64); cvmx_read_csr(p->mix + MIX_ISR); if (mixx_isr.s.irthresh) { octeon_mgmt_disable_rx_irq(p); napi_schedule(&p->napi); } if (mixx_isr.s.orthresh) { octeon_mgmt_disable_tx_irq(p); tasklet_schedule(&p->tx_clean_tasklet); } return IRQ_HANDLED; } static int octeon_mgmt_ioctl_hwtstamp(struct net_device *netdev, struct ifreq *rq, int cmd) { struct octeon_mgmt *p = netdev_priv(netdev); struct hwtstamp_config config; union cvmx_mio_ptp_clock_cfg ptp; union cvmx_agl_gmx_rxx_frm_ctl rxx_frm_ctl; bool have_hw_timestamps = false; if (copy_from_user(&config, rq->ifr_data, sizeof(config))) return -EFAULT; if (config.flags) /* reserved for future extensions */ return -EINVAL; /* Check the status of hardware for tiemstamps */ if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { /* Get the current state of the PTP clock */ ptp.u64 = cvmx_read_csr(CVMX_MIO_PTP_CLOCK_CFG); if (!ptp.s.ext_clk_en) { /* The clock has not been configured to use an * external source. Program it to use the main clock * reference. */ u64 clock_comp = (NSEC_PER_SEC << 32) / octeon_get_io_clock_rate(); if (!ptp.s.ptp_en) cvmx_write_csr(CVMX_MIO_PTP_CLOCK_COMP, clock_comp); netdev_info(netdev, "PTP Clock using sclk reference @ %lldHz\n", (NSEC_PER_SEC << 32) / clock_comp); } else { /* The clock is already programmed to use a GPIO */ u64 clock_comp = cvmx_read_csr(CVMX_MIO_PTP_CLOCK_COMP); netdev_info(netdev, "PTP Clock using GPIO%d @ %lld Hz\n", ptp.s.ext_clk_in, (NSEC_PER_SEC << 32) / clock_comp); } /* Enable the clock if it wasn't done already */ if (!ptp.s.ptp_en) { ptp.s.ptp_en = 1; cvmx_write_csr(CVMX_MIO_PTP_CLOCK_CFG, ptp.u64); } have_hw_timestamps = true; } if (!have_hw_timestamps) return -EINVAL; switch (config.tx_type) { case HWTSTAMP_TX_OFF: case HWTSTAMP_TX_ON: break; default: return -ERANGE; } switch (config.rx_filter) { case HWTSTAMP_FILTER_NONE: p->has_rx_tstamp = false; rxx_frm_ctl.u64 = cvmx_read_csr(p->agl + AGL_GMX_RX_FRM_CTL); rxx_frm_ctl.s.ptp_mode = 0; cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64); break; case HWTSTAMP_FILTER_ALL: case HWTSTAMP_FILTER_SOME: case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: case HWTSTAMP_FILTER_NTP_ALL: p->has_rx_tstamp = have_hw_timestamps; config.rx_filter = HWTSTAMP_FILTER_ALL; if (p->has_rx_tstamp) { rxx_frm_ctl.u64 = cvmx_read_csr(p->agl + AGL_GMX_RX_FRM_CTL); rxx_frm_ctl.s.ptp_mode = 1; cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64); } break; default: return -ERANGE; } if (copy_to_user(rq->ifr_data, &config, sizeof(config))) return -EFAULT; return 0; } static int octeon_mgmt_ioctl(struct net_device *netdev, struct ifreq *rq, int cmd) { switch (cmd) { case SIOCSHWTSTAMP: return octeon_mgmt_ioctl_hwtstamp(netdev, rq, cmd); default: if (netdev->phydev) return phy_mii_ioctl(netdev->phydev, rq, cmd); return -EINVAL; } } static void octeon_mgmt_disable_link(struct octeon_mgmt *p) { union cvmx_agl_gmx_prtx_cfg prtx_cfg; /* Disable GMX before we make any changes. */ prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); prtx_cfg.s.en = 0; prtx_cfg.s.tx_en = 0; prtx_cfg.s.rx_en = 0; cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64); if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { int i; for (i = 0; i < 