Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Claudiu Manoil | 7782 | 99.96% | 3 | 75.00% |
Stephen Rothwell | 3 | 0.04% | 1 | 25.00% |
Total | 7785 | 4 |
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) /* Copyright 2017-2019 NXP */ #include "enetc.h" #include <linux/tcp.h> #include <linux/udp.h> #include <linux/of_mdio.h> #include <linux/vmalloc.h> /* ENETC overhead: optional extension BD + 1 BD gap */ #define ENETC_TXBDS_NEEDED(val) ((val) + 2) /* max # of chained Tx BDs is 15, including head and extension BD */ #define ENETC_MAX_SKB_FRAGS 13 #define ENETC_TXBDS_MAX_NEEDED ENETC_TXBDS_NEEDED(ENETC_MAX_SKB_FRAGS + 1) static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb); netdev_tx_t enetc_xmit(struct sk_buff *skb, struct net_device *ndev) { struct enetc_ndev_priv *priv = netdev_priv(ndev); struct enetc_bdr *tx_ring; int count; tx_ring = priv->tx_ring[skb->queue_mapping]; if (unlikely(skb_shinfo(skb)->nr_frags > ENETC_MAX_SKB_FRAGS)) if (unlikely(skb_linearize(skb))) goto drop_packet_err; count = skb_shinfo(skb)->nr_frags + 1; /* fragments + head */ if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_NEEDED(count)) { netif_stop_subqueue(ndev, tx_ring->index); return NETDEV_TX_BUSY; } count = enetc_map_tx_buffs(tx_ring, skb); if (unlikely(!count)) goto drop_packet_err; if (enetc_bd_unused(tx_ring) < ENETC_TXBDS_MAX_NEEDED) netif_stop_subqueue(ndev, tx_ring->index); return NETDEV_TX_OK; drop_packet_err: dev_kfree_skb_any(skb); return NETDEV_TX_OK; } static bool enetc_tx_csum(struct sk_buff *skb, union enetc_tx_bd *txbd) { int l3_start, l3_hsize; u16 l3_flags, l4_flags; if (skb->ip_summed != CHECKSUM_PARTIAL) return false; switch (skb->csum_offset) { case offsetof(struct tcphdr, check): l4_flags = ENETC_TXBD_L4_TCP; break; case offsetof(struct udphdr, check): l4_flags = ENETC_TXBD_L4_UDP; break; default: skb_checksum_help(skb); return false; } l3_start = skb_network_offset(skb); l3_hsize = skb_network_header_len(skb); l3_flags = 0; if (skb->protocol == htons(ETH_P_IPV6)) l3_flags = ENETC_TXBD_L3_IPV6; /* write BD fields */ txbd->l3_csoff = enetc_txbd_l3_csoff(l3_start, l3_hsize, l3_flags); txbd->l4_csoff = l4_flags; return true; } static void enetc_unmap_tx_buff(struct enetc_bdr *tx_ring, struct enetc_tx_swbd *tx_swbd) { if (tx_swbd->is_dma_page) dma_unmap_page(tx_ring->dev, tx_swbd->dma, tx_swbd->len, DMA_TO_DEVICE); else dma_unmap_single(tx_ring->dev, tx_swbd->dma, tx_swbd->len, DMA_TO_DEVICE); tx_swbd->dma = 0; } static void enetc_free_tx_skb(struct enetc_bdr *tx_ring, struct enetc_tx_swbd *tx_swbd) { if (tx_swbd->dma) enetc_unmap_tx_buff(tx_ring, tx_swbd); if (tx_swbd->skb) { dev_kfree_skb_any(tx_swbd->skb); tx_swbd->skb = NULL; } } static int enetc_map_tx_buffs(struct enetc_bdr *tx_ring, struct sk_buff *skb) { struct enetc_tx_swbd *tx_swbd; struct skb_frag_struct *frag; int len = skb_headlen(skb); union enetc_tx_bd temp_bd; union enetc_tx_bd *txbd; bool do_vlan, do_tstamp; int i, count = 0; unsigned int f; dma_addr_t dma; u8 flags = 0; i = tx_ring->next_to_use; txbd = ENETC_TXBD(*tx_ring, i); prefetchw(txbd); dma = dma_map_single(tx_ring->dev, skb->data, len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(tx_ring->dev, dma))) goto dma_err; temp_bd.addr = cpu_to_le64(dma); temp_bd.buf_len = cpu_to_le16(len); temp_bd.lstatus = 0; tx_swbd = &tx_ring->tx_swbd[i]; tx_swbd->dma = dma; tx_swbd->len = len; tx_swbd->is_dma_page = 0; count++; do_vlan = skb_vlan_tag_present(skb); do_tstamp = skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP; if (do_vlan || do_tstamp) flags |= ENETC_TXBD_FLAGS_EX; if (enetc_tx_csum(skb, &temp_bd)) flags |= ENETC_TXBD_FLAGS_CSUM | ENETC_TXBD_FLAGS_L4CS; /* first BD needs frm_len and offload flags set */ temp_bd.frm_len = cpu_to_le16(skb->len); temp_bd.flags = flags; if (flags & ENETC_TXBD_FLAGS_EX) { u8 e_flags = 0; *txbd = temp_bd; enetc_clear_tx_bd(&temp_bd); /* add extension BD for VLAN and/or timestamping */ flags = 0; tx_swbd++; txbd++; i++; if (unlikely(i == tx_ring->bd_count)) { i = 0; tx_swbd = tx_ring->tx_swbd; txbd = ENETC_TXBD(*tx_ring, 0); } prefetchw(txbd); if (do_vlan) { temp_bd.ext.vid = cpu_to_le16(skb_vlan_tag_get(skb)); temp_bd.ext.tpid = 0; /* < C-TAG */ e_flags |= ENETC_TXBD_E_FLAGS_VLAN_INS; } if (do_tstamp) { skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; e_flags |= ENETC_TXBD_E_FLAGS_TWO_STEP_PTP; } temp_bd.ext.e_flags = e_flags; count++; } frag = &skb_shinfo(skb)->frags[0]; for (f = 0; f < skb_shinfo(skb)->nr_frags; f++, frag++) { len = skb_frag_size(frag); dma = skb_frag_dma_map(tx_ring->dev, frag, 0, len, DMA_TO_DEVICE); if (dma_mapping_error(tx_ring->dev, dma)) goto dma_err; *txbd = temp_bd; enetc_clear_tx_bd(&temp_bd); flags = 0; tx_swbd++; txbd++; i++; if (unlikely(i == tx_ring->bd_count)) { i = 0; tx_swbd = tx_ring->tx_swbd; txbd = ENETC_TXBD(*tx_ring, 0); } prefetchw(txbd); temp_bd.addr = cpu_to_le64(dma); temp_bd.buf_len = cpu_to_le16(len); tx_swbd->dma = dma; tx_swbd->len = len; tx_swbd->is_dma_page = 1; count++; } /* last BD needs 'F' bit set */ flags |= ENETC_TXBD_FLAGS_F; temp_bd.flags = flags; *txbd = temp_bd; tx_ring->tx_swbd[i].skb = skb; enetc_bdr_idx_inc(tx_ring, &i); tx_ring->next_to_use = i; /* let H/W know BD ring has been updated */ enetc_wr_reg(tx_ring->tpir, i); /* includes wmb() */ return count; dma_err: dev_err(tx_ring->dev, "DMA map error"); do { tx_swbd = &tx_ring->tx_swbd[i]; enetc_free_tx_skb(tx_ring, tx_swbd); if (i == 0) i = tx_ring->bd_count; i--; } while (count--); return 0; } static irqreturn_t enetc_msix(int irq, void *data) { struct enetc_int_vector *v = data; int i; /* disable interrupts */ enetc_wr_reg(v->rbier, 0); for_each_set_bit(i, &v->tx_rings_map, v->count_tx_rings) enetc_wr_reg(v->tbier_base + ENETC_BDR_OFF(i), 0); napi_schedule_irqoff(&v->napi); return IRQ_HANDLED; } static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget); static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring, struct napi_struct *napi, int work_limit); static int enetc_poll(struct napi_struct *napi, int budget) { struct enetc_int_vector *v = container_of(napi, struct enetc_int_vector, napi); bool complete = true; int work_done; int i; for (i = 0; i < v->count_tx_rings; i++) if (!enetc_clean_tx_ring(&v->tx_ring[i], budget)) complete = false; work_done = enetc_clean_rx_ring(&v->rx_ring, napi, budget); if (work_done == budget) complete = false; if (!complete) return budget; napi_complete_done(napi, work_done); /* enable interrupts */ enetc_wr_reg(v->rbier, ENETC_RBIER_RXTIE); for_each_set_bit(i, &v->tx_rings_map, v->count_tx_rings) enetc_wr_reg(v->tbier_base + ENETC_BDR_OFF(i), ENETC_TBIER_TXTIE); return work_done; } static int enetc_bd_ready_count(struct enetc_bdr *tx_ring, int ci) { int pi = enetc_rd_reg(tx_ring->tcir) & ENETC_TBCIR_IDX_MASK; return pi >= ci ? pi - ci : tx_ring->bd_count - ci + pi; } static bool enetc_clean_tx_ring(struct enetc_bdr *tx_ring, int napi_budget) { struct net_device *ndev = tx_ring->ndev; int tx_frm_cnt = 0, tx_byte_cnt = 0; struct enetc_tx_swbd *tx_swbd; int i, bds_to_clean; i = tx_ring->next_to_clean; tx_swbd = &tx_ring->tx_swbd[i]; bds_to_clean = enetc_bd_ready_count(tx_ring, i); while (bds_to_clean && tx_frm_cnt < ENETC_DEFAULT_TX_WORK) { bool is_eof = !!tx_swbd->skb; if (likely(tx_swbd->dma)) enetc_unmap_tx_buff(tx_ring, tx_swbd); if (is_eof) { napi_consume_skb(tx_swbd->skb, napi_budget); tx_swbd->skb = NULL; } tx_byte_cnt += tx_swbd->len; bds_to_clean--; tx_swbd++; i++; if (unlikely(i == tx_ring->bd_count)) { i = 0; tx_swbd = tx_ring->tx_swbd; } /* BD iteration loop end */ if (is_eof) { tx_frm_cnt++; /* re-arm interrupt source */ enetc_wr_reg(tx_ring->idr, BIT(tx_ring->index) | BIT(16 + tx_ring->index)); } if (unlikely(!bds_to_clean)) bds_to_clean = enetc_bd_ready_count(tx_ring, i); } tx_ring->next_to_clean = i; tx_ring->stats.packets += tx_frm_cnt; tx_ring->stats.bytes += tx_byte_cnt; if (unlikely(tx_frm_cnt && netif_carrier_ok(ndev) && __netif_subqueue_stopped(ndev, tx_ring->index) && (enetc_bd_unused(tx_ring) >= ENETC_TXBDS_MAX_NEEDED))) { netif_wake_subqueue(ndev, tx_ring->index); } return tx_frm_cnt != ENETC_DEFAULT_TX_WORK; } static bool enetc_new_page(struct enetc_bdr *rx_ring, struct enetc_rx_swbd *rx_swbd) { struct page *page; dma_addr_t addr; page = dev_alloc_page(); if (unlikely(!page)) return false; addr = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(rx_ring->dev, addr))) { __free_page(page); return false; } rx_swbd->dma = addr; rx_swbd->page = page; rx_swbd->page_offset = ENETC_RXB_PAD; return true; } static int enetc_refill_rx_ring(struct