Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ganesh Venkatesan | 3041 | 77.70% | 3 | 13.64% |
Jeff Garzik | 320 | 8.18% | 4 | 18.18% |
Matheos Worku | 211 | 5.39% | 1 | 4.55% |
Joe Perches | 203 | 5.19% | 3 | 13.64% |
Adrian Bunk | 62 | 1.58% | 1 | 4.55% |
Manasi Deval | 42 | 1.07% | 1 | 4.55% |
Jesse Brandeburg | 13 | 0.33% | 3 | 13.64% |
Ben Hutchings | 6 | 0.15% | 1 | 4.55% |
Jon Mason | 5 | 0.13% | 1 | 4.55% |
Aaron Salter | 5 | 0.13% | 1 | 4.55% |
Jeff Kirsher | 2 | 0.05% | 1 | 4.55% |
Al Viro | 2 | 0.05% | 1 | 4.55% |
Stephen Hemminger | 2 | 0.05% | 1 | 4.55% |
Total | 3914 | 22 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 1999 - 2008 Intel Corporation. */ /* ixgb_hw.c * Shared functions for accessing and configuring the adapter */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/pci_ids.h> #include "ixgb_hw.h" #include "ixgb_ids.h" #include <linux/etherdevice.h> /* Local function prototypes */ static u32 ixgb_hash_mc_addr(struct ixgb_hw *hw, u8 * mc_addr); static void ixgb_mta_set(struct ixgb_hw *hw, u32 hash_value); static void ixgb_get_bus_info(struct ixgb_hw *hw); static bool ixgb_link_reset(struct ixgb_hw *hw); static void ixgb_optics_reset(struct ixgb_hw *hw); static void ixgb_optics_reset_bcm(struct ixgb_hw *hw); static ixgb_phy_type ixgb_identify_phy(struct ixgb_hw *hw); static void ixgb_clear_hw_cntrs(struct ixgb_hw *hw); static void ixgb_clear_vfta(struct ixgb_hw *hw); static void ixgb_init_rx_addrs(struct ixgb_hw *hw); static u16 ixgb_read_phy_reg(struct ixgb_hw *hw, u32 reg_address, u32 phy_address, u32 device_type); static bool ixgb_setup_fc(struct ixgb_hw *hw); static bool mac_addr_valid(u8 *mac_addr); static u32 ixgb_mac_reset(struct ixgb_hw *hw) { u32 ctrl_reg; ctrl_reg = IXGB_CTRL0_RST | IXGB_CTRL0_SDP3_DIR | /* All pins are Output=1 */ IXGB_CTRL0_SDP2_DIR | IXGB_CTRL0_SDP1_DIR | IXGB_CTRL0_SDP0_DIR | IXGB_CTRL0_SDP3 | /* Initial value 1101 */ IXGB_CTRL0_SDP2 | IXGB_CTRL0_SDP0; #ifdef HP_ZX1 /* Workaround for 82597EX reset errata */ IXGB_WRITE_REG_IO(hw, CTRL0, ctrl_reg); #else IXGB_WRITE_REG(hw, CTRL0, ctrl_reg); #endif /* Delay a few ms just to allow the reset to complete */ msleep(IXGB_DELAY_AFTER_RESET); ctrl_reg = IXGB_READ_REG(hw, CTRL0); #ifdef DBG /* Make sure the self-clearing global reset bit did self clear */ ASSERT(!(ctrl_reg & IXGB_CTRL0_RST)); #endif if (hw->subsystem_vendor_id == PCI_VENDOR_ID_SUN) { ctrl_reg = /* Enable interrupt from XFP and SerDes */ IXGB_CTRL1_GPI0_EN | IXGB_CTRL1_SDP6_DIR | IXGB_CTRL1_SDP7_DIR | IXGB_CTRL1_SDP6 | IXGB_CTRL1_SDP7; IXGB_WRITE_REG(hw, CTRL1, ctrl_reg); ixgb_optics_reset_bcm(hw); } if (hw->phy_type == ixgb_phy_type_txn17401) ixgb_optics_reset(hw); return ctrl_reg; } /****************************************************************************** * Reset the transmit and receive units; mask and clear all interrupts. * * hw - Struct containing variables accessed by shared code *****************************************************************************/ bool ixgb_adapter_stop(struct ixgb_hw *hw) { u32 ctrl_reg; u32 icr_reg; ENTER(); /* If we are stopped or resetting exit gracefully and wait to be * started again before accessing the hardware. */ if (hw->adapter_stopped) { pr_debug("Exiting because the adapter is already stopped!!!