Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dongpo Li | 4762 | 99.75% | 2 | 28.57% |
Petr Štetiar | 4 | 0.08% | 1 | 14.29% |
Eric Dumazet | 3 | 0.06% | 1 | 14.29% |
Thomas Gleixner | 2 | 0.04% | 1 | 14.29% |
Baoyou Xie | 2 | 0.04% | 1 | 14.29% |
Julia Lawall | 1 | 0.02% | 1 | 14.29% |
Total | 4774 | 7 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Hisilicon Fast Ethernet MAC Driver * * Copyright (c) 2016 HiSilicon Technologies Co., Ltd. */ #include <linux/circ_buf.h> #include <linux/clk.h> #include <linux/etherdevice.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/of_mdio.h> #include <linux/of_net.h> #include <linux/platform_device.h> #include <linux/reset.h> /* MAC control register list */ #define MAC_PORTSEL 0x0200 #define MAC_PORTSEL_STAT_CPU BIT(0) #define MAC_PORTSEL_RMII BIT(1) #define MAC_PORTSET 0x0208 #define MAC_PORTSET_DUPLEX_FULL BIT(0) #define MAC_PORTSET_LINKED BIT(1) #define MAC_PORTSET_SPEED_100M BIT(2) #define MAC_SET 0x0210 #define MAX_FRAME_SIZE 1600 #define MAX_FRAME_SIZE_MASK GENMASK(10, 0) #define BIT_PAUSE_EN BIT(18) #define RX_COALESCE_SET 0x0340 #define RX_COALESCED_FRAME_OFFSET 24 #define RX_COALESCED_FRAMES 8 #define RX_COALESCED_TIMER 0x74 #define QLEN_SET 0x0344 #define RX_DEPTH_OFFSET 8 #define MAX_HW_FIFO_DEPTH 64 #define HW_TX_FIFO_DEPTH 12 #define HW_RX_FIFO_DEPTH (MAX_HW_FIFO_DEPTH - HW_TX_FIFO_DEPTH) #define IQFRM_DES 0x0354 #define RX_FRAME_LEN_MASK GENMASK(11, 0) #define IQ_ADDR 0x0358 #define EQ_ADDR 0x0360 #define EQFRM_LEN 0x0364 #define ADDRQ_STAT 0x036C #define TX_CNT_INUSE_MASK GENMASK(5, 0) #define BIT_TX_READY BIT(24) #define BIT_RX_READY BIT(25) /* global control register list */ #define GLB_HOSTMAC_L32 0x0000 #define GLB_HOSTMAC_H16 0x0004 #define GLB_SOFT_RESET 0x0008 #define SOFT_RESET_ALL BIT(0) #define GLB_FWCTRL 0x0010 #define FWCTRL_VLAN_ENABLE BIT(0) #define FWCTRL_FW2CPU_ENA BIT(5) #define FWCTRL_FWALL2CPU BIT(7) #define GLB_MACTCTRL 0x0014 #define MACTCTRL_UNI2CPU BIT(1) #define MACTCTRL_MULTI2CPU BIT(3) #define MACTCTRL_BROAD2CPU BIT(5) #define MACTCTRL_MACT_ENA BIT(7) #define GLB_IRQ_STAT 0x0030 #define GLB_IRQ_ENA 0x0034 #define IRQ_ENA_PORT0_MASK GENMASK(7, 0) #define IRQ_ENA_PORT0 BIT(18) #define IRQ_ENA_ALL BIT(19) #define GLB_IRQ_RAW 0x0038 #define IRQ_INT_RX_RDY BIT(0) #define IRQ_INT_TX_PER_PACKET BIT(1) #define IRQ_INT_TX_FIFO_EMPTY BIT(6) #define IRQ_INT_MULTI_RXRDY BIT(7) #define DEF_INT_MASK (IRQ_INT_MULTI_RXRDY | \ IRQ_INT_TX_PER_PACKET | \ IRQ_INT_TX_FIFO_EMPTY) #define GLB_MAC_L32_BASE 0x0100 #define GLB_MAC_H16_BASE 0x0104 #define MACFLT_HI16_MASK GENMASK(15, 0) #define BIT_MACFLT_ENA BIT(17) #define BIT_MACFLT_FW2CPU BIT(21) #define GLB_MAC_H16(reg) (GLB_MAC_H16_BASE + ((reg) * 0x8)) #define GLB_MAC_L32(reg) (GLB_MAC_L32_BASE + ((reg) * 0x8)) #define MAX_MAC_FILTER_NUM 8 #define MAX_UNICAST_ADDRESSES 2 #define MAX_MULTICAST_ADDRESSES (MAX_MAC_FILTER_NUM - \ MAX_UNICAST_ADDRESSES) /* software tx