enetc_bdr *rx_ring, const int buff_cnt) { struct enetc_rx_swbd *rx_swbd; union enetc_rx_bd *rxbd; int i, j; i = rx_ring->next_to_use; rx_swbd = &rx_ring->rx_swbd[i]; rxbd = ENETC_RXBD(*rx_ring, i); for (j = 0; j < buff_cnt; j++) { /* try reuse page */ if (unlikely(!rx_swbd->page)) { if (unlikely(!enetc_new_page(rx_ring, rx_swbd))) { rx_ring->stats.rx_alloc_errs++; break; } } /* update RxBD */ rxbd->w.addr = cpu_to_le64(rx_swbd->dma + rx_swbd->page_offset); /* clear 'R" as well */ rxbd->r.lstatus = 0; rx_swbd++; rxbd++; i++; if (unlikely(i == rx_ring->bd_count)) { i = 0; rx_swbd = rx_ring->rx_swbd; rxbd = ENETC_RXBD(*rx_ring, 0); } } if (likely(j)) { rx_ring->next_to_alloc = i; /* keep track from page reuse */ rx_ring->next_to_use = i; /* update ENETC's consumer index */ enetc_wr_reg(rx_ring->rcir, i); } return j; } static void enetc_get_offloads(struct enetc_bdr *rx_ring, union enetc_rx_bd *rxbd, struct sk_buff *skb) { /* TODO: add tstamp, hashing */ if (rx_ring->ndev->features & NETIF_F_RXCSUM) { u16 inet_csum = le16_to_cpu(rxbd->r.inet_csum); skb->csum = csum_unfold((__force __sum16)~htons(inet_csum)); skb->ip_summed = CHECKSUM_COMPLETE; } /* copy VLAN to skb, if one is extracted, for now we assume it's a * standard TPID, but HW also supports custom values */ if (le16_to_cpu(rxbd->r.flags) & ENETC_RXBD_FLAG_VLAN) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), le16_to_cpu(rxbd->r.vlan_opt)); } static void enetc_process_skb(struct enetc_bdr *rx_ring, struct sk_buff *skb) { skb_record_rx_queue(skb, rx_ring->index); skb->protocol = eth_type_trans(skb, rx_ring->ndev); } static bool enetc_page_reusable(struct page *page) { return (!page_is_pfmemalloc(page) && page_ref_count(page) == 1); } static void enetc_reuse_page(struct enetc_bdr *rx_ring, struct enetc_rx_swbd *old) { struct enetc_rx_swbd *new; new = &rx_ring->rx_swbd[rx_ring->next_to_alloc]; /* next buf that may reuse a page */ enetc_bdr_idx_inc(rx_ring, &rx_ring->next_to_alloc); /* copy page reference */ *new = *old; } static struct enetc_rx_swbd *enetc_get_rx_buff(struct enetc_bdr *rx_ring, int i, u16 size) { struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i]; dma_sync_single_range_for_cpu(rx_ring->dev, rx_swbd->dma, rx_swbd->page_offset, size, DMA_FROM_DEVICE); return rx_swbd; } static void enetc_put_rx_buff(struct enetc_bdr *rx_ring, struct enetc_rx_swbd *rx_swbd) { if (likely(enetc_page_reusable(rx_swbd->page))) { rx_swbd->page_offset ^= ENETC_RXB_TRUESIZE; page_ref_inc(rx_swbd->page); enetc_reuse_page(rx_ring, rx_swbd); /* sync for use by the device */ dma_sync_single_range_for_device(rx_ring->dev, rx_swbd->dma, rx_swbd->page_offset, ENETC_RXB_DMA_SIZE, DMA_FROM_DEVICE); } else { dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE, DMA_FROM_DEVICE); } rx_swbd->page = NULL; } static struct sk_buff *enetc_map_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i, u16 size) { struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size); struct sk_buff *skb; void *ba; ba = page_address(rx_swbd->page) + rx_swbd->page_offset; skb = build_skb(ba - ENETC_RXB_PAD, ENETC_RXB_TRUESIZE); if (unlikely(!skb)) { rx_ring->stats.rx_alloc_errs++; return NULL; } skb_reserve(skb, ENETC_RXB_PAD); __skb_put(skb, size); enetc_put_rx_buff(rx_ring, rx_swbd); return skb; } static void enetc_add_rx_buff_to_skb(struct enetc_bdr *rx_ring, int i, u16 size, struct sk_buff *skb) { struct enetc_rx_swbd *rx_swbd = enetc_get_rx_buff(rx_ring, i, size); skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_swbd->page, rx_swbd->page_offset, size, ENETC_RXB_TRUESIZE); enetc_put_rx_buff(rx_ring, rx_swbd); } #define ENETC_RXBD_BUNDLE 16 /* # of BDs to update at once */ static int enetc_clean_rx_ring(struct enetc_bdr *rx_ring, struct napi_struct *napi, int work_limit) { int rx_frm_cnt = 0, rx_byte_cnt = 0; int cleaned_cnt, i; cleaned_cnt = enetc_bd_unused(rx_ring); /* next descriptor to process */ i = rx_ring->next_to_clean; while (likely(rx_frm_cnt < work_limit)) { union enetc_rx_bd *rxbd; struct sk_buff *skb; u32 bd_status; u16 size; if (cleaned_cnt >= ENETC_RXBD_BUNDLE) { int count = enetc_refill_rx_ring(rx_ring, cleaned_cnt); cleaned_cnt -= count; } rxbd = ENETC_RXBD(*rx_ring, i); bd_status = le32_to_cpu(rxbd->r.lstatus); if (!bd_status) break; enetc_wr_reg(rx_ring->idr, BIT(rx_ring->index)); dma_rmb(); /* for reading other rxbd fields */ size = le16_to_cpu(rxbd->r.buf_len); skb = enetc_map_rx_buff_to_skb(rx_ring, i, size); if (!skb) break; enetc_get_offloads(rx_ring, rxbd, skb); cleaned_cnt++; rxbd++; i++; if (unlikely(i == rx_ring->bd_count)) { i = 0; rxbd = ENETC_RXBD(*rx_ring, 0); } if (unlikely(bd_status & ENETC_RXBD_LSTATUS(ENETC_RXBD_ERR_MASK))) { dev_kfree_skb(skb); while (!