\n"); return false; } /* Set the Adapter Stopped flag so other driver functions stop * touching the Hardware. */ hw->adapter_stopped = true; /* Clear interrupt mask to stop board from generating interrupts */ pr_debug("Masking off all interrupts\n"); IXGB_WRITE_REG(hw, IMC, 0xFFFFFFFF); /* Disable the Transmit and Receive units. Then delay to allow * any pending transactions to complete before we hit the MAC with * the global reset. */ IXGB_WRITE_REG(hw, RCTL, IXGB_READ_REG(hw, RCTL) & ~IXGB_RCTL_RXEN); IXGB_WRITE_REG(hw, TCTL, IXGB_READ_REG(hw, TCTL) & ~IXGB_TCTL_TXEN); IXGB_WRITE_FLUSH(hw); msleep(IXGB_DELAY_BEFORE_RESET); /* Issue a global reset to the MAC. This will reset the chip's * transmit, receive, DMA, and link units. It will not effect * the current PCI configuration. The global reset bit is self- * clearing, and should clear within a microsecond. */ pr_debug("Issuing a global reset to MAC\n"); ctrl_reg = ixgb_mac_reset(hw); /* Clear interrupt mask to stop board from generating interrupts */ pr_debug("Masking off all interrupts\n"); IXGB_WRITE_REG(hw, IMC, 0xffffffff); /* Clear any pending interrupt events. */ icr_reg = IXGB_READ_REG(hw, ICR); return ctrl_reg & IXGB_CTRL0_RST; } /****************************************************************************** * Identifies the vendor of the optics module on the adapter. The SR adapters * support two different types of XPAK optics, so it is necessary to determine * which optics are present before applying any optics-specific workarounds. * * hw - Struct containing variables accessed by shared code. * * Returns: the vendor of the XPAK optics module. *****************************************************************************/ static ixgb_xpak_vendor ixgb_identify_xpak_vendor(struct ixgb_hw *hw) { u32 i; u16 vendor_name[5]; ixgb_xpak_vendor xpak_vendor; ENTER(); /* Read the first few bytes of the vendor string from the XPAK NVR * registers. These are standard XENPAK/XPAK registers, so all XPAK * devices should implement them. */ for (i = 0; i < 5; i++) { vendor_name[i] = ixgb_read_phy_reg(hw, MDIO_PMA_PMD_XPAK_VENDOR_NAME + i, IXGB_PHY_ADDRESS, MDIO_MMD_PMAPMD); } /* Determine the actual vendor */ if (vendor_name[0] == 'I' && vendor_name[1] == 'N' && vendor_name[2] == 'T' && vendor_name[3] == 'E' && vendor_name[4] == 'L') { xpak_vendor = ixgb_xpak_vendor_intel; } else { xpak_vendor = ixgb_xpak_vendor_infineon; } return xpak_vendor; } /****************************************************************************** * Determine the physical layer module on the adapter. * * hw - Struct containing variables accessed by shared code. The device_id * field must be (correctly) populated before calling this routine. * * Returns: the phy type of the adapter. *****************************************************************************/ static ixgb_phy_type ixgb_identify_phy(struct ixgb_hw *hw) { ixgb_phy_type phy_type; ixgb_xpak_vendor xpak_vendor; ENTER(); /* Infer the transceiver/phy type from the device id */ switch (hw->device_id) { case IXGB_DEVICE_ID_82597EX: pr_debug("Identified TXN17401 optics\n"); phy_type = ixgb_phy_type_txn17401; break; case IXGB_DEVICE_ID_82597EX_SR: /* The SR adapters carry two different types of XPAK optics * modules; read the vendor identifier to determine the exact * type of optics. */ xpak_vendor = ixgb_identify_xpak_vendor(hw); if (xpak_vendor == ixgb_xpak_vendor_intel) { pr_debug("Identified TXN17201 optics\n"); phy_type = ixgb_phy_type_txn17201; } else { pr_debug("Identified G6005 optics\n"); phy_type = ixgb_phy_type_g6005; } break; case IXGB_DEVICE_ID_82597EX_LR: pr_debug("Identified G6104 optics\n"); phy_type = ixgb_phy_type_g6104; break; case IXGB_DEVICE_ID_82597EX_CX4: pr_debug("Identified CX4\n"); xpak_vendor = ixgb_identify_xpak_vendor(hw); if (xpak_vendor == ixgb_xpak_vendor_intel) { pr_debug("Identified TXN17201 optics\n"); phy_type = ixgb_phy_type_txn17201; } else { pr_debug("Identified G6005 optics\n"); phy_type = ixgb_phy_type_g6005; } break; default: pr_debug("Unknown physical layer module\n"); phy_type = ixgb_phy_type_unknown; break; } /* update phy type for sun specific board */ if (hw->subsystem_vendor_id == PCI_VENDOR_ID_SUN) phy_type = ixgb_phy_type_bcm; return phy_type; } /****************************************************************************** * Performs basic configuration