Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rahul Lakkireddy | 17358 | 98.79% | 35 | 87.50% |
Surendra Mobiya | 192 | 1.09% | 1 | 2.50% |
Ganesh Goudar | 10 | 0.06% | 1 | 2.50% |
Aditya Pakki | 7 | 0.04% | 1 | 2.50% |
Thomas Gleixner | 2 | 0.01% | 1 | 2.50% |
Arjun V | 1 | 0.01% | 1 | 2.50% |
Total | 17570 | 40 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2017 Chelsio Communications. All rights reserved. */ #include <linux/sort.h> #include "t4_regs.h" #include "cxgb4.h" #include "cxgb4_cudbg.h" #include "cudbg_if.h" #include "cudbg_lib_common.h" #include "cudbg_entity.h" #include "cudbg_lib.h" #include "cudbg_zlib.h" static int cudbg_do_compression(struct cudbg_init *pdbg_init, struct cudbg_buffer *pin_buff, struct cudbg_buffer *dbg_buff) { struct cudbg_buffer temp_in_buff = { 0 }; int bytes_left, bytes_read, bytes; u32 offset = dbg_buff->offset; int rc; temp_in_buff.offset = pin_buff->offset; temp_in_buff.data = pin_buff->data; temp_in_buff.size = pin_buff->size; bytes_left = pin_buff->size; bytes_read = 0; while (bytes_left > 0) { /* Do compression in smaller chunks */ bytes = min_t(unsigned long, bytes_left, (unsigned long)CUDBG_CHUNK_SIZE); temp_in_buff.data = (char *)pin_buff->data + bytes_read; temp_in_buff.size = bytes; rc = cudbg_compress_buff(pdbg_init, &temp_in_buff, dbg_buff); if (rc) return rc; bytes_left -= bytes; bytes_read += bytes; } pin_buff->size = dbg_buff->offset - offset; return 0; } static int cudbg_write_and_release_buff(struct cudbg_init *pdbg_init, struct cudbg_buffer *pin_buff, struct cudbg_buffer *dbg_buff) { int rc = 0; if (pdbg_init->compress_type == CUDBG_COMPRESSION_NONE) { cudbg_update_buff(pin_buff, dbg_buff); } else { rc = cudbg_do_compression(pdbg_init, pin_buff, dbg_buff); if (rc) goto out; } out: cudbg_put_buff(pdbg_init, pin_buff); return rc; } static int is_fw_attached(struct cudbg_init *pdbg_init) { struct adapter *padap = pdbg_init->adap; if (!(padap->flags & CXGB4_FW_OK) || padap->use_bd) return 0; return 1; } /* This function will add additional padding bytes into debug_buffer to make it * 4 byte aligned. */ void cudbg_align_debug_buffer(struct cudbg_buffer *dbg_buff, struct cudbg_entity_hdr *entity_hdr) { u8 zero_buf[4] = {0}; u8 padding, remain; remain = (dbg_buff->offset - entity_hdr->start_offset) % 4; padding = 4 - remain; if (remain) { memcpy(((u8 *)dbg_buff->data) + dbg_buff->offset, &zero_buf, padding); dbg_buff->offset += padding; entity_hdr->num_pad = padding; } entity_hdr->size = dbg_buff->offset - entity_hdr->start_offset; } struct cudbg_entity_hdr *cudbg_get_entity_hdr(void *outbuf, int i) { struct cudbg_hdr *cudbg_hdr = (struct cudbg_hdr *)outbuf; return (struct cudbg_entity_hdr *) ((char *)outbuf + cudbg_hdr->hdr_len + (sizeof(struct cudbg_entity_hdr) * (i - 1))); } static int cudbg_read_vpd_reg(struct adapter *padap, u32 addr, u32 len, void *dest) { int vaddr, rc; vaddr = t4_eeprom_ptov(addr, padap->pf, EEPROMPFSIZE); if (vaddr < 0) return vaddr; rc = pci_read_vpd(padap->pdev, vaddr, len, dest); if (rc < 0) return rc; return 0; } static int cudbg_mem_desc_cmp(const void *a, const void *b) { return ((const struct cudbg_mem_desc *)a)->base - ((const struct cudbg_mem_desc *)b)->base; } int cudbg_fill_meminfo(struct adapter *padap, struct cudbg_meminfo *meminfo_buff) { struct cudbg_mem_desc *md; u32 lo, hi, used, alloc; int n, i; memset(meminfo_buff->avail, 0, ARRAY_SIZE(meminfo_buff->avail) * sizeof(struct cudbg_mem_desc)); memset(meminfo_buff->mem, 0, (ARRAY_SIZE(cudbg_region) + 3) * sizeof(struct cudbg_mem_desc)); md = meminfo_buff->mem; for (i = 0; i < ARRAY_SIZE(meminfo_buff->mem); i++) { meminfo_buff->mem[i].limit = 0; meminfo_buff->mem[i].idx = i; } /* Find and sort the populated memory ranges */ i = 0; lo = t4_read_reg(padap, MA_TARGET_MEM_ENABLE_A); if (lo & EDRAM0_ENABLE_F) { hi = t4_read_reg(padap, MA_EDRAM0_BAR_A); meminfo_buff->avail[i].base = cudbg_mbytes_to_bytes(EDRAM0_BASE_G(hi)); meminfo_buff->avail[i].limit = meminfo_buff->avail[i].base + cudbg_mbytes_to_bytes(EDRAM0_SIZE_G(hi)); meminfo_buff->avail[i].idx = 0; i++; } if (lo & EDRAM1_ENABLE_F) { hi = t4_read_reg(padap, MA_EDRAM1_BAR_A); meminfo_buff->avail[i].base = cudbg_mbytes_to_bytes(EDRAM1_BASE_G(hi)); meminfo_buff->avail[i].limit = meminfo_buff->avail[i].base + cudbg_mbytes_to_bytes(EDRAM1_SIZE_G(hi)); meminfo_buff->avail[i].idx = 1; i++; } if (is_t5(padap->params.chip)) { if (lo & EXT_MEM0_ENABLE_F) { hi = t4_read_reg(padap, MA_EXT_MEMORY0_BAR_A); meminfo_buff->avail[i].base = cudbg_mbytes_to_bytes(EXT_MEM_BASE_G(hi)); meminfo_buff->avail[i].limit = meminfo_buff->avail[i].base + cudbg_mbytes_to_bytes(EXT_MEM_SIZE_G(hi)); meminfo_buff->avail[i].idx = 3; i++; } if (lo & EXT_MEM1_ENABLE_F) { hi = t4_read_reg(padap, MA_EXT_MEMORY1_BAR_A); meminfo_buff->avail[i].base = cudbg_mbytes_to_bytes(EXT_MEM1_BASE_G(hi)); meminfo_buff->avail[i].limit = meminfo_buff->avail[i].base + cudbg_mbytes_to_bytes(EXT_MEM1_SIZE_G(hi)); meminfo_buff->avail[i].idx = 4; i++; } } else { if (lo & EXT_MEM_ENABLE_F) { hi = t4_read_reg(padap, MA_EXT_MEMORY_BAR_A); meminfo_buff->avail[i].base = cudbg_mbytes_to_bytes(EXT_MEM_BASE_G(hi)); meminfo_buff->avail[i].limit = meminfo_buff->avail[i].base + cudbg_mbytes_to_bytes(EXT_MEM_SIZE_G(hi)); meminfo_buff->avail[i].idx = 2; i++; } if (lo & HMA_MUX_F) { hi = t4_read_reg(padap, MA_EXT_MEMORY1_BAR_A); meminfo_buff->avail[i].base = cudbg_mbytes_to_bytes(EXT_MEM1_BASE_G(hi)); meminfo_buff->avail[i].limit = meminfo_buff->avail[i].base + cudbg_mbytes_to_bytes(EXT_MEM1_SIZE_G(hi)); meminfo_buff->avail[i].idx = 5; i++; } } if (!i) /* no memory available */ return CUDBG_STATUS_ENTITY_NOT_FOUND; meminfo_buff->avail_c = i; sort(meminfo_buff->avail, i, sizeof(struct cudbg_mem_desc), cudbg_mem_desc_cmp, NULL); (md++)->base = t4_read_reg(padap, SGE_DBQ_CTXT_BADDR_A); (md++)->base = t4_read_reg(padap, SGE_IMSG_CTXT_BADDR_A); (md++)->base = t4_read_reg(padap, SGE_FLM_CACHE_BADDR_A); (md++)->base = t4_read_reg(padap, TP_CMM_TCB_BASE_A); (md++)->base = t4_read_reg(padap, TP_CMM_MM_BASE_A); (md++)->base = t4_read_reg(padap, TP_CMM_TIMER_BASE_A); (md++)->base = t4_read_reg(padap, TP_CMM_MM_RX_FLST_BASE_A); (md++)->base = t4_read_reg(padap, TP_CMM_MM_TX_FLST_BASE_A); (md++)->base = t4_read_reg(padap, TP_CMM_MM_PS_FLST_BASE_A); /* the next few have explicit upper bounds */ md->base = t4_read_reg(padap, TP_PMM_TX_BASE_A); md->limit = md->base - 1 + t4_read_reg(padap, TP_PMM_TX_PAGE_SIZE_A) * PMTXMAXPAGE_G(t4_read_reg(padap, TP_PMM_TX_MAX_PAGE_A)); md++; md->base = t4_read_reg(padap, TP_PMM_RX_BASE_A); md->limit = md->base - 1 + t4_read_reg(padap, TP_PMM_RX_PAGE_SIZE_A) * PMRXMAXPAGE_G(t4_read_reg(padap, TP_PMM_RX_MAX_PAGE_A)); md++; if (t4_read_reg(padap, LE_DB_CONFIG_A) & HASHEN_F) { if (CHELSIO_CHIP_VERSION(padap->params.chip) <= CHELSIO_T5) { hi = t4_read_reg(padap, LE_DB_TID_HASHBASE_A) / 4; md->base = t4_read_reg(padap, LE_DB_HASH_TID_BASE_A); } else { hi = t4_read_reg(padap, LE_DB_HASH_TID_BASE_A); md->base = t4_read_reg(padap, LE_DB_HASH_TBL_BASE_ADDR_A); } md->limit = 0; } else { md->base = 0; md->idx = ARRAY_SIZE(cudbg_region); /* hide it */ } md++; #define ulp_region(reg) do { \ md->base = t4_read_reg(padap, ULP_ ## reg ## _LLIMIT_A);\ (md++)->limit = t4_read_reg(padap, ULP_ ## reg ## _ULIMIT_A);\ } while (0) ulp_region(RX_ISCSI); ulp_region(RX_TDDP); ulp_region(TX_TPT); ulp_region(RX_STAG); ulp_region(RX_RQ); ulp_region(RX_RQUDP); ulp_region(RX_PBL); ulp_region(TX_PBL); #undef ulp_region md->base = 0; md->idx = ARRAY_SIZE(cudbg_region); if (!is_t4(padap->params.chip)) { u32 fifo_size = t4_read_reg(padap, SGE_DBVFIFO_SIZE_A); u32 sge_ctrl = t4_read_reg(padap, SGE_CONTROL2_A); u32 size = 0; if (is_t5(padap->params.chip)) { if (sge_ctrl & VFIFO_ENABLE_F) size = DBVFIFO_SIZE_G(fifo_size); } else { size = T6_DBVFIFO_SIZE_G(fifo_size); } if (size) { md->base = BASEADDR_G(t4_read_reg(padap, SGE_DBVFIFO_BADDR_A)); md->limit = md->base + (size << 2) - 1; } } md++; md->base = t4_read_reg(padap, ULP_RX_CTX_BASE_A); md->limit = 0; md++; md->base = t4_read_reg(padap, ULP_TX_ERR_TABLE_BASE_A); md->limit = 0; md++; md->base = padap->vres.ocq.start; if (padap->vres.ocq.size) md->limit = md->base + padap->vres.ocq.size - 1; else md->idx = ARRAY_SIZE(cudbg_region); /* hide it */ md++; /* add any address-space holes, there can be up to 3 */ for (n = 0; n < i - 1; n++) if (meminfo_buff->avail[n].limit < meminfo_buff->avail[n + 1].base) (md++)->base = meminfo_buff->avail[n].limit; if (meminfo_buff->avail[n].limit) (md++)->base = meminfo_buff->avail[n].limit; n = md - meminfo_buff->mem; meminfo_buff->mem_c = n; sort(meminfo_buff->mem, n, sizeof(struct cudbg_mem_desc), cudbg_mem_desc_cmp, NULL); lo = t4_read_reg(padap, CIM_SDRAM_BASE_ADDR_A); hi = t4_read_reg(padap, CIM_SDRAM_ADDR_SIZE_A) + lo - 1; meminfo_buff->up_ram_lo = lo; meminfo_buff->up_ram_hi = hi; lo = t4_read_reg(padap, CIM_EXTMEM2_BASE_ADDR_A); hi = t4_read_reg(padap, CIM_EXTMEM2_ADDR_SIZE_A) + lo - 1; meminfo_buff->up_extmem2_lo = lo; meminfo_buff->up_extmem2_hi = hi; lo = t4_read_reg(padap, TP_PMM_RX_MAX_PAGE_A); for (i = 0, meminfo_buff->free_rx_cnt = 0; i < 2; i++) meminfo_buff->free_rx_cnt += FREERXPAGECOUNT_G(t4_read_reg(padap, TP_FLM_FREE_RX_CNT_A)); meminfo_buff->rx_pages_data[0] = PMRXMAXPAGE_G(lo); meminfo_buff->rx_pages_data[1] = t4_read_reg(padap, TP_PMM_RX_PAGE_SIZE_A) >> 10; meminfo_buff->rx_pages_data[2] = (lo & PMRXNUMCHN_F) ? 