(bd_status & ENETC_RXBD_LSTATUS_F)) { dma_rmb(); bd_status = le32_to_cpu(rxbd->r.lstatus); rxbd++; i++; if (unlikely(i == rx_ring->bd_count)) { i = 0; rxbd = ENETC_RXBD(*rx_ring, 0); } } rx_ring->ndev->stats.rx_dropped++; rx_ring->ndev->stats.rx_errors++; break; } /* not last BD in frame? */ while (!(bd_status & ENETC_RXBD_LSTATUS_F)) { bd_status = le32_to_cpu(rxbd->r.lstatus); size = ENETC_RXB_DMA_SIZE; if (bd_status & ENETC_RXBD_LSTATUS_F) { dma_rmb(); size = le16_to_cpu(rxbd->r.buf_len); } enetc_add_rx_buff_to_skb(rx_ring, i, size, skb); cleaned_cnt++; rxbd++; i++; if (unlikely(i == rx_ring->bd_count)) { i = 0; rxbd = ENETC_RXBD(*rx_ring, 0); } } rx_byte_cnt += skb->len; enetc_process_skb(rx_ring, skb); napi_gro_receive(napi, skb); rx_frm_cnt++; } rx_ring->next_to_clean = i; rx_ring->stats.packets += rx_frm_cnt; rx_ring->stats.bytes += rx_byte_cnt; return rx_frm_cnt; } /* Probing and Init */ #define ENETC_MAX_RFS_SIZE 64 void enetc_get_si_caps(struct enetc_si *si) { struct enetc_hw *hw = &si->hw; u32 val; /* find out how many of various resources we have to work with */ val = enetc_rd(hw, ENETC_SICAPR0); si->num_rx_rings = (val >> 16) & 0xff; si->num_tx_rings = val & 0xff; val = enetc_rd(hw, ENETC_SIRFSCAPR); si->num_fs_entries = ENETC_SIRFSCAPR_GET_NUM_RFS(val); si->num_fs_entries = min(si->num_fs_entries, ENETC_MAX_RFS_SIZE); si->num_rss = 0; val = enetc_rd(hw, ENETC_SIPCAPR0); if (val & ENETC_SIPCAPR0_RSS) { val = enetc_rd(hw, ENETC_SIRSSCAPR); si->num_rss = ENETC_SIRSSCAPR_GET_NUM_RSS(val); } } static int enetc_dma_alloc_bdr(struct enetc_bdr *r, size_t bd_size) { r->bd_base = dma_alloc_coherent(r->dev, r->bd_count * bd_size, &r->bd_dma_base, GFP_KERNEL); if (!r->bd_base) return -ENOMEM; /* h/w requires 128B alignment */ if (!IS_ALIGNED(r->bd_dma_base, 128)) { dma_free_coherent(r->dev, r->bd_count * bd_size, r->bd_base, r->bd_dma_base); return -EINVAL; } return 0; } static int enetc_alloc_txbdr(struct enetc_bdr *txr) { int err; txr->tx_swbd = vzalloc(txr->bd_count * sizeof(struct enetc_tx_swbd)); if (!txr->tx_swbd) return -ENOMEM; err = enetc_dma_alloc_bdr(txr, sizeof(union enetc_tx_bd)); if (err) { vfree(txr->tx_swbd); return err; } txr->next_to_clean = 0; txr->next_to_use = 0; return 0; } static void enetc_free_txbdr(struct enetc_bdr *txr) { int size, i; for (i = 0; i < txr->bd_count; i++) enetc_free_tx_skb(txr, &txr->tx_swbd[i]); size = txr->bd_count * sizeof(union enetc_tx_bd); dma_free_coherent(txr->dev, size, txr->bd_base, txr->bd_dma_base); txr->bd_base = NULL; vfree(txr->tx_swbd); txr->tx_swbd = NULL; } static int enetc_alloc_tx_resources(struct enetc_ndev_priv *priv) { int i, err; for (i = 0; i < priv->num_tx_rings; i++) { err = enetc_alloc_txbdr(priv->tx_ring[i]); if (err) goto fail; } return 0; fail: while (i-- > 0) enetc_free_txbdr(priv->tx_ring[i]); return err; } static void enetc_free_tx_resources(struct enetc_ndev_priv *priv) { int i; for (i = 0; i < priv->num_tx_rings; i++) enetc_free_txbdr(priv->tx_ring[i]); } static int enetc_alloc_rxbdr(struct enetc_bdr *rxr) { int err; rxr->rx_swbd = vzalloc(rxr->bd_count * sizeof(struct enetc_rx_swbd)); if (!rxr->rx_swbd) return -ENOMEM; err = enetc_dma_alloc_bdr(rxr, sizeof(union enetc_rx_bd)); if (err) { vfree(rxr->rx_swbd); return err; } rxr->next_to_clean = 0; rxr->next_to_use = 0; rxr->next_to_alloc = 0; return 0; } static void enetc_free_rxbdr(struct enetc_bdr *rxr) { int size; size = rxr->bd_count * sizeof(union enetc_rx_bd); dma_free_coherent(rxr->dev, size, rxr->bd_base, rxr->bd_dma_base); rxr->bd_base = NULL; vfree(rxr->rx_swbd); rxr->rx_swbd = NULL; } static int enetc_alloc_rx_resources(struct enetc_ndev_priv *priv) { int i, err; for (i = 0; i < priv->num_rx_rings; i++) { err = enetc_alloc_rxbdr(priv->rx_ring[i]); if (err) goto fail; } return 0; fail: while (i-- > 0) enetc_free_rxbdr(priv->rx_ring[i]); return