of the adapter. * * hw - Struct containing variables accessed by shared code * * Resets the controller. * Reads and validates the EEPROM. * Initializes the receive address registers. * Initializes the multicast table. * Clears all on-chip counters. * Calls routine to setup flow control settings. * Leaves the transmit and receive units disabled and uninitialized. * * Returns: * true if successful, * false if unrecoverable problems were encountered. *****************************************************************************/ bool ixgb_init_hw(struct ixgb_hw *hw) { u32 i; u32 ctrl_reg; bool status; ENTER(); /* Issue a global reset to the MAC. This will reset the chip's * transmit, receive, DMA, and link units. It will not effect * the current PCI configuration. The global reset bit is self- * clearing, and should clear within a microsecond. */ pr_debug("Issuing a global reset to MAC\n"); ctrl_reg = ixgb_mac_reset(hw); pr_debug("Issuing an EE reset to MAC\n"); #ifdef HP_ZX1 /* Workaround for 82597EX reset errata */ IXGB_WRITE_REG_IO(hw, CTRL1, IXGB_CTRL1_EE_RST); #else IXGB_WRITE_REG(hw, CTRL1, IXGB_CTRL1_EE_RST); #endif /* Delay a few ms just to allow the reset to complete */ msleep(IXGB_DELAY_AFTER_EE_RESET); if (!ixgb_get_eeprom_data(hw)) return false; /* Use the device id to determine the type of phy/transceiver. */ hw->device_id = ixgb_get_ee_device_id(hw); hw->phy_type = ixgb_identify_phy(hw); /* Setup the receive addresses. * Receive Address Registers (RARs 0 - 15). */ ixgb_init_rx_addrs(hw); /* * Check that a valid MAC address has been set. * If it is not valid, we fail hardware init. */ if (!mac_addr_valid(hw->curr_mac_addr)) { pr_debug("MAC address invalid after ixgb_init_rx_addrs\n"); return(false); } /* tell the routines in this file they can access hardware again */ hw->adapter_stopped = false; /* Fill in the bus_info structure */ ixgb_get_bus_info(hw); /* Zero out the Multicast HASH table */ pr_debug("Zeroing the MTA\n"); for (i = 0; i < IXGB_MC_TBL_SIZE; i++) IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0); /* Zero out the VLAN Filter Table Array */ ixgb_clear_vfta(hw); /* Zero all of the hardware counters */ ixgb_clear_hw_cntrs(hw); /* Call a subroutine to setup flow control. */ status = ixgb_setup_fc(hw); /* 82597EX errata: Call check-for-link in case lane deskew is locked */ ixgb_check_for_link(hw); return status; } /****************************************************************************** * Initializes receive address filters. * * hw - Struct containing variables accessed by shared code * * Places the MAC address in receive address register 0 and clears the rest * of the receive address registers. Clears the multicast table. Assumes * the receiver is in reset when the routine is called. *****************************************************************************/ static void ixgb_init_rx_addrs(struct ixgb_hw *hw) { u32 i; ENTER(); /* * If the current mac address is valid, assume it is a software override * to the permanent address. * Otherwise, use the permanent address from the eeprom. */ if (!mac_addr_valid(hw->curr_mac_addr)) { /* Get the MAC address from the eeprom for later reference */ ixgb_get_ee_mac_addr(hw, hw->curr_mac_addr); pr_debug("Keeping Permanent MAC Addr = %pM\n", hw->curr_mac_addr); } else { /* Setup the receive address. */ pr_debug("Overriding MAC Address in RAR[0]\n"); pr_debug("New MAC Addr = %pM\n", hw->curr_mac_addr); ixgb_rar_set(hw, hw->curr_mac_addr, 0); } /* Zero out the other 15 receive addresses. */ pr_debug("Clearing RAR[1-15]\n"); for (i = 1; i < IXGB_RAR_ENTRIES; i++) { /* Write high reg first to disable the AV bit first */ IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); } } /****************************************************************************** * Updates the MAC's