and rx queue number, should be power of 2 */ #define TXQ_NUM 64 #define RXQ_NUM 128 #define FEMAC_POLL_WEIGHT 16 #define PHY_RESET_DELAYS_PROPERTY "hisilicon,phy-reset-delays-us" enum phy_reset_delays { PRE_DELAY, PULSE, POST_DELAY, DELAYS_NUM, }; struct hisi_femac_queue { struct sk_buff **skb; dma_addr_t *dma_phys; int num; unsigned int head; unsigned int tail; }; struct hisi_femac_priv { void __iomem *port_base; void __iomem *glb_base; struct clk *clk; struct reset_control *mac_rst; struct reset_control *phy_rst; u32 phy_reset_delays[DELAYS_NUM]; u32 link_status; struct device *dev; struct net_device *ndev; struct hisi_femac_queue txq; struct hisi_femac_queue rxq; u32 tx_fifo_used_cnt; struct napi_struct napi; }; static void hisi_femac_irq_enable(struct hisi_femac_priv *priv, int irqs) { u32 val; val = readl(priv->glb_base + GLB_IRQ_ENA); writel(val | irqs, priv->glb_base + GLB_IRQ_ENA); } static void hisi_femac_irq_disable(struct hisi_femac_priv *priv, int irqs) { u32 val; val = readl(priv->glb_base + GLB_IRQ_ENA); writel(val & (~irqs), priv->glb_base + GLB_IRQ_ENA); } static void hisi_femac_tx_dma_unmap(struct hisi_femac_priv *priv, struct sk_buff *skb, unsigned int pos) { dma_addr_t dma_addr; dma_addr = priv->txq.dma_phys[pos]; dma_unmap_single(priv->dev, dma_addr, skb->len, DMA_TO_DEVICE); } static void hisi_femac_xmit_reclaim(struct net_device *dev) { struct sk_buff *skb; struct hisi_femac_priv *priv = netdev_priv(dev); struct hisi_femac_queue *txq = &priv->txq; unsigned int bytes_compl = 0, pkts_compl = 0; u32 val; netif_tx_lock(dev); val = readl(priv->port_base + ADDRQ_STAT) & TX_CNT_INUSE_MASK; while (val < priv->tx_fifo_used_cnt) { skb = txq->skb[txq->tail]; if (unlikely(!skb)) { netdev_err(dev, "xmitq_cnt_inuse=%d, tx_fifo_used=%d\n", val, priv->tx_fifo_used_cnt); break; } hisi_femac_tx_dma_unmap(priv, skb, txq->tail); pkts_compl++; bytes_compl += skb->len; dev_kfree_skb_any(skb); priv->tx_fifo_used_cnt--; val = readl(priv->port_base + ADDRQ_STAT) & TX_CNT_INUSE_MASK; txq->skb[txq->tail] = NULL; txq->tail = (txq->tail + 1) % txq->num; } netdev_completed_queue(dev, pkts_compl, bytes_compl); if (unlikely(netif_queue_stopped(dev)) && pkts_compl) netif_wake_queue(dev); netif_tx_unlock(dev); } static void hisi_femac_adjust_link(struct net_device *dev) { struct hisi_femac_priv *priv = netdev_priv(dev); struct phy_device *phy = dev->phydev; u32 status = 0; if (phy->link) status |= MAC_PORTSET_LINKED; if (phy->duplex == DUPLEX_FULL) status |= MAC_PORTSET_DUPLEX_FULL; if (phy->speed == SPEED_100) status |= MAC_PORTSET_SPEED_100M; if ((status != priv->link_status) && ((status | priv->link_status) & MAC_PORTSET_LINKED)) { writel(status, priv->port_base + MAC_PORTSET); priv->link_status = status; phy_print_status(phy); } } static void hisi_femac_rx_refill(struct hisi_femac_priv *priv) { struct hisi_femac_queue *rxq = &priv->rxq; struct sk_buff *skb; u32 pos; u32 len = MAX_FRAME_SIZE; dma_addr_t