2 : 1; lo = t4_read_reg(padap, TP_PMM_TX_MAX_PAGE_A); hi = t4_read_reg(padap, TP_PMM_TX_PAGE_SIZE_A); for (i = 0, meminfo_buff->free_tx_cnt = 0; i < 4; i++) meminfo_buff->free_tx_cnt += FREETXPAGECOUNT_G(t4_read_reg(padap, TP_FLM_FREE_TX_CNT_A)); meminfo_buff->tx_pages_data[0] = PMTXMAXPAGE_G(lo); meminfo_buff->tx_pages_data[1] = hi >= (1 << 20) ? (hi >> 20) : (hi >> 10); meminfo_buff->tx_pages_data[2] = hi >= (1 << 20) ? 'M' : 'K'; meminfo_buff->tx_pages_data[3] = 1 << PMTXNUMCHN_G(lo); meminfo_buff->p_structs = t4_read_reg(padap, TP_CMM_MM_MAX_PSTRUCT_A); meminfo_buff->p_structs_free_cnt = FREEPSTRUCTCOUNT_G(t4_read_reg(padap, TP_FLM_FREE_PS_CNT_A)); for (i = 0; i < 4; i++) { if (CHELSIO_CHIP_VERSION(padap->params.chip) > CHELSIO_T5) lo = t4_read_reg(padap, MPS_RX_MAC_BG_PG_CNT0_A + i * 4); else lo = t4_read_reg(padap, MPS_RX_PG_RSV0_A + i * 4); if (is_t5(padap->params.chip)) { used = T5_USED_G(lo); alloc = T5_ALLOC_G(lo); } else { used = USED_G(lo); alloc = ALLOC_G(lo); } meminfo_buff->port_used[i] = used; meminfo_buff->port_alloc[i] = alloc; } for (i = 0; i < padap->params.arch.nchan; i++) { if (CHELSIO_CHIP_VERSION(padap->params.chip) > CHELSIO_T5) lo = t4_read_reg(padap, MPS_RX_LPBK_BG_PG_CNT0_A + i * 4); else lo = t4_read_reg(padap, MPS_RX_PG_RSV4_A + i * 4); if (is_t5(padap->params.chip)) { used = T5_USED_G(lo); alloc = T5_ALLOC_G(lo); } else { used = USED_G(lo); alloc = ALLOC_G(lo); } meminfo_buff->loopback_used[i] = used; meminfo_buff->loopback_alloc[i] = alloc; } return 0; } int cudbg_collect_reg_dump(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; u32 buf_size = 0; int rc = 0; if (is_t4(padap->params.chip)) buf_size = T4_REGMAP_SIZE; else if (is_t5(padap->params.chip) || is_t6(padap->params.chip)) buf_size = T5_REGMAP_SIZE; rc = cudbg_get_buff(pdbg_init, dbg_buff, buf_size, &temp_buff); if (rc) return rc; t4_get_regs(padap, (void *)temp_buff.data, temp_buff.size); return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_fw_devlog(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; struct devlog_params *dparams; int rc = 0; rc = t4_init_devlog_params(padap); if (rc < 0) { cudbg_err->sys_err = rc; return rc; } dparams = &padap->params.devlog; rc = cudbg_get_buff(pdbg_init, dbg_buff, dparams->size, &temp_buff); if (rc) return rc; /* Collect FW devlog */ if (dparams->start != 0) { spin_lock(&padap->win0_lock); rc = t4_memory_rw(padap, padap->params.drv_memwin, dparams->memtype, dparams->start, dparams->size, (__be32 *)(char *)temp_buff.data, 1); spin_unlock(&padap->win0_lock); if (rc) { cudbg_err->sys_err = rc; cudbg_put_buff(pdbg_init, &temp_buff); return rc; } } return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_cim_la(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; int size, rc; u32 cfg = 0; if (is_t6(padap->params.chip)) { size = padap->params.cim_la_size / 10 + 1; size *= 10 * sizeof(u32); } else { size = padap->params.cim_la_size / 8; size *= 8 * sizeof(u32); } size += sizeof(cfg); rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff); if (rc) return rc; rc = t4_cim_read(padap, UP_UP_DBG_LA_CFG_A, 1, &cfg); if (rc) { cudbg_err->sys_err = rc; cudbg_put_buff(pdbg_init, &temp_buff); return rc; } memcpy((char *)temp_buff.data, &cfg, sizeof(cfg)); rc = t4_cim_read_la(padap, (u32 *)((char *)temp_buff.data + sizeof(cfg)), NULL); if (rc < 0) { cudbg_err->sys_err = rc; cudbg_put_buff(pdbg_init, &temp_buff); return rc; } return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_cim_ma_la(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; int size, rc; size = 2 * CIM_MALA_SIZE * 5 * sizeof(u32); rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff); if (rc) return rc; t4_cim_read_ma_la(padap, (u32 *)temp_buff.data, (u32 *)((char *)temp_buff.data + 5 * CIM_MALA_SIZE)); return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_cim_qcfg(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; struct cudbg_cim_qcfg *cim_qcfg_data; int rc; rc = cudbg_get_buff(pdbg_init, dbg_buff, sizeof(struct cudbg_cim_qcfg), &temp_buff); if (rc) return rc; cim_qcfg_data = (struct cudbg_cim_qcfg *)temp_buff.data; cim_qcfg_data->chip = padap->params.chip; rc = t4_cim_read(padap, UP_IBQ_0_RDADDR_A, ARRAY_SIZE(cim_qcfg_data->stat), cim_qcfg_data->stat); if (rc) { cudbg_err->sys_err = rc; cudbg_put_buff(pdbg_init, &temp_buff); return rc; } rc = t4_cim_read(padap, UP_OBQ_0_REALADDR_A, ARRAY_SIZE(cim_qcfg_data->obq_wr), cim_qcfg_data->obq_wr); if (rc) { cudbg_err->sys_err = rc; cudbg_put_buff(pdbg_init, &temp_buff); return rc; } t4_read_cimq_cfg(padap, cim_qcfg_data->base, cim_qcfg_data->size, cim_qcfg_data->thres); return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } static int cudbg_read_cim_ibq(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err, int qid) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; int no_of_read_words, rc = 0; u32 qsize; /* collect CIM IBQ */ qsize = CIM_IBQ_SIZE * 4 * sizeof(u32); rc = cudbg_get_buff(pdbg_init, dbg_buff, qsize, &temp_buff); if (rc) return rc; /* t4_read_cim_ibq will return no. of read words or error */ no_of_read_words = t4_read_cim_ibq(padap, qid, (u32 *)temp_buff.data, qsize); /* no_of_read_words is less than or equal to 0 means error */ if (no_of_read_words <= 0) { if (!no_of_read_words) rc = CUDBG_SYSTEM_ERROR; else rc = no_of_read_words; cudbg_err->sys_err = rc; cudbg_put_buff(pdbg_init, &temp_buff); return rc; } return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_cim_ibq_tp0(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { return cudbg_read_cim_ibq(pdbg_init, dbg_buff, cudbg_err, 0); } int cudbg_collect_cim_ibq_tp1(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { return cudbg_read_cim_ibq(pdbg_init, dbg_buff, cudbg_err, 1); } int cudbg_collect_cim_ibq_ulp(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { return cudbg_read_cim_ibq(pdbg_init, dbg_buff, cudbg_err, 2); } int cudbg_collect_cim_ibq_sge0(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { return cudbg_read_cim_ibq(pdbg_init, dbg_buff, cudbg_err, 3); } int cudbg_collect_cim_ibq_sge1(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { return cudbg_read_cim_ibq(pdbg_init, dbg_buff, cudbg_err, 4); } int cudbg_collect_cim_ibq_ncsi(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { return cudbg_read_cim_ibq(pdbg_init, dbg_buff, cudbg_err, 5); } u32 cudbg_cim_obq_size(struct adapter *padap, int qid) { u32 value; t4_write_reg(padap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F | QUENUMSELECT_V(qid)); value = t4_read_reg(padap, CIM_QUEUE_CONFIG_CTRL_A); value = CIMQSIZE_G(value) * 64; /* size in number of words */ return value * sizeof(u32); } static int cudbg_read_cim_obq(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err, int qid) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; int no_of_read_words, rc = 0; u32 qsize; /* collect CIM OBQ */ qsize = cudbg_cim_obq_size(padap, qid); rc = cudbg_get_buff(pdbg_init, dbg_buff, qsize, &temp_buff); if (rc) return rc; /* t4_read_cim_obq will return no. of read words or error */ no_of_read_words = t4_read_cim_obq(padap, qid, (u32 *)temp_buff.data, qsize); /* no_of_read_words is less than or equal to 0 means error */ if (no_of_read_words <= 0) { if (!no_of_read_words) rc = CUDBG_SYSTEM_ERROR; else rc = no_of_read_words; cudbg_err->sys_err = rc; cudbg_put_buff(pdbg_init, &temp_buff); return rc; } return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_cim_obq_ulp0(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { return cudbg_read_cim_obq(pdbg_init, dbg_buff, cudbg_err, 0); } int cudbg_collect_cim_obq_ulp1(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { return cudbg_read_cim_obq(pdbg_init, dbg_buff, cudbg_err, 1); } int cudbg_collect_cim_obq_ulp2(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { return cudbg_read_cim_obq(pdbg_init, dbg_buff, cudbg_err, 2); } int cudbg_collect_cim_obq_ulp3(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { return cudbg_read_cim_obq(pdbg_init, dbg_buff, cudbg_err, 3); } int cudbg_collect_cim_obq_sge(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { return cudbg_read_cim_obq(pdbg_init, dbg_buff, cudbg_err, 4); } int cudbg_collect_cim_obq_ncsi(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { return cudbg_read_cim_obq(pdbg_init, dbg_buff, cudbg_err, 5); } int cudbg_collect_obq_sge_rx_q0(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { return cudbg_read_cim_obq(pdbg_init, dbg_buff, cudbg_err, 6); } int cudbg_collect_obq_sge_rx_q1(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { return cudbg_read_cim_obq(pdbg_init, dbg_buff, cudbg_err, 7); } static int cudbg_meminfo_get_mem_index(struct adapter *padap, struct cudbg_meminfo *mem_info, u8 mem_type, u8 *idx) { u8 i, flag; switch (mem_type) { case MEM_EDC0: flag = EDC0_FLAG; break; case MEM_EDC1: flag = EDC1_FLAG; break; case MEM_MC0: /* Some T5 cards have both MC0 and MC1. */ flag = is_t5(padap->params.chip) ? MC0_FLAG : MC_FLAG; break; case MEM_MC1: flag = MC1_FLAG; break; case MEM_HMA: flag = HMA_FLAG; break; default: return CUDBG_STATUS_ENTITY_NOT_FOUND; } for (i = 0; i < mem_info->avail_c; i++) { if (mem_info->avail[i].idx == flag) { *idx = i; return 0; } } return CUDBG_STATUS_ENTITY_NOT_FOUND; } /* Fetch the @region_name's start and end from @meminfo. */ static int cudbg_get_mem_region(struct adapter *padap, struct cudbg_meminfo *meminfo, u8 mem_type, const char *region_name, struct cudbg_mem_desc *mem_desc) { u8 mc, found = 0; u32 i, idx = 0; int rc; rc = cudbg_meminfo_get_mem_index(padap, meminfo, mem_type, &mc); if (rc) return rc; for (i = 0; i < ARRAY_SIZE(cudbg_region); i++) { if (!strcmp(cudbg_region[i], region_name)) { found = 1; idx = i; break; } } if (!found) return -EINVAL; found = 0; for (i = 0; i < meminfo->mem_c; i++) { if (meminfo->mem[i].idx >= ARRAY_SIZE(cudbg_region)) continue; /* Skip holes */ if (!