10; i++) { prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); if (prtx_cfg.s.tx_idle == 1 || prtx_cfg.s.rx_idle == 1) break; mdelay(1); i++; } } } static void octeon_mgmt_enable_link(struct octeon_mgmt *p) { union cvmx_agl_gmx_prtx_cfg prtx_cfg; /* Restore the GMX enable state only if link is set */ prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); prtx_cfg.s.tx_en = 1; prtx_cfg.s.rx_en = 1; prtx_cfg.s.en = 1; cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64); } static void octeon_mgmt_update_link(struct octeon_mgmt *p) { struct net_device *ndev = p->netdev; struct phy_device *phydev = ndev->phydev; union cvmx_agl_gmx_prtx_cfg prtx_cfg; prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); if (!phydev->link) prtx_cfg.s.duplex = 1; else prtx_cfg.s.duplex = phydev->duplex; switch (phydev->speed) { case 10: prtx_cfg.s.speed = 0; prtx_cfg.s.slottime = 0; if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { prtx_cfg.s.burst = 1; prtx_cfg.s.speed_msb = 1; } break; case 100: prtx_cfg.s.speed = 0; prtx_cfg.s.slottime = 0; if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { prtx_cfg.s.burst = 1; prtx_cfg.s.speed_msb = 0; } break; case 1000: /* 1000 MBits is only supported on 6XXX chips */ if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { prtx_cfg.s.speed = 1; prtx_cfg.s.speed_msb = 0; /* Only matters for half-duplex */ prtx_cfg.s.slottime = 1; prtx_cfg.s.burst = phydev->duplex; } break; case 0: /* No link */ default: break; } /* Write the new GMX setting with the port still disabled. */ cvmx_write_csr(p->agl + AGL_GMX_PRT_CFG, prtx_cfg.u64); /* Read GMX CFG again to make sure the config is completed. */ prtx_cfg.u64 = cvmx_read_csr(p->agl + AGL_GMX_PRT_CFG); if (OCTEON_IS_MODEL(OCTEON_CN6XXX)) { union cvmx_agl_gmx_txx_clk agl_clk; union cvmx_agl_prtx_ctl prtx_ctl; prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); agl_clk.u64 = cvmx_read_csr(p->agl + AGL_GMX_TX_CLK); /* MII (both speeds) and RGMII 1000 speed. */ agl_clk.s.clk_cnt = 1; if (prtx_ctl.s.mode == 0) { /* RGMII mode */ if (phydev->speed == 10) agl_clk.s.clk_cnt = 50; else if (phydev->speed == 100) agl_clk.s.clk_cnt = 5; } cvmx_write_csr(p->agl + AGL_GMX_TX_CLK, agl_clk.u64); } } static void octeon_mgmt_adjust_link(struct net_device *netdev) { struct octeon_mgmt *p = netdev_priv(netdev); struct phy_device *phydev = netdev->phydev; unsigned long flags; int link_changed = 0; if (!phydev) return; spin_lock_irqsave(&p->lock, flags); if (!phydev->link && p->last_link) link_changed = -1; if (phydev->link && (p->last_duplex != phydev->duplex || p->last_link != phydev->link || p->last_speed != phydev->speed)) { octeon_mgmt_disable_link(p); link_changed = 1; octeon_mgmt_update_link(p); octeon_mgmt_enable_link(p); } p->last_link = phydev->link; p->last_speed = phydev->speed; p->last_duplex = phydev->duplex; spin_unlock_irqrestore(&p->lock, flags); if (link_changed != 0) { if (link_changed > 0) netdev_info(netdev, "Link is up - %d/%s\n", phydev->speed, phydev->duplex == DUPLEX_FULL ? "Full" : "Half"); else netdev_info(netdev, "Link is down\n"); } } static int octeon_mgmt_init_phy(struct net_device *netdev) { struct octeon_mgmt *p = netdev_priv(netdev); struct phy_device *phydev = NULL; if (octeon_is_simulation() || p->phy_np == NULL) { /* No PHYs in the simulator. */ netif_carrier_on(netdev); return 0; } phydev = of_phy_connect(netdev, p->phy_np, octeon_mgmt_adjust_link, 0, PHY_INTERFACE_MODE_MII); if (!phydev) return -ENODEV; return 0; } static int octeon_mgmt_open(struct net_device *netdev) { struct octeon_mgmt *p = netdev_priv(netdev); union cvmx_mixx_ctl mix_ctl; union cvmx_agl_gmx_inf_mode agl_gmx_inf_mode; union cvmx_mixx_oring1 oring1; union cvmx_mixx_iring1 iring1; union cvmx_agl_gmx_rxx_frm_ctl rxx_frm_ctl; union cvmx_mixx_irhwm mix_irhwm; union cvmx_mixx_orhwm mix_orhwm; union cvmx_mixx_intena mix_intena; struct sockaddr sa; /* Allocate ring buffers. */ p->tx_ring = kzalloc(ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), GFP_KERNEL); if (!p->tx_ring) return -ENOMEM; p->tx_ring_handle = dma_map_single(p->dev, p->tx_ring, ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), DMA_BIDIRECTIONAL); p->tx_next = 0; p->tx_next_clean = 0; p->tx_current_fill = 0; p->rx_ring = kzalloc(ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), GFP_KERNEL); if (!p->rx_ring) goto err_nomem; p->rx_ring_handle = dma_map_single(p->dev, p->rx_ring, ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), DMA_BIDIRECTIONAL); p->rx_next = 0; p->rx_next_fill = 0; p->rx_current_fill = 0; octeon_mgmt_reset_hw(p); mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL); /* Bring it out of reset if needed. */ if (mix_ctl.s.reset) { mix_ctl.s.reset = 0; cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64); do { mix_ctl.u64 = cvmx_read_csr(p->mix + MIX_CTL); } while (mix_ctl.s.reset); } if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) { agl_gmx_inf_mode.u64 = 0; agl_gmx_inf_mode.s.en = 1; cvmx_write_csr(CVMX_AGL_GMX_INF_MODE, agl_gmx_inf_mode.u64); } if (OCTEON_IS_MODEL(OCTEON_CN56XX_PASS1_X) || OCTEON_IS_MODEL(OCTEON_CN52XX_PASS1_X)) { /* Force compensation values, as they are not * determined properly by HW */ union cvmx_agl_gmx_drv_ctl drv_ctl; drv_ctl.u64 = cvmx_read_csr(CVMX_AGL_GMX_DRV_CTL); if (p->port) { drv_ctl.s.byp_en1 = 1; drv_ctl.s.nctl1 = 6; drv_ctl.s.pctl1 = 6; } else { drv_ctl.s.byp_en = 1; drv_ctl.s.nctl = 6; drv_ctl.s.pctl = 6; } cvmx_write_csr(CVMX_AGL_GMX_DRV_CTL, drv_ctl.u64); } oring1.u64 = 0; oring1.s.obase = p->tx_ring_handle >> 3; oring1.s.osize = OCTEON_MGMT_TX_RING_SIZE; cvmx_write_csr(p->mix + MIX_ORING1, oring1.u64); iring1.u64 = 0; iring1.s.ibase = p->rx_ring_handle >> 3; iring1.s.isize = OCTEON_MGMT_RX_RING_SIZE; cvmx_write_csr(p->mix + MIX_IRING1, iring1.u64); memcpy(sa.sa_data, netdev->dev_addr, ETH_ALEN); octeon_mgmt_set_mac_address(netdev, &sa); octeon_mgmt_change_mtu(netdev, netdev->mtu); /* Enable the port HW. Packets are not allowed until * cvmx_mgmt_port_enable() is called. */ mix_ctl.u64 = 0; mix_ctl.s.crc_strip = 1; /* Strip the ending CRC */ mix_ctl.s.en = 1; /* Enable the port */ mix_ctl.s.nbtarb = 0; /* Arbitration mode */ /* MII CB-request FIFO programmable high watermark */ mix_ctl.s.mrq_hwm = 1; #ifdef __LITTLE_ENDIAN mix_ctl.s.lendian = 1; #endif cvmx_write_csr(p->mix + MIX_CTL, mix_ctl.u64); /* Read the PHY to find the mode of the interface. */ if (octeon_mgmt_init_phy(netdev)) { dev_err(p->dev, "Cannot initialize PHY on MIX%d.