addr; pos = rxq->head; while (readl(priv->port_base + ADDRQ_STAT) & BIT_RX_READY) { if (!CIRC_SPACE(pos, rxq->tail, rxq->num)) break; if (unlikely(rxq->skb[pos])) { netdev_err(priv->ndev, "err skb[%d]=%p\n", pos, rxq->skb[pos]); break; } skb = netdev_alloc_skb_ip_align(priv->ndev, len); if (unlikely(!skb)) break; addr = dma_map_single(priv->dev, skb->data, len, DMA_FROM_DEVICE); if (dma_mapping_error(priv->dev, addr)) { dev_kfree_skb_any(skb); break; } rxq->dma_phys[pos] = addr; rxq->skb[pos] = skb; writel(addr, priv->port_base + IQ_ADDR); pos = (pos + 1) % rxq->num; } rxq->head = pos; } static int hisi_femac_rx(struct net_device *dev, int limit) { struct hisi_femac_priv *priv = netdev_priv(dev); struct hisi_femac_queue *rxq = &priv->rxq; struct sk_buff *skb; dma_addr_t addr; u32 rx_pkt_info, pos, len, rx_pkts_num = 0; pos = rxq->tail; while (readl(priv->glb_base + GLB_IRQ_RAW) & IRQ_INT_RX_RDY) { rx_pkt_info = readl(priv->port_base + IQFRM_DES); len = rx_pkt_info & RX_FRAME_LEN_MASK; len -= ETH_FCS_LEN; /* tell hardware we will deal with this packet */ writel(IRQ_INT_RX_RDY, priv->glb_base + GLB_IRQ_RAW); rx_pkts_num++; skb = rxq->skb[pos]; if (unlikely(!skb)) { netdev_err(dev, "rx skb NULL. pos=%d\n", pos); break; } rxq->skb[pos] = NULL; addr = rxq->dma_phys[pos]; dma_unmap_single(priv->dev, addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE); skb_put(skb, len); if (unlikely(skb->len > MAX_FRAME_SIZE)) { netdev_err(dev, "rcv len err, len = %d\n", skb->len); dev->stats.rx_errors++; dev->stats.rx_length_errors++; dev_kfree_skb_any(skb); goto next; } skb->protocol = eth_type_trans(skb, dev); napi_gro_receive(&priv->napi, skb); dev->stats.rx_packets++; dev->stats.rx_bytes += skb->len; next: pos = (pos + 1) % rxq->num; if (rx_pkts_num >= limit) break; } rxq->tail = pos; hisi_femac_rx_refill(priv); return rx_pkts_num; } static int hisi_femac_poll(struct napi_struct *napi, int budget) { struct hisi_femac_priv *priv = container_of(napi, struct hisi_femac_priv, napi); struct net_device *dev = priv->ndev; int work_done = 0, task = budget; int ints, num; do { hisi_femac_xmit_reclaim(dev); num = hisi_femac_rx(dev, task); work_done += num; task -= num; if (work_done >= budget) break; ints = readl(priv->glb_base + GLB_IRQ_RAW); writel(ints & DEF_INT_MASK, priv->glb_base + GLB_IRQ_RAW); } while (ints & DEF_INT_MASK); if (work_done < budget) { napi_complete_done(napi, work_done); hisi_femac_irq_enable(priv, DEF_INT_MASK & (~IRQ_INT_TX_PER_PACKET)); } return work_done; } static irqreturn_t hisi_femac_interrupt(int irq, void *dev_id) { int ints; struct net_device *dev = (struct net_device *)dev_id; struct hisi_femac_priv *priv = netdev_priv(dev); ints = readl(priv->glb_base + GLB_IRQ_RAW); if (likely(ints & DEF_INT_MASK)) { writel(ints & DEF_INT_MASK, priv->glb_base + GLB_IRQ_RAW); hisi_femac_irq_disable(priv, DEF_INT_MASK); napi_schedule(&priv->napi); } return IRQ_HANDLED; } static int