(meminfo->mem[i].limit)) meminfo->mem[i].limit = i < meminfo->mem_c - 1 ? meminfo->mem[i + 1].base - 1 : ~0; if (meminfo->mem[i].idx == idx) { /* Check if the region exists in @mem_type memory */ if (meminfo->mem[i].base < meminfo->avail[mc].base && meminfo->mem[i].limit < meminfo->avail[mc].base) return -EINVAL; if (meminfo->mem[i].base > meminfo->avail[mc].limit) return -EINVAL; memcpy(mem_desc, &meminfo->mem[i], sizeof(struct cudbg_mem_desc)); found = 1; break; } } if (!found) return -EINVAL; return 0; } /* Fetch and update the start and end of the requested memory region w.r.t 0 * in the corresponding EDC/MC/HMA. */ static int cudbg_get_mem_relative(struct adapter *padap, struct cudbg_meminfo *meminfo, u8 mem_type, u32 *out_base, u32 *out_end) { u8 mc_idx; int rc; rc = cudbg_meminfo_get_mem_index(padap, meminfo, mem_type, &mc_idx); if (rc) return rc; if (*out_base < meminfo->avail[mc_idx].base) *out_base = 0; else *out_base -= meminfo->avail[mc_idx].base; if (*out_end > meminfo->avail[mc_idx].limit) *out_end = meminfo->avail[mc_idx].limit; else *out_end -= meminfo->avail[mc_idx].base; return 0; } /* Get TX and RX Payload region */ static int cudbg_get_payload_range(struct adapter *padap, u8 mem_type, const char *region_name, struct cudbg_region_info *payload) { struct cudbg_mem_desc mem_desc = { 0 }; struct cudbg_meminfo meminfo; int rc; rc = cudbg_fill_meminfo(padap, &meminfo); if (rc) return rc; rc = cudbg_get_mem_region(padap, &meminfo, mem_type, region_name, &mem_desc); if (rc) { payload->exist = false; return 0; } payload->exist = true; payload->start = mem_desc.base; payload->end = mem_desc.limit; return cudbg_get_mem_relative(padap, &meminfo, mem_type, &payload->start, &payload->end); } static int cudbg_memory_read(struct cudbg_init *pdbg_init, int win, int mtype, u32 addr, u32 len, void *hbuf) { u32 win_pf, memoffset, mem_aperture, mem_base; struct adapter *adap = pdbg_init->adap; u32 pos, offset, resid; u32 *res_buf; u64 *buf; int ret; /* Argument sanity checks ... */ if (addr & 0x3 || (uintptr_t)hbuf & 0x3) return -EINVAL; buf = (u64 *)hbuf; /* Try to do 64-bit reads. Residual will be handled later. */ resid = len & 0x7; len -= resid; ret = t4_memory_rw_init(adap, win, mtype, &memoffset, &mem_base, &mem_aperture); if (ret) return ret; addr = addr + memoffset; win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf); pos = addr & ~(mem_aperture - 1); offset = addr - pos; /* Set up initial PCI-E Memory Window to cover the start of our * transfer. */ t4_memory_update_win(adap, win, pos | win_pf); /* Transfer data from the adapter */ while (len > 0) { *buf++ = le64_to_cpu((__force __le64) t4_read_reg64(adap, mem_base + offset)); offset += sizeof(u64); len -= sizeof(u64); /* If we've reached the end of our current window aperture, * move the PCI-E Memory Window on to the next. */ if (offset == mem_aperture) { pos += mem_aperture; offset = 0; t4_memory_update_win(adap, win, pos | win_pf); } } res_buf = (u32 *)buf; /* Read residual in 32-bit multiples */ while (resid > sizeof(u32)) { *res_buf++ = le32_to_cpu((__force __le32) t4_read_reg(adap, mem_base + offset)); offset += sizeof(u32); resid -= sizeof(u32); /* If we've reached the end of our current window aperture, * move the PCI-E Memory Window on to the next. */ if (offset == mem_aperture) { pos += mem_aperture; offset = 0; t4_memory_update_win(adap, win, pos | win_pf); } } /* Transfer residual < 32-bits */ if (resid) t4_memory_rw_residual(adap, resid, mem_base + offset, (u8 *)res_buf, T4_MEMORY_READ); return 0; } #define CUDBG_YIELD_ITERATION 256 static int cudbg_read_fw_mem(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, u8 mem_type, unsigned long tot_len, struct cudbg_error *cudbg_err) { static const char * const region_name[] = { "Tx payload:", "Rx payload:" }; unsigned long bytes, bytes_left, bytes_read = 0; struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; struct cudbg_region_info payload[2]; u32 yield_count = 0; int rc = 0; u8 i; /* Get TX/RX Payload region range if they exist */ memset(payload, 0, sizeof(payload)); for (i = 0; i < ARRAY_SIZE(region_name); i++) { rc = cudbg_get_payload_range(padap, mem_type, region_name[i], &payload[i]); if (rc) return rc; if (payload[i].exist) { /* Align start and end to avoid wrap around */ payload[i].start = roundup(payload[i].start, CUDBG_CHUNK_SIZE); payload[i].end = rounddown(payload[i].end, CUDBG_CHUNK_SIZE); } } bytes_left = tot_len; while (bytes_left > 0) { /* As MC size is huge and read through PIO access, this * loop will hold cpu for a longer time. OS may think that * the process is hanged and will generate CPU stall traces. * So yield the cpu regularly. */ yield_count++; if (!(yield_count % CUDBG_YIELD_ITERATION)) schedule(); bytes = min_t(unsigned long, bytes_left, (unsigned long)CUDBG_CHUNK_SIZE); rc = cudbg_get_buff(pdbg_init, dbg_buff, bytes, &temp_buff); if (rc) return rc; for (i = 0; i < ARRAY_SIZE(payload); i++) if (payload[i].exist && bytes_read >= payload[i].start && bytes_read + bytes <= payload[i].end) /* TX and RX Payload regions can't overlap */ goto skip_read; spin_lock(&padap->win0_lock); rc = cudbg_memory_read(pdbg_init, MEMWIN_NIC, mem_type, bytes_read, bytes, temp_buff.data); spin_unlock(&padap->win0_lock); if (rc) { cudbg_err->sys_err = rc; cudbg_put_buff(pdbg_init, &temp_buff); return rc; } skip_read: bytes_left -= bytes; bytes_read += bytes; rc = cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); if (rc) { cudbg_put_buff(pdbg_init, &temp_buff); return rc; } } return rc; } static void cudbg_t4_fwcache(struct cudbg_init *pdbg_init, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; int rc; if (is_fw_attached(pdbg_init)) { /* Flush uP dcache before reading edcX/mcX */ rc = t4_fwcache(padap, FW_PARAM_DEV_FWCACHE_FLUSH); if (rc) cudbg_err->sys_warn = rc; } } static int cudbg_collect_mem_region(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err, u8 mem_type) { struct adapter *padap = pdbg_init->adap; struct cudbg_meminfo mem_info; unsigned long size; u8 mc_idx; int rc; memset(&mem_info, 0, sizeof(struct cudbg_meminfo)); rc = cudbg_fill_meminfo(padap, &mem_info); if (rc) return rc; cudbg_t4_fwcache(pdbg_init, cudbg_err); rc = cudbg_meminfo_get_mem_index(padap, &mem_info, mem_type, &mc_idx); if (rc) return rc; size = mem_info.avail[mc_idx].limit - mem_info.avail[mc_idx].base; return cudbg_read_fw_mem(pdbg_init, dbg_buff, mem_type, size, cudbg_err); } int cudbg_collect_edc0_meminfo(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { return cudbg_collect_mem_region(pdbg_init, dbg_buff, cudbg_err, MEM_EDC0); } int cudbg_collect_edc1_meminfo(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { return cudbg_collect_mem_region(pdbg_init, dbg_buff, cudbg_err, MEM_EDC1); } int cudbg_collect_mc0_meminfo(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { return cudbg_collect_mem_region(pdbg_init, dbg_buff, cudbg_err, MEM_MC0); } int cudbg_collect_mc1_meminfo(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { return cudbg_collect_mem_region(pdbg_init, dbg_buff, cudbg_err, MEM_MC1); } int cudbg_collect_hma_meminfo(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { return cudbg_collect_mem_region(pdbg_init, dbg_buff, cudbg_err, MEM_HMA); } int cudbg_collect_rss(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; int rc, nentries; nentries = t4_chip_rss_size(padap); rc = cudbg_get_buff(pdbg_init, dbg_buff, nentries * sizeof(u16), &temp_buff); if (rc) return rc; rc = t4_read_rss(padap, (u16 *)temp_buff.data); if (rc) { cudbg_err->sys_err = rc; cudbg_put_buff(pdbg_init, &temp_buff); return rc; } return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_rss_vf_config(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; struct cudbg_rss_vf_conf *vfconf; int vf, rc, vf_count; vf_count = padap->params.arch.vfcount; rc = cudbg_get_buff(pdbg_init, dbg_buff, vf_count * sizeof(struct cudbg_rss_vf_conf), &temp_buff); if (rc) return rc; vfconf = (struct cudbg_rss_vf_conf *)temp_buff.data; for (vf = 0; vf < vf_count; vf++) t4_read_rss_vf_config(padap, vf, &vfconf[vf].rss_vf_vfl, &vfconf[vf].rss_vf_vfh, true); return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_path_mtu(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; int rc; rc = cudbg_get_buff(pdbg_init, dbg_buff, NMTUS * sizeof(u16), &temp_buff); if (rc) return rc; t4_read_mtu_tbl(padap, (u16 *)temp_buff.data, NULL); return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_pm_stats(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; struct cudbg_pm_stats *pm_stats_buff; int rc; rc = cudbg_get_buff(pdbg_init, dbg_buff, sizeof(struct cudbg_pm_stats), &temp_buff); if (rc) return rc; pm_stats_buff = (struct cudbg_pm_stats *)temp_buff.data; t4_pmtx_get_stats(padap, pm_stats_buff->tx_cnt, pm_stats_buff->tx_cyc); t4_pmrx_get_stats(padap, pm_stats_buff->rx_cnt, pm_stats_buff->rx_cyc); return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_hw_sched(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; struct cudbg_hw_sched *hw_sched_buff; int i, rc = 0; if (!padap->params.vpd.cclk) return CUDBG_STATUS_CCLK_NOT_DEFINED; rc = cudbg_get_buff(pdbg_init, dbg_buff, sizeof(struct cudbg_hw_sched), &temp_buff); if (rc) return rc; hw_sched_buff = (struct cudbg_hw_sched *)temp_buff.data; hw_sched_buff->map = t4_read_reg(padap, TP_TX_MOD_QUEUE_REQ_MAP_A); hw_sched_buff->mode = TIMERMODE_G(t4_read_reg(padap, TP_MOD_CONFIG_A)); t4_read_pace_tbl(padap, hw_sched_buff->pace_tab); for (i = 0; i < NTX_SCHED; ++i) t4_get_tx_sched(padap, i, &hw_sched_buff->kbps[i], &hw_sched_buff->ipg[i], true); return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_tp_indirect(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; struct ireg_buf *ch_tp_pio; int i, rc, n = 0; u32 size; if (is_t5(padap->params.chip)) n = sizeof(t5_tp_pio_array) + sizeof(t5_tp_tm_pio_array) + sizeof(t5_tp_mib_index_array); else n = sizeof(t6_tp_pio_array) + sizeof(t6_tp_tm_pio_array) + sizeof(t6_tp_mib_index_array); n = n / (IREG_NUM_ELEM * sizeof(u32)); size = sizeof(struct ireg_buf) * n; rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff); if (rc) return rc; ch_tp_pio = (struct ireg_buf *)temp_buff.data; /* TP_PIO */ if (is_t5(padap->params.chip)) n = sizeof(t5_tp_pio_array) / (IREG_NUM_ELEM * sizeof(u32)); else if (is_t6(padap->params.chip)) n = sizeof(t6_tp_pio_array) / (IREG_NUM_ELEM * sizeof(u32)); for (i = 0; i < n; i++) { struct ireg_field *tp_pio = &ch_tp_pio->tp_pio; u32 *buff = ch_tp_pio->outbuf; if (is_t5(padap->params.chip)) { tp_pio->ireg_addr = t5_tp_pio_array[i][0]; tp_pio->ireg_data = t5_tp_pio_array[i][1]; tp_pio->ireg_local_offset = t5_tp_pio_array[i][2]; tp_pio->ireg_offset_range = t5_tp_pio_array[i][3]; } else if (is_t6(padap->params.chip)) { tp_pio->ireg_addr = t6_tp_pio_array[i][0]; tp_pio->ireg_data = t6_tp_pio_array[i][1]; tp_pio->ireg_local_offset = t6_tp_pio_array[i][2]; tp_pio->ireg_offset_range = t6_tp_pio_array[i][3]; } t4_tp_pio_read(padap, buff, tp_pio->ireg_offset_range, tp_pio->ireg_local_offset, true); ch_tp_pio++; } /* TP_TM_PIO */ if (is_t5(padap->params.chip)) n = sizeof(t5_tp_tm_pio_array) / (IREG_NUM_ELEM * sizeof(u32)); else if (is_t6(padap->params.chip)) n = sizeof(t6_tp_tm_pio_array) / (IREG_NUM_ELEM * sizeof(u32)); for (i = 0; i < n; i++) { struct ireg_field *tp_pio = &ch_tp_pio->tp_pio; u32 *buff = ch_tp_pio->outbuf; if (is_t5(padap->params.chip)) { tp_pio->ireg_addr = t5_tp_tm_pio_array[i][0]; tp_pio->ireg_data = t5_tp_tm_pio_array[i][1]; tp_pio->ireg_local_offset = t5_tp_tm_pio_array[i][2]; tp_pio->ireg_offset_range = t5_tp_tm_pio_array[i][3]; } else if (is_t6(padap->params.chip)) { tp_pio->ireg_addr = t6_tp_tm_pio_array[i][0]; tp_pio->ireg_data = t6_tp_tm_pio_array[i][1]; tp_pio->ireg_local_offset = t6_tp_tm_pio_array[i][2]; tp_pio->ireg_offset_range = t6_tp_tm_pio_array[i][3]; } t4_tp_tm_pio_read(padap, buff, tp_pio->ireg_offset_range, tp_pio->ireg_local_offset, true); ch_tp_pio++; } /* TP_MIB_INDEX */ if (is_t5(padap->params.chip)) n = sizeof(t5_tp_mib_index_array) / (IREG_NUM_ELEM * sizeof(u32)); else if (is_t6(padap->params.chip)) n = sizeof(t6_tp_mib_index_array) / (IREG_NUM_ELEM * sizeof(u32)); for (i = 0; i < n ; i++) { struct ireg_field *tp_pio = &ch_tp_pio->tp_pio; u32 *buff = ch_tp_pio->outbuf; if (is_t5(padap->params.chip)) { tp_pio->ireg_addr = t5_tp_mib_index_array[i][0]; tp_pio->ireg_data = t5_tp_mib_index_array[i][1]; tp_pio->ireg_local_offset = t5_tp_mib_index_array[i][2]; tp_pio->ireg_offset_range = t5_tp_mib_index_array[i][3]; } else if (is_t6(padap->params.chip)) { tp_pio->ireg_addr = t6_tp_mib_index_array[i][0]; tp_pio->ireg_data = t6_tp_mib_index_array[i][1]; tp_pio->ireg_local_offset = t6_tp_mib_index_array[i][2]; tp_pio->ireg_offset_range = t6_tp_mib_index_array[i][3]; } t4_tp_mib_read(padap, buff, tp_pio->ireg_offset_range, tp_pio->ireg_local_offset, true); ch_tp_pio++; } return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } static void cudbg_read_sge_qbase_indirect_reg(struct adapter *padap, struct sge_qbase_reg_field *qbase, u32 func, bool is_pf) { u32 *buff, i; if (is_pf) { buff = qbase->pf_data_value[func]; } else { buff = qbase->vf_data_value[func]; /* In SGE_QBASE_INDEX, * Entries 0->7 are PF0->7, Entries 8->263 are VFID0->256. */ func += 8; } t4_write_reg(padap, qbase->reg_addr, func); for (i = 0; i < SGE_QBASE_DATA_REG_NUM; i++, buff++) *buff = t4_read_reg(padap, qbase->reg_data[i]); } int cudbg_collect_sge_indirect(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; struct sge_qbase_reg_field *sge_qbase; struct ireg_buf *ch_sge_dbg; int i, rc; rc = cudbg_get_buff(pdbg_init, dbg_buff, sizeof(*ch_sge_dbg) * 2 + sizeof(*sge_qbase), &temp_buff); if (rc) return rc; ch_sge_dbg = (struct ireg_buf *)temp_buff.data; for (i = 0; i < 2; i++) { struct ireg_field *sge_pio = &ch_sge_dbg->tp_pio; u32 *buff = ch_sge_dbg->outbuf; sge_pio->ireg_addr = t5_sge_dbg_index_array[i][0]; sge_pio->ireg_data = t5_sge_dbg_index_array[i][1]; sge_pio->ireg_local_offset = t5_sge_dbg_index_array[i][2]; sge_pio->ireg_offset_range = t5_sge_dbg_index_array[i][3]; t4_read_indirect(padap, sge_pio->ireg_addr, sge_pio->ireg_data, buff, sge_pio->ireg_offset_range, sge_pio->ireg_local_offset); ch_sge_dbg++; } if (CHELSIO_CHIP_VERSION(padap->params.chip) > CHELSIO_T5) { sge_qbase = (struct sge_qbase_reg_field *)ch_sge_dbg; /* 1 addr reg SGE_QBASE_INDEX and 4 data reg * SGE_QBASE_MAP[0-3] */ sge_qbase->reg_addr = t6_sge_qbase_index_array[0]; for (i = 0; i < SGE_QBASE_DATA_REG_NUM; i++) sge_qbase->reg_data[i] = t6_sge_qbase_index_array[i + 1]; for (i = 0; i <= PCIE_FW_MASTER_M; i++) cudbg_read_sge_qbase_indirect_reg(padap, sge_qbase, i, true); for (i = 0; i < padap->params.arch.vfcount; i++) cudbg_read_sge_qbase_indirect_reg(padap, sge_qbase, i, false); sge_qbase->vfcount = padap->params.arch.vfcount; } return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_ulprx_la(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; struct cudbg_ulprx_la *ulprx_la_buff; int rc; rc = cudbg_get_buff(pdbg_init, dbg_buff, sizeof(struct cudbg_ulprx_la), &temp_buff); if (rc) return rc; ulprx_la_buff = (struct cudbg_ulprx_la *)temp_buff.data; t4_ulprx_read_la(padap, (u32 *)ulprx_la_buff->data); ulprx_la_buff->size = ULPRX_LA_SIZE; return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_tp_la(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; struct cudbg_tp_la *tp_la_buff; int size, rc; size = sizeof(struct cudbg_tp_la) + TPLA_SIZE * sizeof(u64); rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff); if (rc) return rc; tp_la_buff = (struct cudbg_tp_la *)temp_buff.data; tp_la_buff->mode = DBGLAMODE_G(t4_read_reg(padap, TP_DBG_LA_CONFIG_A)); t4_tp_read_la(padap, (u64 *)tp_la_buff->data, NULL); return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_meminfo(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; struct cudbg_meminfo *meminfo_buff; struct cudbg_ver_hdr *ver_hdr; int rc; rc = cudbg_get_buff(pdbg_init, dbg_buff, sizeof(struct cudbg_ver_hdr) + sizeof(struct cudbg_meminfo), &temp_buff); if (rc) return rc; ver_hdr = (struct cudbg_ver_hdr *)temp_buff.data; ver_hdr->signature = CUDBG_ENTITY_SIGNATURE; ver_hdr->revision = CUDBG_MEMINFO_REV; ver_hdr->size = sizeof(struct cudbg_meminfo); meminfo_buff = (struct cudbg_meminfo *)(temp_buff.data + sizeof(*ver_hdr)); rc = cudbg_fill_meminfo(padap, meminfo_buff); if (rc) { cudbg_err->sys_err = rc; cudbg_put_buff(pdbg_init, &temp_buff); return rc; } return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_cim_pif_la(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct cudbg_cim_pif_la *cim_pif_la_buff; struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; int size, rc; size = sizeof(struct cudbg_cim_pif_la) + 2 * CIM_PIFLA_SIZE * 6 * sizeof(u32); rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff); if (rc) return rc; cim_pif_la_buff = (struct cudbg_cim_pif_la *)temp_buff.data; cim_pif_la_buff->size = CIM_PIFLA_SIZE; t4_cim_read_pif_la(padap, (u32 *)cim_pif_la_buff->data, (u32 *)cim_pif_la_buff->data + 6 * CIM_PIFLA_SIZE, NULL, NULL); return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_clk_info(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; struct cudbg_clk_info *clk_info_buff; u64 tp_tick_us; int rc; if (!padap->params.vpd.cclk) return CUDBG_STATUS_CCLK_NOT_DEFINED; rc = cudbg_get_buff(pdbg_init, dbg_buff, sizeof(struct cudbg_clk_info), &temp_buff); if (rc) return rc; clk_info_buff = (struct cudbg_clk_info *)temp_buff.data; clk_info_buff->cclk_ps = 1000000000 / padap->params.vpd.cclk; /* psec */ clk_info_buff->res = t4_read_reg(padap, TP_TIMER_RESOLUTION_A); clk_info_buff->tre = TIMERRESOLUTION_G(clk_info_buff->res); clk_info_buff->dack_re = DELAYEDACKRESOLUTION_G(clk_info_buff->res); tp_tick_us = (clk_info_buff->cclk_ps << clk_info_buff->tre) / 1000000; clk_info_buff->dack_timer = (clk_info_buff->cclk_ps << clk_info_buff->dack_re) / 1000000 * t4_read_reg(padap, TP_DACK_TIMER_A); clk_info_buff->retransmit_min = tp_tick_us * t4_read_reg(padap, TP_RXT_MIN_A); clk_info_buff->retransmit_max = tp_tick_us * t4_read_reg(padap, TP_RXT_MAX_A); clk_info_buff->persist_timer_min = tp_tick_us * t4_read_reg(padap, TP_PERS_MIN_A); clk_info_buff->persist_timer_max = tp_tick_us * t4_read_reg(padap, TP_PERS_MAX_A); clk_info_buff->keepalive_idle_timer = tp_tick_us * t4_read_reg(padap, TP_KEEP_IDLE_A); clk_info_buff->keepalive_interval = tp_tick_us * t4_read_reg(padap, TP_KEEP_INTVL_A); clk_info_buff->initial_srtt = tp_tick_us * INITSRTT_G(t4_read_reg(padap, TP_INIT_SRTT_A)); clk_info_buff->finwait2_timer = tp_tick_us * t4_read_reg(padap, TP_FINWAIT2_TIMER_A); return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_pcie_indirect(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; struct ireg_buf *ch_pcie; int i, rc, n; u32 size; n = sizeof(t5_pcie_pdbg_array) / (IREG_NUM_ELEM * sizeof(u32)); size = sizeof(struct ireg_buf) * n * 2; rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff); if (rc) return rc; ch_pcie = (struct ireg_buf *)temp_buff.data; /* PCIE_PDBG */ for (i = 0; i < n; i++) { struct ireg_field *pcie_pio = &ch_pcie->tp_pio; u32 *buff = ch_pcie->outbuf; pcie_pio->ireg_addr = t5_pcie_pdbg_array[i][0]; pcie_pio->ireg_data = t5_pcie_pdbg_array[i][1]; pcie_pio->ireg_local_offset = t5_pcie_pdbg_array[i][2]; pcie_pio->ireg_offset_range = t5_pcie_pdbg_array[i][3]; t4_read_indirect(padap, pcie_pio->ireg_addr, pcie_pio->ireg_data, buff, pcie_pio->ireg_offset_range, pcie_pio->ireg_local_offset); ch_pcie++; } /* PCIE_CDBG */ n = sizeof(t5_pcie_cdbg_array) / (IREG_NUM_ELEM * sizeof(u32)); for (i = 0; i < n; i++) { struct ireg_field *pcie_pio = &ch_pcie->tp_pio; u32 *buff = ch_pcie->outbuf; pcie_pio->ireg_addr = t5_pcie_cdbg_array[i][0]; pcie_pio->ireg_data = t5_pcie_cdbg_array[i][1]; pcie_pio->ireg_local_offset = t5_pcie_cdbg_array[i][2]; pcie_pio->ireg_offset_range = t5_pcie_cdbg_array[i][3]; t4_read_indirect(padap, pcie_pio->ireg_addr, pcie_pio->ireg_data, buff, pcie_pio->ireg_offset_range, pcie_pio->ireg_local_offset); ch_pcie++; } return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_pm_indirect(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; struct ireg_buf *ch_pm; int i, rc, n; u32 size; n = sizeof(t5_pm_rx_array) / (IREG_NUM_ELEM * sizeof(u32)); size = sizeof(struct ireg_buf) * n * 2; rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff); if (rc) return rc; ch_pm = (struct ireg_buf *)temp_buff.data; /* PM_RX */ for (i = 0; i < n; i++) { struct ireg_field *pm_pio = &ch_pm->tp_pio; u32 *buff = ch_pm->outbuf; pm_pio->ireg_addr = t5_pm_rx_array[i][0]; pm_pio->ireg_data = t5_pm_rx_array[i][1]; pm_pio->ireg_local_offset = t5_pm_rx_array[i][2]; pm_pio->ireg_offset_range = t5_pm_rx_array[i][3]; t4_read_indirect(padap, pm_pio->ireg_addr, pm_pio->ireg_data, buff, pm_pio->ireg_offset_range, pm_pio->ireg_local_offset); ch_pm++; } /* PM_TX */ n = sizeof(t5_pm_tx_array) / (IREG_NUM_ELEM * sizeof(u32)); for (i = 0; i < n; i++) { struct ireg_field *pm_pio = &ch_pm->tp_pio; u32 *buff = ch_pm->outbuf; pm_pio->ireg_addr = t5_pm_tx_array[i][0]; pm_pio->ireg_data = t5_pm_tx_array[i][1]; pm_pio->ireg_local_offset = t5_pm_tx_array[i][2]; pm_pio->ireg_offset_range = t5_pm_tx_array[i][3]; t4_read_indirect(padap, pm_pio->ireg_addr, pm_pio->ireg_data, buff, pm_pio->ireg_offset_range, pm_pio->ireg_local_offset); ch_pm++; } return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_tid(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_tid_info_region_rev1 *tid1; struct cudbg_buffer temp_buff = { 0 }; struct cudbg_tid_info_region *tid; u32 para[2], val[2]; int rc; rc = cudbg_get_buff(pdbg_init, dbg_buff, sizeof(struct cudbg_tid_info_region_rev1), &temp_buff); if (rc) return rc; tid1 = (struct cudbg_tid_info_region_rev1 *)temp_buff.data; tid = &tid1->tid; tid1->ver_hdr.signature = CUDBG_ENTITY_SIGNATURE; tid1->ver_hdr.revision = CUDBG_TID_INFO_REV; tid1->ver_hdr.size = sizeof(struct cudbg_tid_info_region_rev1) - sizeof(struct cudbg_ver_hdr); /* If firmware is not attached/alive, use backdoor register * access to collect dump. */ if (!is_fw_attached(pdbg_init)) goto fill_tid; #define FW_PARAM_PFVF_A(param) \ (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \ FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param) | \ FW_PARAMS_PARAM_Y_V(0) | \ FW_PARAMS_PARAM_Z_V(0)) para[0] = FW_PARAM_PFVF_A(ETHOFLD_START); para[1] = FW_PARAM_PFVF_A(ETHOFLD_END); rc = t4_query_params(padap, padap->mbox, padap->pf, 0, 2, para, val); if (rc < 0) { cudbg_err->sys_err = rc; cudbg_put_buff(pdbg_init, &temp_buff); return rc; } tid->uotid_base = val[0]; tid->nuotids = val[1] - val[0] + 1; if (is_t5(padap->params.chip)) { tid->sb = t4_read_reg(padap, LE_DB_SERVER_INDEX_A) / 4; } else if (is_t6(padap->params.chip)) { tid1->tid_start = t4_read_reg(padap, LE_DB_ACTIVE_TABLE_START_INDEX_A); tid->sb = t4_read_reg(padap, LE_DB_SRVR_START_INDEX_A); para[0] = FW_PARAM_PFVF_A(HPFILTER_START); para[1] = FW_PARAM_PFVF_A(HPFILTER_END); rc = t4_query_params(padap, padap->mbox, padap->pf, 0, 2, para, val); if (rc < 0) { cudbg_err->sys_err = rc; cudbg_put_buff(pdbg_init, &temp_buff); return rc; } tid->hpftid_base = val[0]; tid->nhpftids = val[1] - val[0] + 1; } #undef FW_PARAM_PFVF_A fill_tid: tid->ntids = padap->tids.ntids; tid->nstids = padap->tids.nstids; tid->stid_base = padap->tids.stid_base; tid->hash_base = padap->tids.hash_base; tid->natids = padap->tids.natids; tid->nftids = padap->tids.nftids; tid->ftid_base = padap->tids.ftid_base; tid->aftid_base = padap->tids.aftid_base; tid->aftid_end = padap->tids.aftid_end; tid->sftid_base = padap->tids.sftid_base; tid->nsftids = padap->tids.nsftids; tid->flags = padap->flags; tid->le_db_conf = t4_read_reg(padap, LE_DB_CONFIG_A); tid->ip_users = t4_read_reg(padap, LE_DB_ACT_CNT_IPV4_A); tid->ipv6_users = t4_read_reg(padap, LE_DB_ACT_CNT_IPV6_A); return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_pcie_config(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; u32 size, *value, j; int i, rc, n; size = sizeof(u32) * CUDBG_NUM_PCIE_CONFIG_REGS; n = sizeof(t5_pcie_config_array) / (2 * sizeof(u32)); rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff); if (rc) return rc; value = (u32 *)temp_buff.data; for (i = 0; i < n; i++) { for (j = t5_pcie_config_array[i][0]; j <= t5_pcie_config_array[i][1]; j += 4) { t4_hw_pci_read_cfg4(padap, j, value); value++; } } return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } static int cudbg_sge_ctxt_check_valid(u32 *buf, int type) { int index, bit, bit_pos = 0; switch (type) { case CTXT_EGRESS: bit_pos = 176; break; case CTXT_INGRESS: bit_pos = 141; break; case CTXT_FLM: bit_pos = 89; break; } index = bit_pos / 32; bit = bit_pos % 32; return buf[index] & (1U << bit); } static int cudbg_get_ctxt_region_info(struct adapter *padap, struct cudbg_region_info *ctx_info, u8 *mem_type) { struct cudbg_mem_desc mem_desc; struct cudbg_meminfo meminfo; u32 i, j, value, found; u8 flq; int rc; rc = cudbg_fill_meminfo(padap, &meminfo); if (rc) return rc; /* Get EGRESS and INGRESS context region size */ for (i = CTXT_EGRESS; i <= CTXT_INGRESS; i++) { found = 0; memset(&mem_desc, 0, sizeof(struct cudbg_mem_desc)); for (j = 0; j < ARRAY_SIZE(meminfo.avail); j++) { rc = cudbg_get_mem_region(padap, &meminfo, j, cudbg_region[i], &mem_desc); if (!rc) { found = 1; rc = cudbg_get_mem_relative(padap, &meminfo, j, &mem_desc.base, &mem_desc.limit); if (rc) { ctx_info[i].exist = false; break; } ctx_info[i].exist = true; ctx_info[i].start = mem_desc.base; ctx_info[i].end = mem_desc.limit; mem_type[i] = j; break; } } if (!found) ctx_info[i].exist = false; } /* Get FLM and CNM max qid. */ value = t4_read_reg(padap, SGE_FLM_CFG_A); /* Get number of data freelist queues */ flq = HDRSTARTFLQ_G(value); ctx_info[CTXT_FLM].exist = true; ctx_info[CTXT_FLM].end = (CUDBG_MAX_FL_QIDS >> flq) * SGE_CTXT_SIZE; /* The number of CONM contexts are same as number of freelist * queues. */ ctx_info[CTXT_CNM].exist = true; ctx_info[CTXT_CNM].end = ctx_info[CTXT_FLM].end; return 0; } int cudbg_dump_context_size(struct adapter *padap) { struct cudbg_region_info region_info[CTXT_CNM + 1] = { {0} }; u8 mem_type[CTXT_INGRESS + 1] = { 0 }; u32 i, size = 0; int rc; /* Get max valid qid for each type of queue */ rc = cudbg_get_ctxt_region_info(padap, region_info, mem_type); if (rc) return rc; for (i = 0; i < CTXT_CNM; i++) { if (!region_info[i].exist) { if (i == CTXT_EGRESS || i == CTXT_INGRESS) size += CUDBG_LOWMEM_MAX_CTXT_QIDS * SGE_CTXT_SIZE; continue; } size += (region_info[i].end - region_info[i].start + 1) / SGE_CTXT_SIZE; } return size * sizeof(struct cudbg_ch_cntxt); } static void cudbg_read_sge_ctxt(struct cudbg_init *pdbg_init, u32 cid, enum ctxt_type ctype, u32 *data) { struct adapter *padap = pdbg_init->adap; int rc = -1; /* Under heavy traffic, the SGE Queue contexts registers will be * frequently accessed by firmware. * * To avoid conflicts with firmware, always ask firmware to fetch * the SGE Queue contexts via mailbox. On failure, fallback to * accessing hardware registers directly. */ if (is_fw_attached(pdbg_init)) rc = t4_sge_ctxt_rd(padap, padap->mbox, cid, ctype, data); if (rc) t4_sge_ctxt_rd_bd(padap, cid, ctype, data); } static void cudbg_get_sge_ctxt_fw(struct cudbg_init *pdbg_init, u32 max_qid, u8 ctxt_type, struct cudbg_ch_cntxt **out_buff) { struct cudbg_ch_cntxt *buff = *out_buff; int rc; u32 j; for (j = 0; j < max_qid; j++) { cudbg_read_sge_ctxt(pdbg_init, j, ctxt_type, buff->data); rc = cudbg_sge_ctxt_check_valid(buff->data, ctxt_type); if (!rc) continue; buff->cntxt_type = ctxt_type; buff->cntxt_id = j; buff++; if (ctxt_type == CTXT_FLM) { cudbg_read_sge_ctxt(pdbg_init, j, CTXT_CNM, buff->data); buff->cntxt_type = CTXT_CNM; buff->cntxt_id = j; buff++; } } *out_buff = buff; } int cudbg_collect_dump_context(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct cudbg_region_info region_info[CTXT_CNM + 1] = { {0} }; struct adapter *padap = pdbg_init->adap; u32 j, size, max_ctx_size, max_ctx_qid; u8 mem_type[CTXT_INGRESS + 1] = { 0 }; struct cudbg_buffer temp_buff = { 0 }; struct cudbg_ch_cntxt *buff; u64 *dst_off, *src_off; u8 *ctx_buf; u8 i, k; int rc; /* Get max valid qid for each type of queue */ rc = cudbg_get_ctxt_region_info(padap, region_info, mem_type); if (rc) return rc; rc = cudbg_dump_context_size(padap); if (rc <= 