\n", p->port); goto err_noirq; } /* Set the mode of the interface, RGMII/MII. */ if (OCTEON_IS_MODEL(OCTEON_CN6XXX) && netdev->phydev) { union cvmx_agl_prtx_ctl agl_prtx_ctl; int rgmii_mode = (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Half_BIT, netdev->phydev->supported) | linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, netdev->phydev->supported)) != 0; agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); agl_prtx_ctl.s.mode = rgmii_mode ? 0 : 1; cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64); /* MII clocks counts are based on the 125Mhz * reference, which has an 8nS period. So our delays * need to be multiplied by this factor. */ #define NS_PER_PHY_CLK 8 /* Take the DLL and clock tree out of reset */ agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); agl_prtx_ctl.s.clkrst = 0; if (rgmii_mode) { agl_prtx_ctl.s.dllrst = 0; agl_prtx_ctl.s.clktx_byp = 0; } cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64); cvmx_read_csr(p->agl_prt_ctl); /* Force write out before wait */ /* Wait for the DLL to lock. External 125 MHz * reference clock must be stable at this point. */ ndelay(256 * NS_PER_PHY_CLK); /* Enable the interface */ agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); agl_prtx_ctl.s.enable = 1; cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64); /* Read the value back to force the previous write */ agl_prtx_ctl.u64 = cvmx_read_csr(p->agl_prt_ctl); /* Enable the compensation controller */ agl_prtx_ctl.s.comp = 1; agl_prtx_ctl.s.drv_byp = 0; cvmx_write_csr(p->agl_prt_ctl, agl_prtx_ctl.u64); /* Force write out before wait. */ cvmx_read_csr(p->agl_prt_ctl); /* For compensation state to lock. */ ndelay(1040 * NS_PER_PHY_CLK); /* Default Interframe Gaps are too small. Recommended * workaround is. * * AGL_GMX_TX_IFG[IFG1]=14 * AGL_GMX_TX_IFG[IFG2]=10 */ cvmx_write_csr(CVMX_AGL_GMX_TX_IFG, 0xae); } octeon_mgmt_rx_fill_ring(netdev); /* Clear statistics. */ /* Clear on read. */ cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_CTL, 1); cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_PKTS_DRP, 0); cvmx_write_csr(p->agl + AGL_GMX_RX_STATS_PKTS_BAD, 0); cvmx_write_csr(p->agl + AGL_GMX_TX_STATS_CTL, 1); cvmx_write_csr(p->agl + AGL_GMX_TX_STAT0, 0); cvmx_write_csr(p->agl + AGL_GMX_TX_STAT1, 0); /* Clear any pending interrupts */ cvmx_write_csr(p->mix + MIX_ISR, cvmx_read_csr(p->mix + MIX_ISR)); if (request_irq(p->irq, octeon_mgmt_interrupt, 0, netdev->name, netdev)) { dev_err(p->dev, "request_irq(%d) failed.\n", p->irq); goto err_noirq; } /* Interrupt every single RX packet */ mix_irhwm.u64 = 0; mix_irhwm.s.irhwm = 0; cvmx_write_csr(p->mix + MIX_IRHWM, mix_irhwm.u64); /* Interrupt when we have 1 or more packets to clean. */ mix_orhwm.u64 = 0; mix_orhwm.s.orhwm = 0; cvmx_write_csr(p->mix + MIX_ORHWM, mix_orhwm.u64); /* Enable receive and transmit interrupts */ mix_intena.u64 = 0; mix_intena.s.ithena = 1; mix_intena.s.othena = 1; cvmx_write_csr(p->mix + MIX_INTENA, mix_intena.u64); /* Enable packet I/O. */ rxx_frm_ctl.u64 = 0; rxx_frm_ctl.s.ptp_mode = p->has_rx_tstamp ? 