err; } static void enetc_free_rx_resources(struct enetc_ndev_priv *priv) { int i; for (i = 0; i < priv->num_rx_rings; i++) enetc_free_rxbdr(priv->rx_ring[i]); } static void enetc_free_tx_ring(struct enetc_bdr *tx_ring) { int i; if (!tx_ring->tx_swbd) return; for (i = 0; i < tx_ring->bd_count; i++) { struct enetc_tx_swbd *tx_swbd = &tx_ring->tx_swbd[i]; enetc_free_tx_skb(tx_ring, tx_swbd); } tx_ring->next_to_clean = 0; tx_ring->next_to_use = 0; } static void enetc_free_rx_ring(struct enetc_bdr *rx_ring) { int i; if (!rx_ring->rx_swbd) return; for (i = 0; i < rx_ring->bd_count; i++) { struct enetc_rx_swbd *rx_swbd = &rx_ring->rx_swbd[i]; if (!rx_swbd->page) continue; dma_unmap_page(rx_ring->dev, rx_swbd->dma, PAGE_SIZE, DMA_FROM_DEVICE); __free_page(rx_swbd->page); rx_swbd->page = NULL; } rx_ring->next_to_clean = 0; rx_ring->next_to_use = 0; rx_ring->next_to_alloc = 0; } static void enetc_free_rxtx_rings(struct enetc_ndev_priv *priv) { int i; for (i = 0; i < priv->num_rx_rings; i++) enetc_free_rx_ring(priv->rx_ring[i]); for (i = 0; i < priv->num_tx_rings; i++) enetc_free_tx_ring(priv->tx_ring[i]); } static int enetc_alloc_cbdr(struct device *dev, struct enetc_cbdr *cbdr) { int size = cbdr->bd_count * sizeof(struct enetc_cbd); cbdr->bd_base = dma_alloc_coherent(dev, size, &cbdr->bd_dma_base, GFP_KERNEL); if (!cbdr->bd_base) return -ENOMEM; /* h/w requires 128B alignment */ if (!IS_ALIGNED(cbdr->bd_dma_base, 128)) { dma_free_coherent(dev, size, cbdr->bd_base, cbdr->bd_dma_base); return -EINVAL; } cbdr->next_to_clean = 0; cbdr->next_to_use = 0; return 0; } static void enetc_free_cbdr(struct device *dev, struct enetc_cbdr *cbdr) { int size = cbdr->bd_count * sizeof(struct enetc_cbd); dma_free_coherent(dev, size, cbdr->bd_base, cbdr->bd_dma_base); cbdr->bd_base = NULL; } static void enetc_setup_cbdr(struct enetc_hw *hw, struct enetc_cbdr *cbdr) { /* set CBDR cache attributes */ enetc_wr(hw, ENETC_SICAR2, ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT); enetc_wr(hw, ENETC_SICBDRBAR0, lower_32_bits(cbdr->bd_dma_base)); enetc_wr(hw, ENETC_SICBDRBAR1, upper_32_bits(cbdr->bd_dma_base)); enetc_wr(hw, ENETC_SICBDRLENR, ENETC_RTBLENR_LEN(cbdr->bd_count)); enetc_wr(hw, ENETC_SICBDRPIR, 0); enetc_wr(hw, ENETC_SICBDRCIR, 0); /* enable ring */ enetc_wr(hw, ENETC_SICBDRMR, BIT(31)); cbdr->pir = hw->reg + ENETC_SICBDRPIR; cbdr->cir = hw->reg + ENETC_SICBDRCIR; } static void enetc_clear_cbdr(struct enetc_hw *hw) { enetc_wr(hw, ENETC_SICBDRMR, 0); } static int enetc_setup_default_rss_table(struct enetc_si *si, int num_groups) { int *rss_table; int i; rss_table = kmalloc_array(si->num_rss, sizeof(*rss_table), GFP_KERNEL); if (!rss_table) return -ENOMEM; /* Set up RSS table defaults */ for (i = 0; i < si->num_rss; i++) rss_table[i] = i % num_groups; enetc_set_rss_table(si, rss_table, si->num_rss); kfree(rss_table); return 0; } static int enetc_configure_si(struct enetc_ndev_priv *priv) { struct enetc_si *si = priv->si; struct enetc_hw *hw = &si->hw; int err; enetc_setup_cbdr(hw, &si->cbd_ring); /* set SI cache attributes */ enetc_wr(hw, ENETC_SICAR0, ENETC_SICAR_RD_COHERENT | ENETC_SICAR_WR_COHERENT); enetc_wr(hw, ENETC_SICAR1, ENETC_SICAR_MSI); /* enable SI */ enetc_wr(hw, ENETC_SIMR, ENETC_SIMR_EN); if (si->num_rss) { err = enetc_setup_default_rss_table(si, priv->num_rx_rings); if (err) return err; } return 0; } void enetc_init_si_rings_params(struct enetc_ndev_priv *priv) { struct enetc_si *si = priv->si; int cpus = num_online_cpus(); priv->tx_bd_count = ENETC_BDR_DEFAULT_SIZE; priv->rx_bd_count = ENETC_BDR_DEFAULT_SIZE; /* Enable all available TX rings in order to configure as many * priorities as possible, when needed. * TODO: Make # of TX rings run-time configurable */ priv->num_rx_rings = min_t(int, cpus, si->num_rx_rings); priv->num_tx_rings = si->num_tx_rings; priv->bdr_int_num = cpus; /* SI specific */ si->cbd_ring.bd_count = ENETC_CBDR_DEFAULT_SIZE; } int enetc_alloc_si_resources(struct enetc_ndev_priv *priv) { struct enetc_si *si = priv->si; int err; err = enetc_alloc_cbdr(priv->dev, &si->cbd_ring); if (err) return err; priv->cls_rules = kcalloc(si->num_fs_entries, sizeof(*priv->cls_rules), GFP_KERNEL); if (!priv->cls_rules) { err = -ENOMEM; goto err_alloc_cls; } err = enetc_configure_si(priv); if (err) goto err_config_si; return 0; err_config_si: kfree(priv->cls_rules); err_alloc_cls: enetc_clear_cbdr(&si->hw); enetc_free_cbdr(priv->dev, &si->cbd_ring); return err; } void enetc_free_si_resources(struct enetc_ndev_priv *priv) { struct enetc_si *si = priv->si; enetc_clear_cbdr(&si->hw); enetc_free_cbdr(priv->dev, &si->cbd_ring); kfree(priv->cls_rules); } static void enetc_setup_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring) { int idx = tx_ring->index; u32 tbmr; enetc_txbdr_wr(hw, idx, ENETC_TBBAR0, lower_32_bits(tx_ring->bd_dma_base)); enetc_txbdr_wr(hw, idx, ENETC_TBBAR1, upper_32_bits(tx_ring->bd_dma_base)); WARN_ON(!IS_ALIGNED(tx_ring->bd_count, 64)); /* multiple of 64 */ enetc_txbdr_wr(hw, idx, ENETC_TBLENR, ENETC_RTBLENR_LEN(tx_ring->bd_count)); /* clearing PI/CI registers for Tx not supported, adjust sw indexes */ tx_ring->next_to_use = enetc_txbdr_rd(hw, idx, ENETC_TBPIR); tx_ring->next_to_clean = enetc_txbdr_rd(hw, idx, ENETC_TBCIR); /* enable Tx ints by setting pkt thr to 1 */ enetc_txbdr_wr(hw, idx, ENETC_TBICIR0, ENETC_TBICIR0_ICEN | 0x1); tbmr = ENETC_TBMR_EN; if (tx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_TX) tbmr |= ENETC_TBMR_VIH; /* enable ring */ enetc_txbdr_wr(hw, idx, ENETC_TBMR, tbmr); tx_ring->tpir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBPIR); tx_ring->tcir = hw->reg + ENETC_BDR(TX, idx, ENETC_TBCIR); tx_ring->idr = hw->reg + ENETC_SITXIDR; } static void enetc_setup_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring) { int idx = rx_ring->index; u32 rbmr; enetc_rxbdr_wr(hw, idx, ENETC_RBBAR0, lower_32_bits(rx_ring->bd_dma_base)); enetc_rxbdr_wr(hw, idx, ENETC_RBBAR1, upper_32_bits(rx_ring->bd_dma_base)); WARN_ON(!IS_ALIGNED(rx_ring->bd_count, 64)); /* multiple of 64 */ enetc_rxbdr_wr(hw, idx, ENETC_RBLENR, ENETC_RTBLENR_LEN(rx_ring->bd_count)); enetc_rxbdr_wr(hw, idx, ENETC_RBBSR, ENETC_RXB_DMA_SIZE); enetc_rxbdr_wr(hw, idx, ENETC_RBPIR, 0); /* enable Rx ints by setting pkt thr to 1 */ enetc_rxbdr_wr(hw, idx, ENETC_RBICIR0, ENETC_RBICIR0_ICEN | 0x1); rbmr = ENETC_RBMR_EN; if (rx_ring->ndev->features & NETIF_F_HW_VLAN_CTAG_RX) rbmr |= ENETC_RBMR_VTE; rx_ring->rcir = hw->reg + ENETC_BDR(RX, idx, ENETC_RBCIR); rx_ring->idr = hw->reg + ENETC_SIRXIDR; enetc_refill_rx_ring(rx_ring, enetc_bd_unused(rx_ring)); /* enable ring */ enetc_rxbdr_wr(hw, idx, ENETC_RBMR, rbmr); } static void enetc_setup_bdrs(struct enetc_ndev_priv *priv) { int i; for (i = 0; i < priv->num_tx_rings; i++) enetc_setup_txbdr(&priv->si->hw, priv->tx_ring[i]); for (i = 0; i < priv->num_rx_rings; i++) enetc_setup_rxbdr(&priv->si->hw, priv->rx_ring[i]); } static void enetc_clear_rxbdr(struct enetc_hw *hw, struct enetc_bdr *rx_ring) { int idx = rx_ring->index; /* disable EN bit on ring */ enetc_rxbdr_wr(hw, idx, ENETC_RBMR, 0); } static void enetc_clear_txbdr(struct enetc_hw *hw, struct enetc_bdr *tx_ring) { int delay = 8, timeout = 100; int idx = tx_ring->index; /* disable EN bit on ring */ enetc_txbdr_wr(hw, idx, ENETC_TBMR, 0); /* wait for busy to clear */ while (delay < timeout && enetc_txbdr_rd(hw, idx, ENETC_TBSR) & ENETC_TBSR_BUSY) { msleep(delay); delay *= 2; } if (delay >= timeout) netdev_warn(tx_ring->ndev, "timeout for tx ring #%d clear\n", idx); } static void enetc_clear_bdrs(struct enetc_ndev_priv *priv) { int i; for (i = 0; i < priv->num_tx_rings; i++) enetc_clear_txbdr(&priv->si->hw, priv->tx_ring[i]); for (i = 0; i < priv->num_rx_rings; i++) enetc_clear_rxbdr(&priv->si->hw, priv->rx_ring[i]); udelay(1); } static int enetc_setup_irqs(struct enetc_ndev_priv *priv) { struct pci_dev *pdev = priv->si->pdev; cpumask_t cpu_mask; int i, j, err; for (i = 0; i < priv->bdr_int_num; i++) { int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i); struct enetc_int_vector *v = priv->int_vector[i]; int entry = ENETC_BDR_INT_BASE_IDX + i; struct enetc_hw *hw = &priv->si->hw; snprintf(v->name, sizeof(v->name), "%s-rxtx%d", priv->ndev->name, i); err = request_irq(irq, enetc_msix, 0, v->name, v); if (err) { dev_err(priv->dev, "request_irq() failed!