Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Pantelis Antoniou | 2372 | 78.94% | 1 | 3.57% |
Scott Wood | 302 | 10.05% | 3 | 10.71% |
Mark Ware | 183 | 6.09% | 1 | 3.57% |
Christophe Leroy | 35 | 1.16% | 2 | 7.14% |
Vitaly Bordug | 35 | 1.16% | 2 | 7.14% |
Anatolij Gustschin | 17 | 0.57% | 1 | 3.57% |
Grant C. Likely | 14 | 0.47% | 2 | 7.14% |
Jiri Pirko | 13 | 0.43% | 3 | 10.71% |
Rob Herring | 6 | 0.20% | 1 | 3.57% |
Laurent Pinchart | 6 | 0.20% | 1 | 3.57% |
Martin Roth | 3 | 0.10% | 1 | 3.57% |
Kumar Gala | 3 | 0.10% | 1 | 3.57% |
Jochen Friedrich | 3 | 0.10% | 1 | 3.57% |
Tejun Heo | 3 | 0.10% | 1 | 3.57% |
Marcelo Tosatti | 3 | 0.10% | 1 | 3.57% |
Philippe Reynes | 2 | 0.07% | 1 | 3.57% |
Li Yang | 1 | 0.03% | 1 | 3.57% |
Clive Stubbings | 1 | 0.03% | 1 | 3.57% |
Thierry Reding | 1 | 0.03% | 1 | 3.57% |
Michael Ellerman | 1 | 0.03% | 1 | 3.57% |
Linus Torvalds | 1 | 0.03% | 1 | 3.57% |
Total | 3005 | 28 |
/* * FCC driver for Motorola MPC82xx (PQ2). * * Copyright (c) 2003 Intracom S.A. * by Pantelis Antoniou <panto@intracom.gr> * * 2005 (c) MontaVista Software, Inc. * Vitaly Bordug <vbordug@ru.mvista.com> * * This file is licensed under the terms of the GNU General Public License * version 2. This program is licensed "as is" without any warranty of any * kind, whether express or implied. */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/string.h> #include <linux/ptrace.h> #include <linux/errno.h> #include <linux/ioport.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/spinlock.h> #include <linux/mii.h> #include <linux/ethtool.h> #include <linux/bitops.h> #include <linux/fs.h> #include <linux/platform_device.h> #include <linux/phy.h> #include <linux/of_address.h> #include <linux/of_device.h> #include <linux/of_irq.h> #include <linux/gfp.h> #include <asm/immap_cpm2.h> #include <asm/mpc8260.h> #include <asm/cpm2.h> #include <asm/pgtable.h> #include <asm/irq.h> #include <linux/uaccess.h> #include "fs_enet.h" /*************************************************/ /* FCC access macros */ /* write, read, set bits, clear bits */ #define W32(_p, _m, _v) out_be32(&(_p)->_m, (_v)) #define R32(_p, _m) in_be32(&(_p)->_m) #define S32(_p, _m, _v) W32(_p, _m, R32(_p, _m) | (_v)) #define C32(_p, _m, _v) W32(_p, _m, R32(_p, _m) & ~(_v)) #define W16(_p, _m, _v) out_be16(&(_p)->_m, (_v)) #define R16(_p, _m) in_be16(&(_p)->_m) #define S16(_p, _m, _v) W16(_p, _m, R16(_p, _m) | (_v)) #define C16(_p, _m, _v) W16(_p, _m, R16(_p, _m) & ~(_v)) #define W8(_p, _m, _v) out_8(&(_p)->_m, (_v)) #define R8(_p, _m) in_8(&(_p)->_m) #define S8(_p, _m, _v) W8(_p, _m, R8(_p, _m) | (_v)) #define C8(_p, _m, _v) W8(_p, _m, R8(_p, _m) & ~(_v)) /*************************************************/ #define FCC_MAX_MULTICAST_ADDRS 64 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18)) #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | (VAL & 0xffff)) #define mk_mii_end 0 #define MAX_CR_CMD_LOOPS 10000 static inline int fcc_cr_cmd(struct fs_enet_private *fep, u32 op) { const struct fs_platform_info *fpi = fep->fpi; return