1 : 0; rxx_frm_ctl.s.pre_align = 1; /* When set, disables the length check for non-min sized pkts * with padding in the client data. */ rxx_frm_ctl.s.pad_len = 1; /* When set, disables the length check for VLAN pkts */ rxx_frm_ctl.s.vlan_len = 1; /* When set, PREAMBLE checking is less strict */ rxx_frm_ctl.s.pre_free = 1; /* Control Pause Frames can match station SMAC */ rxx_frm_ctl.s.ctl_smac = 0; /* Control Pause Frames can match globally assign Multicast address */ rxx_frm_ctl.s.ctl_mcst = 1; /* Forward pause information to TX block */ rxx_frm_ctl.s.ctl_bck = 1; /* Drop Control Pause Frames */ rxx_frm_ctl.s.ctl_drp = 1; /* Strip off the preamble */ rxx_frm_ctl.s.pre_strp = 1; /* This port is configured to send PREAMBLE+SFD to begin every * frame. GMX checks that the PREAMBLE is sent correctly. */ rxx_frm_ctl.s.pre_chk = 1; cvmx_write_csr(p->agl + AGL_GMX_RX_FRM_CTL, rxx_frm_ctl.u64); /* Configure the port duplex, speed and enables */ octeon_mgmt_disable_link(p); if (netdev->phydev) octeon_mgmt_update_link(p); octeon_mgmt_enable_link(p); p->last_link = 0; p->last_speed = 0; /* PHY is not present in simulator. The carrier is enabled * while initializing the phy for simulator, leave it enabled. */ if (netdev->phydev) { netif_carrier_off(netdev); phy_start_aneg(netdev->phydev); } netif_wake_queue(netdev); napi_enable(&p->napi); return 0; err_noirq: octeon_mgmt_reset_hw(p); dma_unmap_single(p->dev, p->rx_ring_handle, ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), DMA_BIDIRECTIONAL); kfree(p->rx_ring); err_nomem: dma_unmap_single(p->dev, p->tx_ring_handle, ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), DMA_BIDIRECTIONAL); kfree(p->tx_ring); return -ENOMEM; } static int octeon_mgmt_stop(struct net_device *netdev) { struct octeon_mgmt *p = netdev_priv(netdev); napi_disable(&p->napi); netif_stop_queue(netdev); if (netdev->phydev) phy_disconnect(netdev->phydev); netif_carrier_off(netdev); octeon_mgmt_reset_hw(p); free_irq(p->irq, netdev); /* dma_unmap is a nop on Octeon, so just free everything. */ skb_queue_purge(&p->tx_list); skb_queue_purge(&p->rx_list); dma_unmap_single(p->dev, p->rx_ring_handle, ring_size_to_bytes(OCTEON_MGMT_RX_RING_SIZE), DMA_BIDIRECTIONAL); kfree(p->rx_ring); dma_unmap_single(p->dev, p->tx_ring_handle, ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), DMA_BIDIRECTIONAL); kfree(p->tx_ring); return 0; } static netdev_tx_t octeon_mgmt_xmit(struct sk_buff *skb, struct net_device *netdev) { struct octeon_mgmt *p = netdev_priv(netdev); union mgmt_port_ring_entry re; unsigned long flags; netdev_tx_t rv = NETDEV_TX_BUSY; re.d64 = 0; re.s.tstamp = ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) != 0); re.s.len = skb->len; re.s.addr = dma_map_single(p->dev, skb->data, skb->len, DMA_TO_DEVICE); spin_lock_irqsave(&p->tx_list.lock, flags); if (unlikely(p->tx_current_fill >= ring_max_fill(OCTEON_MGMT_TX_RING_SIZE) - 1)) { spin_unlock_irqrestore(&p->tx_list.lock, flags); netif_stop_queue(netdev); spin_lock_irqsave(&p->tx_list.lock, flags); } if (unlikely(p->tx_current_fill >= ring_max_fill(OCTEON_MGMT_TX_RING_SIZE))) { spin_unlock_irqrestore(&p->tx_list.lock, flags); dma_unmap_single(p->dev, re.s.addr, re.s.len, DMA_TO_DEVICE); goto out; } __skb_queue_tail(&p->tx_list, skb); /* Put it in the ring. */ p->tx_ring[p->tx_next] = re.d64; p->tx_next = (p->tx_next + 