list of multicast addresses. * * hw - Struct containing variables accessed by shared code * mc_addr_list - the list of new multicast addresses * mc_addr_count - number of addresses * pad - number of bytes between addresses in the list * * The given list replaces any existing list. Clears the last 15 receive * address registers and the multicast table. Uses receive address registers * for the first 15 multicast addresses, and hashes the rest into the * multicast table. *****************************************************************************/ void ixgb_mc_addr_list_update(struct ixgb_hw *hw, u8 *mc_addr_list, u32 mc_addr_count, u32 pad) { u32 hash_value; u32 i; u32 rar_used_count = 1; /* RAR[0] is used for our MAC address */ u8 *mca; ENTER(); /* Set the new number of MC addresses that we are being requested to use. */ hw->num_mc_addrs = mc_addr_count; /* Clear RAR[1-15] */ pr_debug("Clearing RAR[1-15]\n"); for (i = rar_used_count; i < IXGB_RAR_ENTRIES; i++) { IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); } /* Clear the MTA */ pr_debug("Clearing MTA\n"); for (i = 0; i < IXGB_MC_TBL_SIZE; i++) IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0); /* Add the new addresses */ mca = mc_addr_list; for (i = 0; i < mc_addr_count; i++) { pr_debug("Adding the multicast addresses:\n"); pr_debug("MC Addr #%d = %pM\n", i, mca); /* Place this multicast address in the RAR if there is room, * * else put it in the MTA */ if (rar_used_count < IXGB_RAR_ENTRIES) { ixgb_rar_set(hw, mca, rar_used_count); pr_debug("Added a multicast address to RAR[%d]\n", i); rar_used_count++; } else { hash_value = ixgb_hash_mc_addr(hw, mca); pr_debug("Hash value = 0x%03X\n", hash_value); ixgb_mta_set(hw, hash_value); } mca += ETH_ALEN + pad; } pr_debug("MC Update Complete\n"); } /****************************************************************************** * Hashes an address to determine its location in the multicast table * * hw - Struct containing variables accessed by shared code * mc_addr - the multicast address to hash * * Returns: * The hash value *****************************************************************************/ static u32 ixgb_hash_mc_addr(struct ixgb_hw *hw, u8 *mc_addr) { u32 hash_value = 0; ENTER(); /* The portion of the address that is used for the hash table is * determined by the mc_filter_type setting. */ switch (hw->mc_filter_type) { /* [0] [1] [2] [3] [4] [5] * 01 AA 00 12 34 56 * LSB MSB - According to H/W docs */ case 0: /* [47:36] i.e. 0x563 for above example address */ hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4)); break; case 1: /* [46:35] i.e. 0xAC6 for above example address */ hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5)); break; case 2: /* [45:34] i.e. 0x5D8 for above example address */ hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6)); break; case 3: /* [43:32] i.e. 0x634 for above example address */ hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8)); break; default: /* Invalid mc_filter_type, what should we do? */ pr_debug("MC filter type param set incorrectly\n"); ASSERT(0); break; } hash_value &= 0xFFF; return hash_value; } /****************************************************************************** * Sets the bit in the multicast table corresponding to the hash value. * * hw - Struct containing variables accessed by shared code * hash_value - Multicast address hash value *****************************************************************************/ static void ixgb_mta_set(struct ixgb_hw *hw, u32 hash_value) { u32 hash_bit, hash_reg; u32 mta_reg; /* The MTA is a register array of 128 32-bit registers. * It is treated like an array of 4096 bits. We want to set * bit BitArray[hash_value]. So we figure out what register * the bit is in, read it, OR in the new bit, then write * back the new