cpm_command(fpi->cp_command, op); } static int do_pd_setup(struct fs_enet_private *fep) { struct platform_device *ofdev = to_platform_device(fep->dev); struct fs_platform_info *fpi = fep->fpi; int ret = -EINVAL; fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0); if (!fep->interrupt) goto out; fep->fcc.fccp = of_iomap(ofdev->dev.of_node, 0); if (!fep->fcc.fccp) goto out; fep->fcc.ep = of_iomap(ofdev->dev.of_node, 1); if (!fep->fcc.ep) goto out_fccp; fep->fcc.fcccp = of_iomap(ofdev->dev.of_node, 2); if (!fep->fcc.fcccp) goto out_ep; fep->fcc.mem = (void __iomem *)cpm2_immr; fpi->dpram_offset = cpm_dpalloc(128, 32); if (IS_ERR_VALUE(fpi->dpram_offset)) { ret = fpi->dpram_offset; goto out_fcccp; } return 0; out_fcccp: iounmap(fep->fcc.fcccp); out_ep: iounmap(fep->fcc.ep); out_fccp: iounmap(fep->fcc.fccp); out: return ret; } #define FCC_NAPI_EVENT_MSK (FCC_ENET_RXF | FCC_ENET_RXB | FCC_ENET_TXB) #define FCC_EVENT (FCC_ENET_RXF | FCC_ENET_TXB) #define FCC_ERR_EVENT_MSK (FCC_ENET_TXE) static int setup_data(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); if (do_pd_setup(fep) != 0) return -EINVAL; fep->ev_napi = FCC_NAPI_EVENT_MSK; fep->ev = FCC_EVENT; fep->ev_err = FCC_ERR_EVENT_MSK; return 0; } static int allocate_bd(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); const struct fs_platform_info *fpi = fep->fpi; fep->ring_base = (void __iomem __force *)dma_alloc_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t), &fep->ring_mem_addr, GFP_KERNEL); if (fep->ring_base == NULL) return -ENOMEM; return 0; } static void free_bd(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); const struct fs_platform_info *fpi = fep->fpi; if (fep->ring_base) dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t), (void __force *)fep->ring_base, fep->ring_mem_addr); } static void cleanup_data(struct net_device *dev) { /* nothing */ } static void set_promiscuous_mode(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); fcc_t __iomem *fccp = fep->fcc.fccp; S32(fccp, fcc_fpsmr, FCC_PSMR_PRO); } static void set_multicast_start(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); fcc_enet_t __iomem *ep = fep->fcc.ep; W32(ep, fen_gaddrh, 0); W32(ep, fen_gaddrl, 0); } static void set_multicast_one(struct net_device *dev, const u8 *mac) { struct fs_enet_private *fep = netdev_priv(dev); fcc_enet_t __iomem *ep = fep->fcc.ep; u16 taddrh, taddrm, taddrl; taddrh = ((u16)mac[5] << 8) | mac[4]; taddrm = ((u16)mac[3] << 8) | mac[2]; taddrl = ((u16)mac[1] << 8) | mac[0]; W16(ep, fen_taddrh, taddrh); W16(ep, fen_taddrm, taddrm); W16(ep, fen_taddrl, taddrl); fcc_cr_cmd(fep, CPM_CR_SET_GADDR); } static void set_multicast_finish(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); fcc_t __iomem *fccp = fep->fcc.fccp; fcc_enet_t __iomem *ep = fep->fcc.ep; /* clear promiscuous always */ C32(fccp, fcc_fpsmr, FCC_PSMR_PRO); /* if all multi or too many multicasts; just enable all */ if ((dev->flags & IFF_ALLMULTI) != 0 || netdev_mc_count(dev) > FCC_MAX_MULTICAST_ADDRS) { W32(ep, fen_gaddrh, 0xffffffff); W32(ep, fen_gaddrl, 0xffffffff); } /* read back */ fep->fcc.gaddrh = R32(ep, fen_gaddrh); fep->fcc.gaddrl = R32(ep, fen_gaddrl); } static void set_multicast_list(struct net_device *dev) { struct netdev_hw_addr *ha; if ((dev->flags & IFF_PROMISC) == 0) { set_multicast_start(dev); netdev_for_each_mc_addr(ha, dev) set_multicast_one(dev, ha->addr); set_multicast_finish(dev); } else set_promiscuous_mode(dev); } static void restart(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); const struct fs_platform_info *fpi = fep->fpi; fcc_t __iomem *fccp = fep->fcc.fccp; fcc_c_t __iomem *fcccp = fep->fcc.fcccp; fcc_enet_t __iomem *ep = fep->fcc.ep; dma_addr_t rx_bd_base_phys, tx_bd_base_phys; u16 paddrh, paddrm, paddrl; const unsigned char *mac; int i; C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT); /* clear everything (slow & steady does it) */ for (i = 0; i < sizeof(*ep); i++) out_8((u8 __iomem *)ep + i, 0); /* get physical address */ rx_bd_base_phys = fep->ring_mem_addr; tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring; /* point to bds */ W32(ep, fen_genfcc.fcc_rbase, rx_bd_base_phys); W32(ep, fen_genfcc.fcc_tbase, tx_bd_base_phys); /* Set maximum bytes per receive buffer. * It must be a multiple of 32. */ W16(ep, fen_genfcc.fcc_mrblr, PKT_MAXBLR_SIZE); W32(ep, fen_genfcc.fcc_rstate, (CPMFCR_GBL | CPMFCR_EB) << 24); W32(ep, fen_genfcc.fcc_tstate, (CPMFCR_GBL | CPMFCR_EB) << 24); /* Allocate space in the reserved FCC area of DPRAM for the * internal buffers. No one uses this space (yet), so we * can do this. Later, we will add resource management for * this area. */ W16(ep, fen_genfcc.fcc_riptr, fpi->dpram_offset); W16(ep, fen_genfcc.fcc_tiptr, fpi->dpram_offset + 32); W16(ep, fen_padptr, fpi->dpram_offset + 64); /* fill with special symbol... */ memset_io(fep->fcc.mem + fpi->dpram_offset + 64, 0x88, 32); W32(ep, fen_genfcc.fcc_rbptr, 0); W32(ep, fen_genfcc.fcc_tbptr, 0); W32(ep, fen_genfcc.fcc_rcrc, 0); W32(ep, fen_genfcc.fcc_tcrc, 0); W16(ep, fen_genfcc.fcc_res1, 0); W32(ep, fen_genfcc.fcc_res2, 0); /* no CAM */ W32(ep, fen_camptr, 0); /* Set CRC preset and mask */ W32(ep, fen_cmask, 0xdebb20e3); W32(ep, fen_cpres, 0xffffffff); W32(ep, fen_crcec, 0); /* CRC Error counter */ W32(ep, fen_alec, 0); /* alignment error counter */ W32(ep, fen_disfc, 0); /* discard frame counter */ W16(ep, fen_retlim, 15); /* Retry limit threshold */ W16(ep, fen_pper, 0); /* Normal persistence */ /* set group address */ W32(ep, fen_gaddrh, fep->fcc.gaddrh); W32(ep, fen_gaddrl, fep->fcc.gaddrh); /* Clear hash filter tables */ W32(ep, fen_iaddrh, 0); W32(ep, fen_iaddrl, 0); /* Clear the Out-of-sequence TxBD */ W16(ep, fen_tfcstat, 0); W16(ep, fen_tfclen, 0); W32(ep, fen_tfcptr, 0); W16(ep, fen_mflr, PKT_MAXBUF_SIZE); /* maximum frame length register */ W16(ep, fen_minflr, PKT_MINBUF_SIZE); /* minimum frame length register */ /* set address */ mac = dev->dev_addr; paddrh = ((u16)mac[5] << 8) | mac[4]; paddrm = ((u16)mac[3] << 8) | mac[2]; paddrl = ((u16)mac[1] << 8) | mac[0]; W16(ep, fen_paddrh, paddrh); W16(ep, fen_paddrm, paddrm); W16(ep, fen_paddrl, paddrl); W16(ep, fen_taddrh, 