hisi_femac_init_queue(struct device *dev, struct hisi_femac_queue *queue, unsigned int num) { queue->skb = devm_kcalloc(dev, num, sizeof(struct sk_buff *), GFP_KERNEL); if (!queue->skb) return -ENOMEM; queue->dma_phys = devm_kcalloc(dev, num, sizeof(dma_addr_t), GFP_KERNEL); if (!queue->dma_phys) return -ENOMEM; queue->num = num; queue->head = 0; queue->tail = 0; return 0; } static int hisi_femac_init_tx_and_rx_queues(struct hisi_femac_priv *priv) { int ret; ret = hisi_femac_init_queue(priv->dev, &priv->txq, TXQ_NUM); if (ret) return ret; ret = hisi_femac_init_queue(priv->dev, &priv->rxq, RXQ_NUM); if (ret) return ret; priv->tx_fifo_used_cnt = 0; return 0; } static void hisi_femac_free_skb_rings(struct hisi_femac_priv *priv) { struct hisi_femac_queue *txq = &priv->txq; struct hisi_femac_queue *rxq = &priv->rxq; struct sk_buff *skb; dma_addr_t dma_addr; u32 pos; pos = rxq->tail; while (pos != rxq->head) { skb = rxq->skb[pos]; if (unlikely(!skb)) { netdev_err(priv->ndev, "NULL rx skb. pos=%d, head=%d\n", pos, rxq->head); continue; } dma_addr = rxq->dma_phys[pos]; dma_unmap_single(priv->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE); dev_kfree_skb_any(skb); rxq->skb[pos] = NULL; pos = (pos + 1) % rxq->num; } rxq->tail = pos; pos = txq->tail; while (pos != txq->head) { skb = txq->skb[pos]; if (unlikely(!skb)) { netdev_err(priv->ndev, "NULL tx skb. pos=%d, head=%d\n", pos, txq->head); continue; } hisi_femac_tx_dma_unmap(priv, skb, pos); dev_kfree_skb_any(skb); txq->skb[pos] = NULL; pos = (pos + 1) % txq->num; } txq->tail = pos; priv->tx_fifo_used_cnt = 0; } static int hisi_femac_set_hw_mac_addr(struct hisi_femac_priv *priv, unsigned char *mac) { u32 reg; reg = mac[1] | (mac[0] << 8); writel(reg, priv->glb_base + GLB_HOSTMAC_H16); reg = mac[5] | (mac[4] << 8) | (mac[3] << 16) | (mac[2] << 24); writel(reg, priv->glb_base + GLB_HOSTMAC_L32); return 0; } static int hisi_femac_port_reset(struct hisi_femac_priv *priv) { u32 val; val = readl(priv->glb_base + GLB_SOFT_RESET); val |= SOFT_RESET_ALL; writel(val, priv->glb_base + GLB_SOFT_RESET); usleep_range(500, 800); val &= ~SOFT_RESET_ALL; writel(val, priv->glb_base + GLB_SOFT_RESET); return 0; } static int hisi_femac_net_open(struct net_device *dev) { struct hisi_femac_priv *priv = netdev_priv(dev); hisi_femac_port_reset(priv); hisi_femac_set_hw_mac_addr(priv, dev->dev_addr); hisi_femac_rx_refill(priv); netif_carrier_off(dev); netdev_reset_queue(dev); netif_start_queue(dev); napi_enable(&priv->napi); priv->link_status = 0; if (dev->phydev) phy_start(dev->phydev); writel(IRQ_ENA_PORT0_MASK, priv->glb_base + GLB_IRQ_RAW); hisi_femac_irq_enable(priv, IRQ_ENA_ALL | IRQ_ENA_PORT0 | DEF_INT_MASK); return 0; } static int hisi_femac_net_close(struct net_device *dev) { struct hisi_femac_priv *priv = netdev_priv(dev); hisi_femac_irq_disable(priv, IRQ_ENA_PORT0); if (dev->phydev) phy_stop(dev->phydev); netif_stop_queue(dev); napi_disable(&priv->napi); hisi_femac_free_skb_rings(priv); return 