1) % OCTEON_MGMT_TX_RING_SIZE; p->tx_current_fill++; spin_unlock_irqrestore(&p->tx_list.lock, flags); dma_sync_single_for_device(p->dev, p->tx_ring_handle, ring_size_to_bytes(OCTEON_MGMT_TX_RING_SIZE), DMA_BIDIRECTIONAL); netdev->stats.tx_packets++; netdev->stats.tx_bytes += skb->len; /* Ring the bell. */ cvmx_write_csr(p->mix + MIX_ORING2, 1); netif_trans_update(netdev); rv = NETDEV_TX_OK; out: octeon_mgmt_update_tx_stats(netdev); return rv; } #ifdef CONFIG_NET_POLL_CONTROLLER static void octeon_mgmt_poll_controller(struct net_device *netdev) { struct octeon_mgmt *p = netdev_priv(netdev); octeon_mgmt_receive_packets(p, 16); octeon_mgmt_update_rx_stats(netdev); } #endif static void octeon_mgmt_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *info) { strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); strlcpy(info->version, DRV_VERSION, sizeof(info->version)); strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); strlcpy(info->bus_info, "N/A", sizeof(info->bus_info)); } static int octeon_mgmt_nway_reset(struct net_device *dev) { if (!capable(CAP_NET_ADMIN)) return -EPERM; if (dev->phydev) return phy_start_aneg(dev->phydev); return -EOPNOTSUPP; } static const struct ethtool_ops octeon_mgmt_ethtool_ops = { .get_drvinfo = octeon_mgmt_get_drvinfo, .nway_reset = octeon_mgmt_nway_reset, .get_link = ethtool_op_get_link, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, }; static const struct net_device_ops octeon_mgmt_ops = { .ndo_open = octeon_mgmt_open, .ndo_stop = octeon_mgmt_stop, .ndo_start_xmit = octeon_mgmt_xmit, .ndo_set_rx_mode = octeon_mgmt_set_rx_filtering, .ndo_set_mac_address = octeon_mgmt_set_mac_address, .ndo_do_ioctl = octeon_mgmt_ioctl, .ndo_change_mtu = octeon_mgmt_change_mtu, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = octeon_mgmt_poll_controller, #endif }; static int octeon_mgmt_probe(struct platform_device *pdev) { struct net_device *netdev; struct octeon_mgmt *p; const __be32 *data; const u8 *mac; struct resource *res_mix; struct resource *res_agl; struct resource *res_agl_prt_ctl; int len; int result; netdev = alloc_etherdev(sizeof(struct octeon_mgmt)); if (netdev == NULL) return -ENOMEM; SET_NETDEV_DEV(netdev, &pdev->dev); platform_set_drvdata(pdev, netdev); p = netdev_priv(netdev); netif_napi_add(netdev, &p->napi, octeon_mgmt_napi_poll, OCTEON_MGMT_NAPI_WEIGHT); p->netdev = netdev; p->dev = &pdev->dev; p->has_rx_tstamp = false; data = of_get_property(pdev->dev.of_node, "cell-index", &len); if (data && len == sizeof(*data)) { p->port = be32_to_cpup(data); } else { dev_err(&pdev->dev, "no 'cell-index' property\n"); result = -ENXIO; goto err; } snprintf(netdev->name, IFNAMSIZ, "mgmt%d", p->port); result = platform_get_irq(pdev, 0); if (result < 0) goto err; p->irq = result; res_mix = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (res_mix == NULL) { dev_err(&pdev->dev, "no 'reg' resource\n"); result = -ENXIO; goto err; } res_agl = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (res_agl == NULL) { dev_err(&pdev->dev, "no 'reg' resource\n"); result = -ENXIO; goto err; } res_agl_prt_ctl = platform_get_resource(pdev, IORESOURCE_MEM, 3); if (res_agl_prt_ctl == NULL) { dev_err(&pdev->dev, "no 'reg' resource\n"); result = -ENXIO; goto err; } p->mix_phys = res_mix->start; p->mix_size = resource_size(res_mix); p->agl_phys = res_agl->start; p->agl_size = resource_size(res_agl); p->agl_prt_ctl_phys = res_agl_prt_ctl->start; p->agl_prt_ctl_size = resource_size(res_agl_prt_ctl); if (!devm_request_mem_region(&pdev->dev, p->mix_phys, p->mix_size, res_mix->name)) { dev_err(&pdev->dev, "request_mem_region (%s) failed\n", res_mix->name); result = -ENXIO; goto err; } if (!devm_request_mem_region(&pdev->dev, p->agl_phys, p->agl_size, res_agl->name)) { result = -ENXIO; dev_err(&pdev->dev, "request_mem_region (%s) failed\n", res_agl->name); goto err; } if (!devm_request_mem_region(&pdev->dev, p->agl_prt_ctl_phys, p->agl_prt_ctl_size, res_agl_prt_ctl->name)) { result = -ENXIO; dev_err(&pdev->dev, "request_mem_region (%s) failed\n", res_agl_prt_ctl->name); goto err; } p->mix = (u64)devm_ioremap(&pdev->dev, p->mix_phys, p->mix_size); p->agl = (u64)devm_ioremap(&pdev->dev, p->agl_phys, p->agl_size); p->agl_prt_ctl = (u64)devm_ioremap(&pdev->dev, p->agl_prt_ctl_phys, p->agl_prt_ctl_size); if (!p->mix || !p->agl || !p->agl_prt_ctl) { dev_err(&pdev->dev, "failed to map I/O memory\n"); result = -ENOMEM; goto err; } spin_lock_init(&p->lock); skb_queue_head_init(&p->tx_list); skb_queue_head_init(&p->rx_list); tasklet_init(&p->tx_clean_tasklet, octeon_mgmt_clean_tx_tasklet, (unsigned long)p); netdev->priv_flags |= IFF_UNICAST_FLT; netdev->netdev_ops = &octeon_mgmt_ops; netdev->ethtool_ops = &octeon_mgmt_ethtool_ops; netdev->min_mtu = 64 - OCTEON_MGMT_RX_HEADROOM; netdev->max_mtu = 16383 - OCTEON_MGMT_RX_HEADROOM; mac = of_get_mac_address(pdev->dev.of_node); if (!IS_ERR(mac)) ether_addr_copy(netdev->dev_addr, mac); else eth_hw_addr_random(netdev); p->phy_np = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0); result = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (result) goto err; netif_carrier_off(netdev); result = register_netdev(netdev); if (result) goto err; dev_info(&pdev->dev, "Version " DRV_VERSION "\n"); return 0; err: of_node_put(p->phy_np); free_netdev(netdev); return result; } static int octeon_mgmt_remove(struct platform_device *pdev) { struct net_device *netdev = platform_get_drvdata(pdev); struct octeon_mgmt *p = netdev_priv(netdev); unregister_netdev(netdev); of_node_put(p->phy_np); free_netdev(netdev); return 0; } static const struct of_device_id octeon_mgmt_match[] = { { .compatible = "cavium,octeon-5750-mix", }, {}, }; MODULE_DEVICE_TABLE(of, octeon_mgmt_match); static struct platform_driver octeon_mgmt_driver = { .driver = { .name = "octeon_mgmt", .of_match_table = octeon_mgmt_match, }, .probe = octeon_mgmt_probe, .remove = octeon_mgmt_remove, }; extern void octeon_mdiobus_force_mod_depencency(void); static int __init octeon_mgmt_mod_init(void) { /* Force our mdiobus driver module to be loaded first. */ octeon_mdiobus_force_mod_depencency(); return platform_driver_register(&octeon_mgmt_driver); } static void __exit octeon_mgmt_mod_exit(void) { platform_driver_unregister(&octeon_mgmt_driver); } module_init(octeon_mgmt_mod_init); module_exit(octeon_mgmt_mod_exit); MODULE_DESCRIPTION(DRV_DESCRIPTION); MODULE_AUTHOR("David Daney"); MODULE_LICENSE("GPL"); MODULE_VERSION(DRV_VERSION);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1