0); W16(ep, fen_taddrm, 0); W16(ep, fen_taddrl, 0); W16(ep, fen_maxd1, 1520); /* maximum DMA1 length */ W16(ep, fen_maxd2, 1520); /* maximum DMA2 length */ /* Clear stat counters, in case we ever enable RMON */ W32(ep, fen_octc, 0); W32(ep, fen_colc, 0); W32(ep, fen_broc, 0); W32(ep, fen_mulc, 0); W32(ep, fen_uspc, 0); W32(ep, fen_frgc, 0); W32(ep, fen_ospc, 0); W32(ep, fen_jbrc, 0); W32(ep, fen_p64c, 0); W32(ep, fen_p65c, 0); W32(ep, fen_p128c, 0); W32(ep, fen_p256c, 0); W32(ep, fen_p512c, 0); W32(ep, fen_p1024c, 0); W16(ep, fen_rfthr, 0); /* Suggested by manual */ W16(ep, fen_rfcnt, 0); W16(ep, fen_cftype, 0); fs_init_bds(dev); /* adjust to speed (for RMII mode) */ if (fpi->use_rmii) { if (dev->phydev->speed == 100) C8(fcccp, fcc_gfemr, 0x20); else S8(fcccp, fcc_gfemr, 0x20); } fcc_cr_cmd(fep, CPM_CR_INIT_TRX); /* clear events */ W16(fccp, fcc_fcce, 0xffff); /* Enable interrupts we wish to service */ W16(fccp, fcc_fccm, FCC_ENET_TXE | FCC_ENET_RXF | FCC_ENET_TXB); /* Set GFMR to enable Ethernet operating mode */ W32(fccp, fcc_gfmr, FCC_GFMR_TCI | FCC_GFMR_MODE_ENET); /* set sync/delimiters */ W16(fccp, fcc_fdsr, 0xd555); W32(fccp, fcc_fpsmr, FCC_PSMR_ENCRC); if (fpi->use_rmii) S32(fccp, fcc_fpsmr, FCC_PSMR_RMII); /* adjust to duplex mode */ if (dev->phydev->duplex) S32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB); else C32(fccp, fcc_fpsmr, FCC_PSMR_FDE | FCC_PSMR_LPB); /* Restore multicast and promiscuous settings */ set_multicast_list(dev); S32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT); } static void stop(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); fcc_t __iomem *fccp = fep->fcc.fccp; /* stop ethernet */ C32(fccp, fcc_gfmr, FCC_GFMR_ENR | FCC_GFMR_ENT); /* clear events */ W16(fccp, fcc_fcce, 0xffff); /* clear interrupt mask */ W16(fccp, fcc_fccm, 0); fs_cleanup_bds(dev); } static void napi_clear_event_fs(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); fcc_t __iomem *fccp = fep->fcc.fccp; W16(fccp, fcc_fcce, FCC_NAPI_EVENT_MSK); } static void napi_enable_fs(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); fcc_t __iomem *fccp = fep->fcc.fccp; S16(fccp, fcc_fccm, FCC_NAPI_EVENT_MSK); } static void napi_disable_fs(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); fcc_t __iomem *fccp = fep->fcc.fccp; C16(fccp, fcc_fccm, FCC_NAPI_EVENT_MSK); } static void rx_bd_done(struct net_device *dev) { /* nothing */ } static void tx_kickstart(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); fcc_t __iomem *fccp = fep->fcc.fccp; S16(fccp, fcc_ftodr, 0x8000); } static u32 get_int_events(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); fcc_t __iomem *fccp = fep->fcc.fccp; return (u32)R16(fccp, fcc_fcce); } static void clear_int_events(struct net_device *dev, u32 int_events) { struct fs_enet_private *fep = netdev_priv(dev); fcc_t __iomem *fccp = fep->fcc.fccp; W16(fccp, fcc_fcce, int_events & 0xffff); } static void ev_error(struct net_device *dev, u32 int_events) { struct fs_enet_private *fep = netdev_priv(dev); dev_warn(fep->dev, "FS_ENET ERROR(s) 0x%x\n", int_events); } static