\n"); goto irq_err; } v->tbier_base = hw->reg + ENETC_BDR(TX, 0, ENETC_TBIER); v->rbier = hw->reg + ENETC_BDR(RX, i, ENETC_RBIER); enetc_wr(hw, ENETC_SIMSIRRV(i), entry); for (j = 0; j < v->count_tx_rings; j++) { int idx = v->tx_ring[j].index; enetc_wr(hw, ENETC_SIMSITRV(idx), entry); } cpumask_clear(&cpu_mask); cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); irq_set_affinity_hint(irq, &cpu_mask); } return 0; irq_err: while (i--) { int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i); irq_set_affinity_hint(irq, NULL); free_irq(irq, priv->int_vector[i]); } return err; } static void enetc_free_irqs(struct enetc_ndev_priv *priv) { struct pci_dev *pdev = priv->si->pdev; int i; for (i = 0; i < priv->bdr_int_num; i++) { int irq = pci_irq_vector(pdev, ENETC_BDR_INT_BASE_IDX + i); irq_set_affinity_hint(irq, NULL); free_irq(irq, priv->int_vector[i]); } } static void enetc_enable_interrupts(struct enetc_ndev_priv *priv) { int i; /* enable Tx & Rx event indication */ for (i = 0; i < priv->num_rx_rings; i++) { enetc_rxbdr_wr(&priv->si->hw, i, ENETC_RBIER, ENETC_RBIER_RXTIE); } for (i = 0; i < priv->num_tx_rings; i++) { enetc_txbdr_wr(&priv->si->hw, i, ENETC_TBIER, ENETC_TBIER_TXTIE); } } static void enetc_disable_interrupts(struct enetc_ndev_priv *priv) { int i; for (i = 0; i < priv->num_tx_rings; i++) enetc_txbdr_wr(&priv->si->hw, i, ENETC_TBIER, 0); for (i = 0; i < priv->num_rx_rings; i++) enetc_rxbdr_wr(&priv->si->hw, i, ENETC_RBIER, 0); } static void adjust_link(struct net_device *ndev) { struct phy_device *phydev = ndev->phydev; phy_print_status(phydev); } static int enetc_phy_connect(struct net_device *ndev) { struct enetc_ndev_priv *priv = netdev_priv(ndev); struct phy_device *phydev; if (!priv->phy_node) return 0; /* phy-less mode */ phydev = of_phy_connect(ndev, priv->phy_node, &adjust_link, 0, priv->if_mode); if (!phydev) { dev_err(&ndev->dev, "could not attach to PHY\n"); return -ENODEV; } phy_attached_info(phydev); return 0; } int enetc_open(struct net_device *ndev) { struct enetc_ndev_priv *priv = netdev_priv(ndev); int i, err; err = enetc_setup_irqs(priv); if (err) return err; err = enetc_phy_connect(ndev); if (err) goto err_phy_connect; err = enetc_alloc_tx_resources(priv); if (err) goto err_alloc_tx; err = enetc_alloc_rx_resources(priv); if (err) goto err_alloc_rx; enetc_setup_bdrs(priv); err = netif_set_real_num_tx_queues(ndev, priv->num_tx_rings); if (err) goto err_set_queues; err = netif_set_real_num_rx_queues(ndev, priv->num_rx_rings); if (err) goto err_set_queues; for (i = 0; i < priv->bdr_int_num; i++) napi_enable(&priv->int_vector[i]->napi); enetc_enable_interrupts(priv); if (ndev->phydev) phy_start(ndev->phydev); else netif_carrier_on(ndev); netif_tx_start_all_queues(ndev); return 0; err_set_queues: enetc_free_rx_resources(priv); err_alloc_rx: enetc_free_tx_resources(priv); err_alloc_tx: if (ndev->phydev) phy_disconnect(ndev->phydev); err_phy_connect: enetc_free_irqs(priv); return err; } int enetc_close(struct net_device *ndev) { struct enetc_ndev_priv *priv = netdev_priv(ndev); int i; netif_tx_stop_all_queues(ndev); if (ndev->phydev) { phy_stop(ndev->phydev); phy_disconnect(ndev->phydev); } else { netif_carrier_off(ndev); } for (i = 0; i < priv->bdr_int_num; i++) { napi_synchronize(&priv->int_vector[i]->napi); napi_disable(&priv->int_vector[i]->napi); } enetc_disable_interrupts(priv); enetc_clear_bdrs(priv); enetc_free_rxtx_rings(priv); enetc_free_rx_resources(priv); enetc_free_tx_resources(priv); enetc_free_irqs(priv); return 0; } struct net_device_stats *enetc_get_stats(struct net_device *ndev) { struct enetc_ndev_priv *priv = netdev_priv(ndev); struct net_device_stats *stats = &ndev->stats; unsigned long packets = 0, bytes = 0; int i; for (i = 0; i < priv->num_rx_rings; i++) { packets += priv->rx_ring[i]->stats.packets; bytes += priv->rx_ring[i]->stats.bytes; } stats->rx_packets = packets; stats->rx_bytes = bytes; bytes = 0; packets = 0; for (i = 0; i < priv->num_tx_rings; i++) { packets += priv->tx_ring[i]->stats.packets; bytes += priv->tx_ring[i]->stats.bytes; } stats->tx_packets = packets; stats->tx_bytes = bytes; return stats; } static int enetc_set_rss(struct net_device *ndev, int en) { struct enetc_ndev_priv *priv = netdev_priv(ndev); struct enetc_hw *hw = &priv->si->hw; u32 reg; enetc_wr(hw, ENETC_SIRBGCR, priv->num_rx_rings); reg = enetc_rd(hw, ENETC_SIMR); reg &= ~ENETC_SIMR_RSSE; reg |= (en) ? ENETC_SIMR_RSSE : 0; enetc_wr(hw, ENETC_SIMR, reg); return 0; } int enetc_set_features(struct net_device *ndev, netdev_features_t features) { netdev_features_t changed = ndev->features ^ features; if (changed & NETIF_F_RXHASH) enetc_set_rss(ndev, !!