0; } static netdev_tx_t hisi_femac_net_xmit(struct sk_buff *skb, struct net_device *dev) { struct hisi_femac_priv *priv = netdev_priv(dev); struct hisi_femac_queue *txq = &priv->txq; dma_addr_t addr; u32 val; val = readl(priv->port_base + ADDRQ_STAT); val &= BIT_TX_READY; if (!val) { hisi_femac_irq_enable(priv, IRQ_INT_TX_PER_PACKET); dev->stats.tx_dropped++; dev->stats.tx_fifo_errors++; netif_stop_queue(dev); return NETDEV_TX_BUSY; } if (unlikely(!CIRC_SPACE(txq->head, txq->tail, txq->num))) { hisi_femac_irq_enable(priv, IRQ_INT_TX_PER_PACKET); dev->stats.tx_dropped++; dev->stats.tx_fifo_errors++; netif_stop_queue(dev); return NETDEV_TX_BUSY; } addr = dma_map_single(priv->dev, skb->data, skb->len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(priv->dev, addr))) { dev_kfree_skb_any(skb); dev->stats.tx_dropped++; return NETDEV_TX_OK; } txq->dma_phys[txq->head] = addr; txq->skb[txq->head] = skb; txq->head = (txq->head + 1) % txq->num; writel(addr, priv->port_base + EQ_ADDR); writel(skb->len + ETH_FCS_LEN, priv->port_base + EQFRM_LEN); priv->tx_fifo_used_cnt++; dev->stats.tx_packets++; dev->stats.tx_bytes += skb->len; netdev_sent_queue(dev, skb->len); return NETDEV_TX_OK; } static int hisi_femac_set_mac_address(struct net_device *dev, void *p) { struct hisi_femac_priv *priv = netdev_priv(dev); struct sockaddr *skaddr = p; if (!is_valid_ether_addr(skaddr->sa_data)) return -EADDRNOTAVAIL; memcpy(dev->dev_addr, skaddr->sa_data, dev->addr_len); dev->addr_assign_type &= ~NET_ADDR_RANDOM; hisi_femac_set_hw_mac_addr(priv, dev->dev_addr); return 0; } static void hisi_femac_enable_hw_addr_filter(struct hisi_femac_priv *priv, unsigned int reg_n, bool enable) { u32 val; val = readl(priv->glb_base + GLB_MAC_H16(reg_n)); if (enable) val |= BIT_MACFLT_ENA; else val &= ~BIT_MACFLT_ENA; writel(val, priv->glb_base + GLB_MAC_H16(reg_n)); } static void hisi_femac_set_hw_addr_filter(struct hisi_femac_priv *priv, unsigned char *addr, unsigned int reg_n) { unsigned int high, low; u32 val; high = GLB_MAC_H16(reg_n); low = GLB_MAC_L32(reg_n); val = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5]; writel(val, priv->glb_base + low); val = readl(priv->glb_base + high); val &= ~MACFLT_HI16_MASK; val |= ((addr[0] << 8) | addr[1]); val |= (BIT_MACFLT_ENA | BIT_MACFLT_FW2CPU); writel(val, priv->glb_base + high); } static void hisi_femac_set_promisc_mode(struct hisi_femac_priv *priv, bool promisc_mode) { u32 val; val = readl(priv->glb_base + GLB_FWCTRL); if (promisc_mode) val |= FWCTRL_FWALL2CPU; else val &= ~FWCTRL_FWALL2CPU; writel(val, priv->glb_base + GLB_FWCTRL); } /* Handle multiple multicast addresses (perfect filtering)*/ static void hisi_femac_set_mc_addr_filter(struct hisi_femac_priv *priv) { struct net_device *dev = priv->ndev; u32 val; val = readl(priv->glb_base + GLB_MACTCTRL); if ((netdev_mc_count(dev) > MAX_MULTICAST_ADDRESSES) || (dev->flags & IFF_ALLMULTI)) { val |= MACTCTRL_MULTI2CPU; } else { int reg = MAX_UNICAST_ADDRESSES; int i; struct netdev_hw_addr *ha; for (i = reg; i < MAX_MAC_FILTER_NUM; i++) hisi_femac_enable_hw_addr_filter(priv, i, false); netdev_for_each_mc_addr(ha, dev) { hisi_femac_set_hw_addr_filter(priv, ha->addr, reg); reg++; } val &= ~MACTCTRL_MULTI2CPU; } writel(val, priv->glb_base + GLB_MACTCTRL); } /* Handle multiple unicast addresses (perfect filtering)*/ static void hisi_femac_set_uc_addr_filter(struct hisi_femac_priv *priv) { struct net_device *dev = priv->ndev; u32 val; val = readl(priv->glb_base + GLB_MACTCTRL); if (netdev_uc_count(dev) > MAX_UNICAST_ADDRESSES) { val |= MACTCTRL_UNI2CPU; } else { int reg = 0; int i; struct netdev_hw_addr *ha; for (i = reg; i < MAX_UNICAST_ADDRESSES; i++) hisi_femac_enable_hw_addr_filter(priv, i, false); netdev_for_each_uc_addr(ha, dev) { hisi_femac_set_hw_addr_filter(priv, ha->addr, reg); reg++; } val &= ~MACTCTRL_UNI2CPU; } writel(val, priv->glb_base + GLB_MACTCTRL); } static void hisi_femac_net_set_rx_mode(struct net_device *dev) { struct hisi_femac_priv *priv = netdev_priv(dev); if (dev->flags & IFF_PROMISC) { hisi_femac_set_promisc_mode(priv, true); } else { hisi_femac_set_promisc_mode(priv, false); hisi_femac_set_mc_addr_filter(priv); hisi_femac_set_uc_addr_filter(priv); } } static int hisi_femac_net_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd) { if (!netif_running(dev)) return -EINVAL; if (!dev->phydev) return -EINVAL; return phy_mii_ioctl(dev->phydev, ifreq, cmd); } static const struct ethtool_ops hisi_femac_ethtools_ops = { .get_link = ethtool_op_get_link, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, }; static const struct net_device_ops hisi_femac_netdev_ops = { .ndo_open = hisi_femac_net_open, .ndo_stop = hisi_femac_net_close, .ndo_start_xmit = hisi_femac_net_xmit, .ndo_do_ioctl = hisi_femac_net_ioctl, .ndo_set_mac_address = hisi_femac_set_mac_address, .ndo_set_rx_mode = hisi_femac_net_set_rx_mode, }; static void hisi_femac_core_reset(struct hisi_femac_priv *priv) { reset_control_assert(priv->mac_rst); reset_control_deassert(priv->mac_rst); } static void hisi_femac_sleep_us(u32 time_us) { u32 time_ms; if (!time_us) return; time_ms = DIV_ROUND_UP(time_us, 1000); if (time_ms < 20) usleep_range(time_us, time_us + 500); else msleep(time_ms); } static void hisi_femac_phy_reset(struct hisi_femac_priv *priv) { /* To make sure PHY hardware reset success, * we must keep PHY in deassert state first and * then complete the hardware reset operation */ reset_control_deassert(priv->phy_rst); hisi_femac_sleep_us(priv->phy_reset_delays[PRE_DELAY]); reset_control_assert(priv->phy_rst); /* delay some time to ensure reset ok, * this depends on PHY hardware feature */ hisi_femac_sleep_us(priv->phy_reset_delays[PULSE]); reset_control_deassert(priv->phy_rst); /* delay some time to ensure later MDIO access */ hisi_femac_sleep_us(priv->phy_reset_delays[POST_DELAY]); } static void