0) return CUDBG_STATUS_ENTITY_NOT_FOUND; size = rc; rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff); if (rc) return rc; /* Get buffer with enough space to read the biggest context * region in memory. */ max_ctx_size = max(region_info[CTXT_EGRESS].end - region_info[CTXT_EGRESS].start + 1, region_info[CTXT_INGRESS].end - region_info[CTXT_INGRESS].start + 1); ctx_buf = kvzalloc(max_ctx_size, GFP_KERNEL); if (!ctx_buf) { cudbg_put_buff(pdbg_init, &temp_buff); return -ENOMEM; } buff = (struct cudbg_ch_cntxt *)temp_buff.data; /* Collect EGRESS and INGRESS context data. * In case of failures, fallback to collecting via FW or * backdoor access. */ for (i = CTXT_EGRESS; i <= CTXT_INGRESS; i++) { if (!region_info[i].exist) { max_ctx_qid = CUDBG_LOWMEM_MAX_CTXT_QIDS; cudbg_get_sge_ctxt_fw(pdbg_init, max_ctx_qid, i, &buff); continue; } max_ctx_size = region_info[i].end - region_info[i].start + 1; max_ctx_qid = max_ctx_size / SGE_CTXT_SIZE; /* If firmware is not attached/alive, use backdoor register * access to collect dump. */ if (is_fw_attached(pdbg_init)) { t4_sge_ctxt_flush(padap, padap->mbox, i); rc = t4_memory_rw(padap, MEMWIN_NIC, mem_type[i], region_info[i].start, max_ctx_size, (__be32 *)ctx_buf, 1); } if (rc || !is_fw_attached(pdbg_init)) { max_ctx_qid = CUDBG_LOWMEM_MAX_CTXT_QIDS; cudbg_get_sge_ctxt_fw(pdbg_init, max_ctx_qid, i, &buff); continue; } for (j = 0; j < max_ctx_qid; j++) { src_off = (u64 *)(ctx_buf + j * SGE_CTXT_SIZE); dst_off = (u64 *)buff->data; /* The data is stored in 64-bit cpu order. Convert it * to big endian before parsing. */ for (k = 0; k < SGE_CTXT_SIZE / sizeof(u64); k++) dst_off[k] = cpu_to_be64(src_off[k]); rc = cudbg_sge_ctxt_check_valid(buff->data, i); if (!rc) continue; buff->cntxt_type = i; buff->cntxt_id = j; buff++; } } kvfree(ctx_buf); /* Collect FREELIST and CONGESTION MANAGER contexts */ max_ctx_size = region_info[CTXT_FLM].end - region_info[CTXT_FLM].start + 1; max_ctx_qid = max_ctx_size / SGE_CTXT_SIZE; /* Since FLM and CONM are 1-to-1 mapped, the below function * will fetch both FLM and CONM contexts. */ cudbg_get_sge_ctxt_fw(pdbg_init, max_ctx_qid, CTXT_FLM, &buff); return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } static inline void cudbg_tcamxy2valmask(u64 x, u64 y, u8 *addr, u64 *mask) { *mask = x | y; y = (__force u64)cpu_to_be64(y); memcpy(addr, (char *)&y + 2, ETH_ALEN); } static void cudbg_mps_rpl_backdoor(struct adapter *padap, struct fw_ldst_mps_rplc *mps_rplc) { if (is_t5(padap->params.chip)) { mps_rplc->rplc255_224 = htonl(t4_read_reg(padap, MPS_VF_RPLCT_MAP3_A)); mps_rplc->rplc223_192 = htonl(t4_read_reg(padap, MPS_VF_RPLCT_MAP2_A)); mps_rplc->rplc191_160 = htonl(t4_read_reg(padap, MPS_VF_RPLCT_MAP1_A)); mps_rplc->rplc159_128 = htonl(t4_read_reg(padap, MPS_VF_RPLCT_MAP0_A)); } else { mps_rplc->rplc255_224 = htonl(t4_read_reg(padap, MPS_VF_RPLCT_MAP7_A)); mps_rplc->rplc223_192 = htonl(t4_read_reg(padap, MPS_VF_RPLCT_MAP6_A)); mps_rplc->rplc191_160 = htonl(t4_read_reg(padap, MPS_VF_RPLCT_MAP5_A)); mps_rplc->rplc159_128 = htonl(t4_read_reg(padap, MPS_VF_RPLCT_MAP4_A)); } mps_rplc->rplc127_96 = htonl(t4_read_reg(padap, MPS_VF_RPLCT_MAP3_A)); mps_rplc->rplc95_64 = htonl(t4_read_reg(padap, MPS_VF_RPLCT_MAP2_A)); mps_rplc->rplc63_32 = htonl(t4_read_reg(padap, MPS_VF_RPLCT_MAP1_A)); mps_rplc->rplc31_0 = htonl(t4_read_reg(padap, MPS_VF_RPLCT_MAP0_A)); } static int cudbg_collect_tcam_index(struct cudbg_init *pdbg_init, struct cudbg_mps_tcam *tcam, u32 idx) { struct adapter *padap = pdbg_init->adap; u64 tcamy, tcamx, val; u32 ctl, data2; int rc = 0; if (CHELSIO_CHIP_VERSION(padap->params.chip) >= CHELSIO_T6) { /* CtlReqID - 1: use Host Driver Requester ID * CtlCmdType - 0: Read, 1: Write * CtlTcamSel - 0: TCAM0, 1: TCAM1 * CtlXYBitSel- 0: Y bit, 1: X bit */ /* Read tcamy */ ctl = CTLREQID_V(1) | CTLCMDTYPE_V(0) | CTLXYBITSEL_V(0); if (idx < 256) ctl |= CTLTCAMINDEX_V(idx) | CTLTCAMSEL_V(0); else ctl |= CTLTCAMINDEX_V(idx - 256) | CTLTCAMSEL_V(1); t4_write_reg(padap, MPS_CLS_TCAM_DATA2_CTL_A, ctl); val = t4_read_reg(padap, MPS_CLS_TCAM_RDATA1_REQ_ID1_A); tcamy = DMACH_G(val) << 32; tcamy |= t4_read_reg(padap, MPS_CLS_TCAM_RDATA0_REQ_ID1_A); data2 = t4_read_reg(padap, MPS_CLS_TCAM_RDATA2_REQ_ID1_A); tcam->lookup_type = DATALKPTYPE_G(data2); /* 0 - Outer header, 1 - Inner header * [71:48] bit locations are overloaded for * outer vs. inner lookup types. */ if (tcam->lookup_type && tcam->lookup_type != DATALKPTYPE_M) { /* Inner header VNI */ tcam->vniy = (data2 & DATAVIDH2_F) | DATAVIDH1_G(data2); tcam->vniy = (tcam->vniy << 16) | VIDL_G(val); tcam->dip_hit = data2 & DATADIPHIT_F; } else { tcam->vlan_vld = data2 & DATAVIDH2_F; tcam->ivlan = VIDL_G(val); } tcam->port_num = DATAPORTNUM_G(data2); /* Read tcamx. Change the control param */ ctl |= CTLXYBITSEL_V(1); t4_write_reg(padap, MPS_CLS_TCAM_DATA2_CTL_A, ctl); val = t4_read_reg(padap, MPS_CLS_TCAM_RDATA1_REQ_ID1_A); tcamx = DMACH_G(val) << 32; tcamx |= t4_read_reg(padap, MPS_CLS_TCAM_RDATA0_REQ_ID1_A); data2 = t4_read_reg(padap, MPS_CLS_TCAM_RDATA2_REQ_ID1_A); if (tcam->lookup_type && tcam->lookup_type != DATALKPTYPE_M) { /* Inner header VNI mask */ tcam->vnix = (data2 & DATAVIDH2_F) | DATAVIDH1_G(data2); tcam->vnix = (tcam->vnix << 16) | VIDL_G(val); } } else { tcamy = t4_read_reg64(padap, MPS_CLS_TCAM_Y_L(idx)); tcamx = t4_read_reg64(padap, MPS_CLS_TCAM_X_L(idx)); } /* If no entry, return */ if (tcamx & tcamy) return rc; tcam->cls_lo = t4_read_reg(padap, MPS_CLS_SRAM_L(idx)); tcam->cls_hi = t4_read_reg(padap, MPS_CLS_SRAM_H(idx)); if (is_t5(padap->params.chip)) tcam->repli = (tcam->cls_lo & REPLICATE_F); else if (is_t6(padap->params.chip)) tcam->repli = (tcam->cls_lo & T6_REPLICATE_F); if (tcam->repli) { struct fw_ldst_cmd ldst_cmd; struct fw_ldst_mps_rplc mps_rplc; memset(&ldst_cmd, 0, sizeof(ldst_cmd)); ldst_cmd.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MPS)); ldst_cmd.cycles_to_len16 = htonl(FW_LEN16(ldst_cmd)); ldst_cmd.u.mps.rplc.fid_idx = htons(FW_LDST_CMD_FID_V(FW_LDST_MPS_RPLC) | FW_LDST_CMD_IDX_V(idx)); /* If firmware is not attached/alive, use backdoor register * access to collect dump. */ if (is_fw_attached(pdbg_init)) rc = t4_wr_mbox(padap, padap->mbox, &ldst_cmd, sizeof(ldst_cmd), &ldst_cmd); if (rc || !is_fw_attached(pdbg_init)) { cudbg_mps_rpl_backdoor(padap, &mps_rplc); /* Ignore error since we collected directly from * reading registers. */ rc = 0; } else { mps_rplc = ldst_cmd.u.mps.rplc; } tcam->rplc[0] = ntohl(mps_rplc.rplc31_0); tcam->rplc[1] = ntohl(mps_rplc.rplc63_32); tcam->rplc[2] = ntohl(mps_rplc.rplc95_64); tcam->rplc[3] = ntohl(mps_rplc.rplc127_96); if (padap->params.arch.mps_rplc_size > CUDBG_MAX_RPLC_SIZE) { tcam->rplc[4] = ntohl(mps_rplc.rplc159_128); tcam->rplc[5] = ntohl(mps_rplc.rplc191_160); tcam->rplc[6] = ntohl(mps_rplc.rplc223_192); tcam->rplc[7] = ntohl(mps_rplc.rplc255_224); } } cudbg_tcamxy2valmask(tcamx, tcamy, tcam->addr, &tcam->mask); tcam->idx = idx; tcam->rplc_size = padap->params.arch.mps_rplc_size; return rc; } int cudbg_collect_mps_tcam(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; u32 size = 0, i, n, total_size = 0; struct cudbg_mps_tcam *tcam; int rc; n = padap->params.arch.mps_tcam_size; size = sizeof(struct cudbg_mps_tcam) * n; rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff); if (rc) return rc; tcam = (struct cudbg_mps_tcam *)temp_buff.data; for (i = 0; i < n; i++) { rc = cudbg_collect_tcam_index(pdbg_init, tcam, i); if (rc) { cudbg_err->sys_err = rc; cudbg_put_buff(pdbg_init, &temp_buff); return rc; } total_size += sizeof(struct cudbg_mps_tcam); tcam++; } if (!total_size) { rc = CUDBG_SYSTEM_ERROR; cudbg_err->sys_err = rc; cudbg_put_buff(pdbg_init, &temp_buff); return rc; } return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_vpd_data(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; char vpd_str[CUDBG_VPD_VER_LEN + 1]; u32 scfg_vers, vpd_vers, fw_vers; struct cudbg_vpd_data *vpd_data; struct vpd_params vpd = { 0 }; int rc, ret; rc = t4_get_raw_vpd_params(padap, &vpd); if (rc) return rc; rc = t4_get_fw_version(padap, &fw_vers); if (rc) return rc; /* Serial Configuration Version is located beyond the PF's vpd size. * Temporarily give access to entire EEPROM to get it. */ rc = pci_set_vpd_size(padap->pdev, EEPROMVSIZE); if (rc < 0) return rc; ret = cudbg_read_vpd_reg(padap, CUDBG_SCFG_VER_ADDR, CUDBG_SCFG_VER_LEN, &scfg_vers); /* Restore back to original PF's vpd size */ rc = pci_set_vpd_size(padap->pdev, CUDBG_VPD_PF_SIZE); if (rc < 0) return rc; if (ret) return ret; rc = cudbg_read_vpd_reg(padap, CUDBG_VPD_VER_ADDR, CUDBG_VPD_VER_LEN, vpd_str); if (rc) return rc; vpd_str[CUDBG_VPD_VER_LEN] = '\0'; rc = kstrtouint(vpd_str, 0, &vpd_vers); if (rc) return rc; rc = cudbg_get_buff(pdbg_init, dbg_buff, sizeof(struct cudbg_vpd_data), &temp_buff); if (rc) return rc; vpd_data = (struct cudbg_vpd_data *)temp_buff.data; memcpy(vpd_data->sn, vpd.sn, SERNUM_LEN + 1); memcpy(vpd_data->bn, vpd.pn, PN_LEN + 1); memcpy(vpd_data->na, vpd.na, MACADDR_LEN + 1); memcpy(vpd_data->mn, vpd.id, ID_LEN + 1); vpd_data->scfg_vers = scfg_vers; vpd_data->vpd_vers = vpd_vers; vpd_data->fw_major = FW_HDR_FW_VER_MAJOR_G(fw_vers); vpd_data->fw_minor = FW_HDR_FW_VER_MINOR_G(fw_vers); vpd_data->fw_micro = FW_HDR_FW_VER_MICRO_G(fw_vers); vpd_data->fw_build = FW_HDR_FW_VER_BUILD_G(fw_vers); return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } static int cudbg_read_tid(struct cudbg_init *pdbg_init, u32 tid, struct cudbg_tid_data *tid_data) { struct adapter *padap = pdbg_init->adap; int i, cmd_retry = 8; u32 val; /* Fill REQ_DATA regs with 0's */ for (i = 0; i < NUM_LE_DB_DBGI_REQ_DATA_INSTANCES; i++) t4_write_reg(padap, LE_DB_DBGI_REQ_DATA_A + (i << 2), 0); /* Write DBIG command */ val = DBGICMD_V(4) | DBGITID_V(tid); t4_write_reg(padap, LE_DB_DBGI_REQ_TCAM_CMD_A, val); tid_data->dbig_cmd = val; val = DBGICMDSTRT_F | DBGICMDMODE_V(1); /* LE mode */ t4_write_reg(padap, LE_DB_DBGI_CONFIG_A, val); tid_data->dbig_conf = val; /* Poll the DBGICMDBUSY bit */ val = 1; while (val) { val = t4_read_reg(padap, LE_DB_DBGI_CONFIG_A); val = val & DBGICMDBUSY_F; cmd_retry--; if (!cmd_retry) return CUDBG_SYSTEM_ERROR; } /* Check RESP status */ val = t4_read_reg(padap, LE_DB_DBGI_RSP_STATUS_A); tid_data->dbig_rsp_stat = val; if (!