(features & NETIF_F_RXHASH)); return 0; } int enetc_alloc_msix(struct enetc_ndev_priv *priv) { struct pci_dev *pdev = priv->si->pdev; int size, v_tx_rings; int i, n, err, nvec; nvec = ENETC_BDR_INT_BASE_IDX + priv->bdr_int_num; /* allocate MSIX for both messaging and Rx/Tx interrupts */ n = pci_alloc_irq_vectors(pdev, nvec, nvec, PCI_IRQ_MSIX); if (n < 0) return n; if (n != nvec) return -EPERM; /* # of tx rings per int vector */ v_tx_rings = priv->num_tx_rings / priv->bdr_int_num; size = sizeof(struct enetc_int_vector) + sizeof(struct enetc_bdr) * v_tx_rings; for (i = 0; i < priv->bdr_int_num; i++) { struct enetc_int_vector *v; struct enetc_bdr *bdr; int j; v = kzalloc(size, GFP_KERNEL); if (!v) { err = -ENOMEM; goto fail; } priv->int_vector[i] = v; netif_napi_add(priv->ndev, &v->napi, enetc_poll, NAPI_POLL_WEIGHT); v->count_tx_rings = v_tx_rings; for (j = 0; j < v_tx_rings; j++) { int idx; /* default tx ring mapping policy */ if (priv->bdr_int_num == ENETC_MAX_BDR_INT) idx = 2 * j + i; /* 2 CPUs */ else idx = j + i * v_tx_rings; /* default */ __set_bit(idx, &v->tx_rings_map); bdr = &v->tx_ring[j]; bdr->index = idx; bdr->ndev = priv->ndev; bdr->dev = priv->dev; bdr->bd_count = priv->tx_bd_count; priv->tx_ring[idx] = bdr; } bdr = &v->rx_ring; bdr->index = i; bdr->ndev = priv->ndev; bdr->dev = priv->dev; bdr->bd_count = priv->rx_bd_count; priv->rx_ring[i] = bdr; } return 0; fail: while (i--) { netif_napi_del(&priv->int_vector[i]->napi); kfree(priv->int_vector[i]); } pci_free_irq_vectors(pdev); return err; } void enetc_free_msix(struct enetc_ndev_priv *priv) { int i; for (i = 0; i < priv->bdr_int_num; i++) { struct enetc_int_vector *v = priv->int_vector[i]; netif_napi_del(&v->napi); } for (i = 0; i < priv->num_rx_rings; i++) priv->rx_ring[i] = NULL; for (i = 0; i < priv->num_tx_rings; i++) priv->tx_ring[i] = NULL; for (i = 0; i < priv->bdr_int_num; i++) { kfree(priv->int_vector[i]); priv->int_vector[i] = NULL; } /* disable all MSIX for this device */ pci_free_irq_vectors(priv->si->pdev); } static void enetc_kfree_si(struct enetc_si *si) { char *p = (char *)si - si->pad; kfree(p); } static void enetc_detect_errata(struct enetc_si *si) { if (si->pdev->revision == ENETC_REV1) si->errata = ENETC_ERR_TXCSUM | ENETC_ERR_VLAN_ISOL | ENETC_ERR_UCMCSWP; } int enetc_pci_probe(struct pci_dev *pdev, const char *name, int sizeof_priv) { struct enetc_si *si, *p; struct enetc_hw *hw; size_t alloc_size; int err, len; pcie_flr(pdev); err = pci_enable_device_mem(pdev); if (err) { dev_err(&pdev->dev, "device enable failed\n"); return err; } /* set up for high or low dma */ err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); if (err) { err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err); goto err_dma; } } err = pci_request_mem_regions(pdev, name); if (err) { dev_err(&pdev->dev, "pci_request_regions failed err=%d\n", err); goto err_pci_mem_reg; } pci_set_master(pdev); alloc_size = sizeof(struct enetc_si); if (sizeof_priv) { /* align priv to 32B */ alloc_size = ALIGN(alloc_size, ENETC_SI_ALIGN); alloc_size += sizeof_priv; } /* force 32B alignment for enetc_si */ alloc_size += ENETC_SI_ALIGN - 1; p = kzalloc(alloc_size, GFP_KERNEL); if (!p) { err = -ENOMEM; goto err_alloc_si; } si = PTR_ALIGN(p, ENETC_SI_ALIGN); si->pad = (char *)si - (char *)p; pci_set_drvdata(pdev, si); si->pdev = pdev; hw = &si->hw; len = pci_resource_len(pdev, ENETC_BAR_REGS); hw->reg = ioremap(pci_resource_start(pdev, ENETC_BAR_REGS), len); if (!hw->reg) { err = -ENXIO; dev_err(&pdev->dev, "ioremap() failed\n"); goto err_ioremap; } if (len > ENETC_PORT_BASE) hw->port = hw->reg + ENETC_PORT_BASE; if (len > ENETC_GLOBAL_BASE) hw->global = hw->reg + ENETC_GLOBAL_BASE; enetc_detect_errata(si); return 0; err_ioremap: enetc_kfree_si(si); err_alloc_si: pci_release_mem_regions(pdev); err_pci_mem_reg: err_dma: pci_disable_device(pdev); return err; } void enetc_pci_remove(struct pci_dev *pdev) { struct enetc_si *si = pci_get_drvdata(pdev); struct enetc_hw *hw = &si->hw; iounmap(hw->reg); enetc_kfree_si(si); pci_release_mem_regions(pdev); pci_disable_device(pdev); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1