hisi_femac_port_init(struct hisi_femac_priv *priv) { u32 val; /* MAC gets link status info and phy mode by software config */ val = MAC_PORTSEL_STAT_CPU; if (priv->ndev->phydev->interface == PHY_INTERFACE_MODE_RMII) val |= MAC_PORTSEL_RMII; writel(val, priv->port_base + MAC_PORTSEL); /*clear all interrupt status */ writel(IRQ_ENA_PORT0_MASK, priv->glb_base + GLB_IRQ_RAW); hisi_femac_irq_disable(priv, IRQ_ENA_PORT0_MASK | IRQ_ENA_PORT0); val = readl(priv->glb_base + GLB_FWCTRL); val &= ~(FWCTRL_VLAN_ENABLE | FWCTRL_FWALL2CPU); val |= FWCTRL_FW2CPU_ENA; writel(val, priv->glb_base + GLB_FWCTRL); val = readl(priv->glb_base + GLB_MACTCTRL); val |= (MACTCTRL_BROAD2CPU | MACTCTRL_MACT_ENA); writel(val, priv->glb_base + GLB_MACTCTRL); val = readl(priv->port_base + MAC_SET); val &= ~MAX_FRAME_SIZE_MASK; val |= MAX_FRAME_SIZE; writel(val, priv->port_base + MAC_SET); val = RX_COALESCED_TIMER | (RX_COALESCED_FRAMES << RX_COALESCED_FRAME_OFFSET); writel(val, priv->port_base + RX_COALESCE_SET); val = (HW_RX_FIFO_DEPTH << RX_DEPTH_OFFSET) | HW_TX_FIFO_DEPTH; writel(val, priv->port_base + QLEN_SET); } static int hisi_femac_drv_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *node = dev->of_node; struct resource *res; struct net_device *ndev; struct hisi_femac_priv *priv; struct phy_device *phy; const char *mac_addr; int ret; ndev = alloc_etherdev(sizeof(*priv)); if (!ndev) return -ENOMEM; platform_set_drvdata(pdev, ndev); SET_NETDEV_DEV(ndev, &pdev->dev); priv = netdev_priv(ndev); priv->dev = dev; priv->ndev = ndev; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); priv->port_base = devm_ioremap_resource(dev, res); if (IS_ERR(priv->port_base)) { ret = PTR_ERR(priv->port_base); goto out_free_netdev; } res = platform_get_resource(pdev, IORESOURCE_MEM, 1); priv->glb_base = devm_ioremap_resource(dev, res); if (IS_ERR(priv->glb_base)) { ret = PTR_ERR(priv->glb_base); goto out_free_netdev; } priv->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(priv->clk)) { dev_err(dev, "failed to get clk\n"); ret = -ENODEV; goto out_free_netdev; } ret = clk_prepare_enable(priv->clk); if (ret) { dev_err(dev, "failed to enable clk %d\n", ret); goto out_free_netdev; } priv->mac_rst = devm_reset_control_get(dev, "mac"); if (IS_ERR(priv->mac_rst)) { ret = PTR_ERR(priv->mac_rst); goto out_disable_clk; } hisi_femac_core_reset(priv); priv->phy_rst = devm_reset_control_get(dev, "phy"); if (IS_ERR(priv->phy_rst)) { priv->phy_rst = NULL; } else { ret = of_property_read_u32_array(node, PHY_RESET_DELAYS_PROPERTY, priv->phy_reset_delays, DELAYS_NUM); if (ret) goto out_disable_clk; hisi_femac_phy_reset(priv); } phy = of_phy_get_and_connect(ndev, node, hisi_femac_adjust_link); if (!phy) { dev_err(dev, "connect to PHY failed!