(val & 1)) return CUDBG_SYSTEM_ERROR; /* Read RESP data */ for (i = 0; i < NUM_LE_DB_DBGI_RSP_DATA_INSTANCES; i++) tid_data->data[i] = t4_read_reg(padap, LE_DB_DBGI_RSP_DATA_A + (i << 2)); tid_data->tid = tid; return 0; } static int cudbg_get_le_type(u32 tid, struct cudbg_tcam tcam_region) { int type = LE_ET_UNKNOWN; if (tid < tcam_region.server_start) type = LE_ET_TCAM_CON; else if (tid < tcam_region.filter_start) type = LE_ET_TCAM_SERVER; else if (tid < tcam_region.clip_start) type = LE_ET_TCAM_FILTER; else if (tid < tcam_region.routing_start) type = LE_ET_TCAM_CLIP; else if (tid < tcam_region.tid_hash_base) type = LE_ET_TCAM_ROUTING; else if (tid < tcam_region.max_tid) type = LE_ET_HASH_CON; else type = LE_ET_INVALID_TID; return type; } static int cudbg_is_ipv6_entry(struct cudbg_tid_data *tid_data, struct cudbg_tcam tcam_region) { int ipv6 = 0; int le_type; le_type = cudbg_get_le_type(tid_data->tid, tcam_region); if (tid_data->tid & 1) return 0; if (le_type == LE_ET_HASH_CON) { ipv6 = tid_data->data[16] & 0x8000; } else if (le_type == LE_ET_TCAM_CON) { ipv6 = tid_data->data[16] & 0x8000; if (ipv6) ipv6 = tid_data->data[9] == 0x00C00000; } else { ipv6 = 0; } return ipv6; } void cudbg_fill_le_tcam_info(struct adapter *padap, struct cudbg_tcam *tcam_region) { u32 value; /* Get the LE regions */ value = t4_read_reg(padap, LE_DB_TID_HASHBASE_A); /* hash base index */ tcam_region->tid_hash_base = value; /* Get routing table index */ value = t4_read_reg(padap, LE_DB_ROUTING_TABLE_INDEX_A); tcam_region->routing_start = value; /* Get clip table index. For T6 there is separate CLIP TCAM */ if (is_t6(padap->params.chip)) value = t4_read_reg(padap, LE_DB_CLCAM_TID_BASE_A); else value = t4_read_reg(padap, LE_DB_CLIP_TABLE_INDEX_A); tcam_region->clip_start = value; /* Get filter table index */ value = t4_read_reg(padap, LE_DB_FILTER_TABLE_INDEX_A); tcam_region->filter_start = value; /* Get server table index */ value = t4_read_reg(padap, LE_DB_SERVER_INDEX_A); tcam_region->server_start = value; /* Check whether hash is enabled and calculate the max tids */ value = t4_read_reg(padap, LE_DB_CONFIG_A); if ((value >> HASHEN_S) & 1) { value = t4_read_reg(padap, LE_DB_HASH_CONFIG_A); if (CHELSIO_CHIP_VERSION(padap->params.chip) > CHELSIO_T5) { tcam_region->max_tid = (value & 0xFFFFF) + tcam_region->tid_hash_base; } else { value = HASHTIDSIZE_G(value); value = 1 << value; tcam_region->max_tid = value + tcam_region->tid_hash_base; } } else { /* hash not enabled */ if (is_t6(padap->params.chip)) tcam_region->max_tid = (value & ASLIPCOMPEN_F) ? CUDBG_MAX_TID_COMP_EN : CUDBG_MAX_TID_COMP_DIS; else tcam_region->max_tid = CUDBG_MAX_TCAM_TID; } if (is_t6(padap->params.chip)) tcam_region->max_tid += CUDBG_T6_CLIP; } int cudbg_collect_le_tcam(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; struct cudbg_tcam tcam_region = { 0 }; struct cudbg_tid_data *tid_data; u32 bytes = 0; int rc, size; u32 i; cudbg_fill_le_tcam_info(padap, &tcam_region); size = sizeof(struct cudbg_tid_data) * tcam_region.max_tid; size += sizeof(struct cudbg_tcam); rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff); if (rc) return rc; memcpy(temp_buff.data, &tcam_region, sizeof(struct cudbg_tcam)); bytes = sizeof(struct cudbg_tcam); tid_data = (struct cudbg_tid_data *)(temp_buff.data + bytes); /* read all tid */ for (i = 0; i < tcam_region.max_tid; ) { rc = cudbg_read_tid(pdbg_init, i, tid_data); if (rc) { cudbg_err->sys_warn = CUDBG_STATUS_PARTIAL_DATA; /* Update tcam header and exit */ tcam_region.max_tid = i; memcpy(temp_buff.data, &tcam_region, sizeof(struct cudbg_tcam)); goto out; } if (cudbg_is_ipv6_entry(tid_data, tcam_region)) { /* T6 CLIP TCAM: ipv6 takes 4 entries */ if (is_t6(padap->params.chip) && i >= tcam_region.clip_start && i < tcam_region.clip_start + CUDBG_T6_CLIP) i += 4; else /* Main TCAM: ipv6 takes two tids */ i += 2; } else { i++; } tid_data++; bytes += sizeof(struct cudbg_tid_data); } out: return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_cctrl(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; u32 size; int rc; size = sizeof(u16) * NMTUS * NCCTRL_WIN; rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff); if (rc) return rc; t4_read_cong_tbl(padap, (void *)temp_buff.data); return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_ma_indirect(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; struct ireg_buf *ma_indr; int i, rc, n; u32 size, j; if (CHELSIO_CHIP_VERSION(padap->params.chip) < CHELSIO_T6) return CUDBG_STATUS_ENTITY_NOT_FOUND; n = sizeof(t6_ma_ireg_array) / (IREG_NUM_ELEM * sizeof(u32)); size = sizeof(struct ireg_buf) * n * 2; rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff); if (rc) return rc; ma_indr = (struct ireg_buf *)temp_buff.data; for (i = 0; i < n; i++) { struct ireg_field *ma_fli = &ma_indr->tp_pio; u32 *buff = ma_indr->outbuf; ma_fli->ireg_addr = t6_ma_ireg_array[i][0]; ma_fli->ireg_data = t6_ma_ireg_array[i][1]; ma_fli->ireg_local_offset = t6_ma_ireg_array[i][2]; ma_fli->ireg_offset_range = t6_ma_ireg_array[i][3]; t4_read_indirect(padap, ma_fli->ireg_addr, ma_fli->ireg_data, buff, ma_fli->ireg_offset_range, ma_fli->ireg_local_offset); ma_indr++; } n = sizeof(t6_ma_ireg_array2) / (IREG_NUM_ELEM * sizeof(u32)); for (i = 0; i < n; i++) { struct ireg_field *ma_fli = &ma_indr->tp_pio; u32 *buff = ma_indr->outbuf; ma_fli->ireg_addr = t6_ma_ireg_array2[i][0]; ma_fli->ireg_data = t6_ma_ireg_array2[i][1]; ma_fli->ireg_local_offset = t6_ma_ireg_array2[i][2]; for (j = 0; j < t6_ma_ireg_array2[i][3]; j++) { t4_read_indirect(padap, ma_fli->ireg_addr, ma_fli->ireg_data, buff, 1, ma_fli->ireg_local_offset); buff++; ma_fli->ireg_local_offset += 0x20; } ma_indr++; } return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_ulptx_la(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; struct cudbg_ulptx_la *ulptx_la_buff; struct cudbg_ver_hdr *ver_hdr; u32 i, j; int rc; rc = cudbg_get_buff(pdbg_init, dbg_buff, sizeof(struct cudbg_ver_hdr) + sizeof(struct cudbg_ulptx_la), &temp_buff); if (rc) return rc; ver_hdr = (struct cudbg_ver_hdr *)temp_buff.data; ver_hdr->signature = CUDBG_ENTITY_SIGNATURE; ver_hdr->revision = CUDBG_ULPTX_LA_REV; ver_hdr->size = sizeof(struct cudbg_ulptx_la); ulptx_la_buff = (struct cudbg_ulptx_la *)(temp_buff.data + sizeof(*ver_hdr)); for (i = 0; i < CUDBG_NUM_ULPTX; i++) { ulptx_la_buff->rdptr[i] = t4_read_reg(padap, ULP_TX_LA_RDPTR_0_A + 0x10 * i); ulptx_la_buff->wrptr[i] = t4_read_reg(padap, ULP_TX_LA_WRPTR_0_A + 0x10 * i); ulptx_la_buff->rddata[i] = t4_read_reg(padap, ULP_TX_LA_RDDATA_0_A + 0x10 * i); for (j = 0; j < CUDBG_NUM_ULPTX_READ; j++) ulptx_la_buff->rd_data[i][j] = t4_read_reg(padap, ULP_TX_LA_RDDATA_0_A + 0x10 * i); } for (i = 0; i < CUDBG_NUM_ULPTX_ASIC_READ; i++) { t4_write_reg(padap, ULP_TX_ASIC_DEBUG_CTRL_A, 0x1); ulptx_la_buff->rdptr_asic[i] = t4_read_reg(padap, ULP_TX_ASIC_DEBUG_CTRL_A); ulptx_la_buff->rddata_asic[i][0] = t4_read_reg(padap, ULP_TX_ASIC_DEBUG_0_A); ulptx_la_buff->rddata_asic[i][1] = t4_read_reg(padap, ULP_TX_ASIC_DEBUG_1_A); ulptx_la_buff->rddata_asic[i][2] = t4_read_reg(padap, ULP_TX_ASIC_DEBUG_2_A); ulptx_la_buff->rddata_asic[i][3] = t4_read_reg(padap, ULP_TX_ASIC_DEBUG_3_A); ulptx_la_buff->rddata_asic[i][4] = t4_read_reg(padap, ULP_TX_ASIC_DEBUG_4_A); ulptx_la_buff->rddata_asic[i][5] = t4_read_reg(padap, PM_RX_BASE_ADDR); } return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_up_cim_indirect(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; u32 local_offset, local_range; struct ireg_buf *up_cim; u32 size, j, iter; u32 instance = 0; int i, rc, n; if (is_t5(padap->params.chip)) n = sizeof(t5_up_cim_reg_array) / ((IREG_NUM_ELEM + 1) * sizeof(u32)); else if (is_t6(padap->params.chip)) n = sizeof(t6_up_cim_reg_array) / ((IREG_NUM_ELEM + 1) * sizeof(u32)); else return CUDBG_STATUS_NOT_IMPLEMENTED; size = sizeof(struct ireg_buf) * n; rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff); if (rc) return rc; up_cim = (struct ireg_buf *)temp_buff.data; for (i = 0; i < n; i++) { struct ireg_field *up_cim_reg = &up_cim->tp_pio; u32 *buff = up_cim->outbuf; if (is_t5(padap->params.chip)) { up_cim_reg->ireg_addr = t5_up_cim_reg_array[i][0]; up_cim_reg->ireg_data = t5_up_cim_reg_array[i][1]; up_cim_reg->ireg_local_offset = t5_up_cim_reg_array[i][2]; up_cim_reg->ireg_offset_range = t5_up_cim_reg_array[i][3]; instance = t5_up_cim_reg_array[i][4]; } else if (is_t6(padap->params.chip)) { up_cim_reg->ireg_addr = t6_up_cim_reg_array[i][0]; up_cim_reg->ireg_data = t6_up_cim_reg_array[i][1]; up_cim_reg->ireg_local_offset = t6_up_cim_reg_array[i][2]; up_cim_reg->ireg_offset_range = t6_up_cim_reg_array[i][3]; instance = t6_up_cim_reg_array[i][4]; } switch (instance) { case NUM_CIM_CTL_TSCH_CHANNEL_INSTANCES: iter = up_cim_reg->ireg_offset_range; local_offset = 0x120; local_range = 1; break; case NUM_CIM_CTL_TSCH_CHANNEL_TSCH_CLASS_INSTANCES: iter = up_cim_reg->ireg_offset_range; local_offset = 0x10; local_range = 1; break; default: iter = 1; local_offset = 0; local_range = up_cim_reg->ireg_offset_range; break; } for (j = 0; j < iter; j++, buff++) { rc = t4_cim_read(padap, up_cim_reg->ireg_local_offset + (j * local_offset), local_range, buff); if (rc) { cudbg_put_buff(pdbg_init, &temp_buff); return rc; } } up_cim++; } return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_pbt_tables(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; struct cudbg_pbt_tables *pbt; int i, rc; u32 addr; rc = cudbg_get_buff(pdbg_init, dbg_buff, sizeof(struct cudbg_pbt_tables), &temp_buff); if (rc) return rc; pbt = (struct cudbg_pbt_tables *)temp_buff.data; /* PBT dynamic entries */ addr = CUDBG_CHAC_PBT_ADDR; for (i = 0; i < CUDBG_PBT_DYNAMIC_ENTRIES; i++) { rc = t4_cim_read(padap, addr + (i * 4), 1, &pbt->pbt_dynamic[i]); if (rc) { cudbg_err->sys_err = rc; cudbg_put_buff(pdbg_init, &temp_buff); return rc; } } /* PBT static entries */ /* static entries start when bit 6 is set */ addr = CUDBG_CHAC_PBT_ADDR + (1 << 6); for (i = 0; i < CUDBG_PBT_STATIC_ENTRIES; i++) { rc = t4_cim_read(padap, addr + (i * 4), 1, &pbt->pbt_static[i]); if (rc) { cudbg_err->sys_err = rc; cudbg_put_buff(pdbg_init, &temp_buff); return rc; } } /* LRF entries */ addr = CUDBG_CHAC_PBT_LRF; for (i = 0; i < CUDBG_LRF_ENTRIES; i++) { rc = t4_cim_read(padap, addr + (i * 4), 1, &pbt->lrf_table[i]); if (rc) { cudbg_err->sys_err = rc; cudbg_put_buff(pdbg_init, &temp_buff); return rc; } } /* PBT data entries */ addr = CUDBG_CHAC_PBT_DATA; for (i = 0; i < CUDBG_PBT_DATA_ENTRIES; i++) { rc = t4_cim_read(padap, addr + (i * 4), 1, &pbt->pbt_data[i]); if (rc) { cudbg_err->sys_err = rc; cudbg_put_buff(pdbg_init, &temp_buff); return rc; } } return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_mbox_log(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_mbox_log *mboxlog = NULL; struct cudbg_buffer temp_buff = { 0 }; struct mbox_cmd_log *log = NULL; struct mbox_cmd *entry; unsigned int entry_idx; u16 mbox_cmds; int i, k, rc; u64 flit; u32 size; log = padap->mbox_log; mbox_cmds = padap->mbox_log->size; size = sizeof(struct cudbg_mbox_log) * mbox_cmds; rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff); if (rc) return rc; mboxlog = (struct cudbg_mbox_log *)temp_buff.data; for (k = 0; k < mbox_cmds; k++) { entry_idx = log->cursor + k; if (entry_idx >= log->size) entry_idx -= log->size; entry = mbox_cmd_log_entry(log, entry_idx); /* skip over unused entries */ if (entry->timestamp == 0) continue; memcpy(&mboxlog->entry, entry, sizeof(struct mbox_cmd)); for (i = 0; i < MBOX_LEN / 8; i++) { flit = entry->cmd[i]; mboxlog->hi[i] = (u32)(flit >> 32); mboxlog->lo[i] = (u32)flit; } mboxlog++; } return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } int cudbg_collect_hma_indirect(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; struct ireg_buf *hma_indr; int i, rc, n; u32 size; if (CHELSIO_CHIP_VERSION(padap->params.chip) < CHELSIO_T6) return CUDBG_STATUS_ENTITY_NOT_FOUND; n = sizeof(t6_hma_ireg_array) / (IREG_NUM_ELEM * sizeof(u32)); size = sizeof(struct ireg_buf) * n; rc = cudbg_get_buff(pdbg_init, dbg_buff, size, &temp_buff); if (rc) return rc; hma_indr = (struct ireg_buf *)temp_buff.data; for (i = 0; i < n; i++) { struct ireg_field *hma_fli = &hma_indr->tp_pio; u32 *buff = hma_indr->outbuf; hma_fli->ireg_addr = t6_hma_ireg_array[i][0]; hma_fli->ireg_data = t6_hma_ireg_array[i][1]; hma_fli->ireg_local_offset = t6_hma_ireg_array[i][2]; hma_fli->ireg_offset_range = t6_hma_ireg_array[i][3]; t4_read_indirect(padap, hma_fli->ireg_addr, hma_fli->ireg_data, buff, hma_fli->ireg_offset_range, hma_fli->ireg_local_offset); hma_indr++; } return cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); } void cudbg_fill_qdesc_num_and_size(const struct adapter *padap, u32 *num, u32 *size) { u32 tot_entries = 0, tot_size = 0; /* NIC TXQ, RXQ, FLQ, and CTRLQ */ tot_entries += MAX_ETH_QSETS * 3; tot_entries += MAX_CTRL_QUEUES; tot_size += MAX_ETH_QSETS * MAX_TXQ_ENTRIES * MAX_TXQ_DESC_SIZE; tot_size += MAX_ETH_QSETS * MAX_RSPQ_ENTRIES * MAX_RXQ_DESC_SIZE; tot_size += MAX_ETH_QSETS * MAX_RX_BUFFERS * MAX_FL_DESC_SIZE; tot_size += MAX_CTRL_QUEUES * MAX_CTRL_TXQ_ENTRIES * MAX_CTRL_TXQ_DESC_SIZE; /* FW_EVTQ and INTRQ */ tot_entries += INGQ_EXTRAS; tot_size += INGQ_EXTRAS * MAX_RSPQ_ENTRIES * MAX_RXQ_DESC_SIZE; /* PTP_TXQ */ tot_entries += 1; tot_size += MAX_TXQ_ENTRIES * MAX_TXQ_DESC_SIZE; /* ULD TXQ, RXQ, and FLQ */ tot_entries += CXGB4_TX_MAX * MAX_OFLD_QSETS; tot_entries += CXGB4_ULD_MAX * MAX_ULD_QSETS * 2; tot_size += CXGB4_TX_MAX * MAX_OFLD_QSETS * MAX_TXQ_ENTRIES * MAX_TXQ_DESC_SIZE; tot_size += CXGB4_ULD_MAX * MAX_ULD_QSETS * MAX_RSPQ_ENTRIES * MAX_RXQ_DESC_SIZE; tot_size += CXGB4_ULD_MAX * MAX_ULD_QSETS * MAX_RX_BUFFERS * MAX_FL_DESC_SIZE; /* ULD CIQ */ tot_entries += CXGB4_ULD_MAX * MAX_ULD_QSETS; tot_size += CXGB4_ULD_MAX * MAX_ULD_QSETS * SGE_MAX_IQ_SIZE * MAX_RXQ_DESC_SIZE; tot_size += sizeof(struct cudbg_ver_hdr) + sizeof(struct cudbg_qdesc_info) + sizeof(struct cudbg_qdesc_entry) * tot_entries; if (num) *num = tot_entries; if (size) *size = tot_size; } int cudbg_collect_qdesc(struct cudbg_init *pdbg_init, struct cudbg_buffer *dbg_buff, struct cudbg_error *cudbg_err) { u32 num_queues = 0, tot_entries = 0, size = 0; struct adapter *padap = pdbg_init->adap; struct cudbg_buffer temp_buff = { 0 }; struct cudbg_qdesc_entry *qdesc_entry; struct cudbg_qdesc_info *qdesc_info; struct cudbg_ver_hdr *ver_hdr; struct sge *s = &padap->sge; u32 i, j, cur_off, tot_len; u8 *data; int rc; cudbg_fill_qdesc_num_and_size(padap, &tot_entries, &size); size = min_t(u32, size, CUDBG_DUMP_BUFF_SIZE); tot_len = size; data = kvzalloc(size, GFP_KERNEL); if (!data) return -ENOMEM; ver_hdr = (struct cudbg_ver_hdr *)data; ver_hdr->signature = CUDBG_ENTITY_SIGNATURE; ver_hdr->revision = CUDBG_QDESC_REV; ver_hdr->size = sizeof(struct cudbg_qdesc_info); size -= sizeof(*ver_hdr); qdesc_info = (struct cudbg_qdesc_info *)(data + sizeof(*ver_hdr)); size -= sizeof(*qdesc_info); qdesc_entry = (struct cudbg_qdesc_entry *)qdesc_info->data; #define QDESC_GET(q, desc, type, label) do { \ if (size <= 0) { \ goto label; \ } \ if (desc) { \ cudbg_fill_qdesc_##q(q, type, qdesc_entry); \ size -= sizeof(*qdesc_entry) + qdesc_entry->data_size; \ num_queues++; \ qdesc_entry = cudbg_next_qdesc(qdesc_entry); \ } \ } while (0) #define QDESC_GET_TXQ(q, type, label) do { \ struct sge_txq *txq = (struct sge_txq *)q; \ QDESC_GET(txq, txq->desc, type, label); \ } while (0) #define QDESC_GET_RXQ(q, type, label) do { \ struct sge_rspq *rxq = (struct sge_rspq *)q; \ QDESC_GET(rxq, rxq->desc, type, label); \ } while (0) #define QDESC_GET_FLQ(q, type, label) do { \ struct sge_fl *flq = (struct sge_fl *)q; \ QDESC_GET(flq, flq->desc, type, label); \ } while (0) /* NIC TXQ */ for (i = 0; i < s->ethqsets; i++) QDESC_GET_TXQ(&s->ethtxq[i].q, CUDBG_QTYPE_NIC_TXQ, out); /* NIC RXQ */ for (i = 0; i < s->ethqsets; i++) QDESC_GET_RXQ(&s->ethrxq[i].rspq, CUDBG_QTYPE_NIC_RXQ, out); /* NIC FLQ */ for (i = 0; i < s->ethqsets; i++) QDESC_GET_FLQ(&s->ethrxq[i].fl, CUDBG_QTYPE_NIC_FLQ, out); /* NIC CTRLQ */ for (i = 0; i < padap->params.nports; i++) QDESC_GET_TXQ(&s->ctrlq[i].q, CUDBG_QTYPE_CTRLQ, out); /* FW_EVTQ */ QDESC_GET_RXQ(&s->fw_evtq, CUDBG_QTYPE_FWEVTQ, out); /* INTRQ */ QDESC_GET_RXQ(&s->intrq, CUDBG_QTYPE_INTRQ, out); /* PTP_TXQ */ QDESC_GET_TXQ(&s->ptptxq.q, CUDBG_QTYPE_PTP_TXQ, out); /* ULD Queues */ mutex_lock(&uld_mutex); if (s->uld_txq_info) { struct sge_uld_txq_info *utxq; /* ULD TXQ */ for (j = 0; j < CXGB4_TX_MAX; j++) { if (!s->uld_txq_info[j]) continue; utxq = s->uld_txq_info[j]; for (i = 0; i < utxq->ntxq; i++) QDESC_GET_TXQ(&utxq->uldtxq[i].q, cudbg_uld_txq_to_qtype(j), out_unlock); } } if (s->uld_rxq_info) { struct sge_uld_rxq_info *urxq; u32 base; /* ULD RXQ */ for (j = 0; j < CXGB4_ULD_MAX; j++) { if (!s->uld_rxq_info[j]) continue; urxq = s->uld_rxq_info[j]; for (i = 0; i < urxq->nrxq; i++) QDESC_GET_RXQ(&urxq->uldrxq[i].rspq, cudbg_uld_rxq_to_qtype(j), out_unlock); } /* ULD FLQ */ for (j = 0; j < CXGB4_ULD_MAX; j++) { if (!s->uld_rxq_info[j]) continue; urxq = s->uld_rxq_info[j]; for (i = 0; i < urxq->nrxq; i++) QDESC_GET_FLQ(&urxq->uldrxq[i].fl, cudbg_uld_flq_to_qtype(j), out_unlock); } /* ULD CIQ */ for (j = 0; j < CXGB4_ULD_MAX; j++) { if (!s->uld_rxq_info[j]) continue; urxq = s->uld_rxq_info[j]; base = urxq->nrxq; for (i = 0; i < urxq->nciq; i++) QDESC_GET_RXQ(&urxq->uldrxq[base + i].rspq, cudbg_uld_ciq_to_qtype(j), out_unlock); } } out_unlock: mutex_unlock(&uld_mutex); out: qdesc_info->qdesc_entry_size = sizeof(*qdesc_entry); qdesc_info->num_queues = num_queues; cur_off = 0; while (tot_len) { u32 chunk_size = min_t(u32, tot_len, CUDBG_CHUNK_SIZE); rc = cudbg_get_buff(pdbg_init, dbg_buff, chunk_size, &temp_buff); if (rc) { cudbg_err->sys_warn = CUDBG_STATUS_PARTIAL_DATA; goto out_free; } memcpy(temp_buff.data, data + cur_off, chunk_size); tot_len -= chunk_size; cur_off += chunk_size; rc = cudbg_write_and_release_buff(pdbg_init, &temp_buff, dbg_buff); if (rc) { cudbg_put_buff(pdbg_init, &temp_buff); cudbg_err->sys_warn = CUDBG_STATUS_PARTIAL_DATA; goto out_free; } } out_free: if (data) kvfree(data); #undef QDESC_GET_FLQ #undef QDESC_GET_RXQ #undef QDESC_GET_TXQ #undef QDESC_GET return rc; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1