int get_regs(struct net_device *dev, void *p, int *sizep) { struct fs_enet_private *fep = netdev_priv(dev); if (*sizep < sizeof(fcc_t) + sizeof(fcc_enet_t) + 1) return -EINVAL; memcpy_fromio(p, fep->fcc.fccp, sizeof(fcc_t)); p = (char *)p + sizeof(fcc_t); memcpy_fromio(p, fep->fcc.ep, sizeof(fcc_enet_t)); p = (char *)p + sizeof(fcc_enet_t); memcpy_fromio(p, fep->fcc.fcccp, 1); return 0; } static int get_regs_len(struct net_device *dev) { return sizeof(fcc_t) + sizeof(fcc_enet_t) + 1; } /* Some transmit errors cause the transmitter to shut * down. We now issue a restart transmit. * Also, to workaround 8260 device erratum CPM37, we must * disable and then re-enable the transmitterfollowing a * Late Collision, Underrun, or Retry Limit error. * In addition, tbptr may point beyond BDs beyond still marked * as ready due to internal pipelining, so we need to look back * through the BDs and adjust tbptr to point to the last BD * marked as ready. This may result in some buffers being * retransmitted. */ static void tx_restart(struct net_device *dev) { struct fs_enet_private *fep = netdev_priv(dev); fcc_t __iomem *fccp = fep->fcc.fccp; const struct fs_platform_info *fpi = fep->fpi; fcc_enet_t __iomem *ep = fep->fcc.ep; cbd_t __iomem *curr_tbptr; cbd_t __iomem *recheck_bd; cbd_t __iomem *prev_bd; cbd_t __iomem *last_tx_bd; last_tx_bd = fep->tx_bd_base + (fpi->tx_ring - 1); /* get the current bd held in TBPTR and scan back from this point */ recheck_bd = curr_tbptr = (cbd_t __iomem *) ((R32(ep, fen_genfcc.fcc_tbptr) - fep->ring_mem_addr) + fep->ring_base); prev_bd = (recheck_bd == fep->tx_bd_base) ? last_tx_bd : recheck_bd - 1; /* Move through the bds in reverse, look for the earliest buffer * that is not ready. Adjust TBPTR to the following buffer */ while ((CBDR_SC(prev_bd) & BD_ENET_TX_READY) != 0) { /* Go back one buffer */ recheck_bd = prev_bd; /* update the previous buffer */ prev_bd = (prev_bd == fep->tx_bd_base) ? last_tx_bd : prev_bd - 1; /* We should never see all bds marked as ready, check anyway */ if (recheck_bd == curr_tbptr) break; } /* Now update the TBPTR and dirty flag to the current buffer */ W32(ep, fen_genfcc.fcc_tbptr, (uint) (((void *)recheck_bd - fep->ring_base) + fep->ring_mem_addr)); fep->dirty_tx = recheck_bd; C32(fccp, fcc_gfmr, FCC_GFMR_ENT); udelay(10); S32(fccp, fcc_gfmr, FCC_GFMR_ENT); fcc_cr_cmd(fep, CPM_CR_RESTART_TX); } /*************************************************************************/ const struct fs_ops fs_fcc_ops = { .setup_data = setup_data, .cleanup_data = cleanup_data, .set_multicast_list = set_multicast_list, .restart = restart, .stop = stop, .napi_clear_event = napi_clear_event_fs, .napi_enable = napi_enable_fs, .napi_disable = napi_disable_fs, .rx_bd_done = rx_bd_done, .tx_kickstart = tx_kickstart, .get_int_events = get_int_events, .clear_int_events = clear_int_events, .ev_error = ev_error, .get_regs = get_regs, .get_regs_len = get_regs_len, .tx_restart = tx_restart, .allocate_bd = allocate_bd, .free_bd = free_bd, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1