\n"); ret = -ENODEV; goto out_disable_clk; } phy_attached_print(phy, "phy_id=0x%.8lx, phy_mode=%s\n", (unsigned long)phy->phy_id, phy_modes(phy->interface)); mac_addr = of_get_mac_address(node); if (!IS_ERR(mac_addr)) ether_addr_copy(ndev->dev_addr, mac_addr); if (!is_valid_ether_addr(ndev->dev_addr)) { eth_hw_addr_random(ndev); dev_warn(dev, "using random MAC address %pM\n", ndev->dev_addr); } ndev->watchdog_timeo = 6 * HZ; ndev->priv_flags |= IFF_UNICAST_FLT; ndev->netdev_ops = &hisi_femac_netdev_ops; ndev->ethtool_ops = &hisi_femac_ethtools_ops; netif_napi_add(ndev, &priv->napi, hisi_femac_poll, FEMAC_POLL_WEIGHT); hisi_femac_port_init(priv); ret = hisi_femac_init_tx_and_rx_queues(priv); if (ret) goto out_disconnect_phy; ndev->irq = platform_get_irq(pdev, 0); if (ndev->irq <= 0) { dev_err(dev, "No irq resource\n"); ret = -ENODEV; goto out_disconnect_phy; } ret = devm_request_irq(dev, ndev->irq, hisi_femac_interrupt, IRQF_SHARED, pdev->name, ndev); if (ret) { dev_err(dev, "devm_request_irq %d failed!\n", ndev->irq); goto out_disconnect_phy; } ret = register_netdev(ndev); if (ret) { dev_err(dev, "register_netdev failed!\n"); goto out_disconnect_phy; } return ret; out_disconnect_phy: netif_napi_del(&priv->napi); phy_disconnect(phy); out_disable_clk: clk_disable_unprepare(priv->clk); out_free_netdev: free_netdev(ndev); return ret; } static int hisi_femac_drv_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct hisi_femac_priv *priv = netdev_priv(ndev); netif_napi_del(&priv->napi); unregister_netdev(ndev); phy_disconnect(ndev->phydev); clk_disable_unprepare(priv->clk); free_netdev(ndev); return 0; } #ifdef CONFIG_PM static int hisi_femac_drv_suspend(struct platform_device *pdev, pm_message_t state) { struct net_device *ndev = platform_get_drvdata(pdev); struct hisi_femac_priv *priv = netdev_priv(ndev); disable_irq(ndev->irq); if (netif_running(ndev)) { hisi_femac_net_close(ndev); netif_device_detach(ndev); } clk_disable_unprepare(priv->clk); return 0; } static int hisi_femac_drv_resume(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct hisi_femac_priv *priv = netdev_priv(ndev); clk_prepare_enable(priv->clk); if (priv->phy_rst) hisi_femac_phy_reset(priv); if (netif_running(ndev)) { hisi_femac_port_init(priv); hisi_femac_net_open(ndev); netif_device_attach(ndev); } enable_irq(ndev->irq); return 0; } #endif static const struct of_device_id hisi_femac_match[] = { {.compatible = "hisilicon,hisi-femac-v1",}, {.compatible = "hisilicon,hisi-femac-v2",}, {.compatible = "hisilicon,hi3516cv300-femac",}, {}, }; MODULE_DEVICE_TABLE(of, hisi_femac_match); static struct platform_driver hisi_femac_driver = { .driver = { .name = "hisi-femac", .of_match_table = hisi_femac_match, }, .probe = hisi_femac_drv_probe, .remove = hisi_femac_drv_remove, #ifdef CONFIG_PM .suspend = hisi_femac_drv_suspend, .resume = hisi_femac_drv_resume, #endif }; module_platform_driver(hisi_femac_driver); MODULE_DESCRIPTION("Hisilicon Fast Ethernet MAC driver"); MODULE_AUTHOR("Dongpo Li <lidongpo@hisilicon.com>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:hisi-femac");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1