value. The register is determined by the * upper 7 bits of the hash value and the bit within that * register are determined by the lower 5 bits of the value. */ hash_reg = (hash_value >> 5) & 0x7F; hash_bit = hash_value & 0x1F; mta_reg = IXGB_READ_REG_ARRAY(hw, MTA, hash_reg); mta_reg |= (1 << hash_bit); IXGB_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta_reg); } /****************************************************************************** * Puts an ethernet address into a receive address register. * * hw - Struct containing variables accessed by shared code * addr - Address to put into receive address register * index - Receive address register to write *****************************************************************************/ void ixgb_rar_set(struct ixgb_hw *hw, u8 *addr, u32 index) { u32 rar_low, rar_high; ENTER(); /* HW expects these in little endian so we reverse the byte order * from network order (big endian) to little endian */ rar_low = ((u32) addr[0] | ((u32)addr[1] << 8) | ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); rar_high = ((u32) addr[4] | ((u32)addr[5] << 8) | IXGB_RAH_AV); IXGB_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); IXGB_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); } /****************************************************************************** * Writes a value to the specified offset in the VLAN filter table. * * hw - Struct containing variables accessed by shared code * offset - Offset in VLAN filer table to write * value - Value to write into VLAN filter table *****************************************************************************/ void ixgb_write_vfta(struct ixgb_hw *hw, u32 offset, u32 value) { IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, value); } /****************************************************************************** * Clears the VLAN filer table * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static void ixgb_clear_vfta(struct ixgb_hw *hw) { u32 offset; for (offset = 0; offset < IXGB_VLAN_FILTER_TBL_SIZE; offset++) IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, 0); } /****************************************************************************** * Configures the flow control settings based on SW configuration. * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static bool ixgb_setup_fc(struct ixgb_hw *hw) { u32 ctrl_reg; u32 pap_reg = 0; /* by default, assume no pause time */ bool status = true; ENTER(); /* Get the current control reg 0 settings */ ctrl_reg = IXGB_READ_REG(hw, CTRL0); /* Clear the Receive Pause Enable and Transmit Pause Enable bits */ ctrl_reg &= ~(IXGB_CTRL0_RPE | IXGB_CTRL0_TPE); /* The possible values of the "flow_control" parameter are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause frames * but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames * but we do not support receiving pause frames). * 3: Both Rx and TX flow control (symmetric) are enabled. * other: Invalid. */ switch (hw->fc.type) { case ixgb_fc_none: /* 0 */ /* Set CMDC bit to disable Rx Flow control */ ctrl_reg |= (IXGB_CTRL0_CMDC); break; case ixgb_fc_rx_pause: /* 1 */ /* RX Flow control is enabled, and TX Flow control is * disabled. */ ctrl_reg |= (IXGB_CTRL0_RPE); break; case ixgb_fc_tx_pause: /* 2 */ /* TX Flow control is enabled, and RX Flow control is * disabled, by a software over-ride. */ ctrl_reg |= (IXGB_CTRL0_TPE); pap_reg = hw->fc.pause_time; break; case ixgb_fc_full: /* 3 */ /* Flow control (both RX and TX) is enabled by a software * over-ride. */ ctrl_reg |= (IXGB_CTRL0_RPE | IXGB_CTRL0_TPE); pap_reg = hw->fc.pause_time; break; default: /* We should never get here. The value should be 0-3. */ pr_debug("Flow control param set incorrectly\n"); ASSERT(0); break; } /* Write the new settings */ IXGB_WRITE_REG(hw, CTRL0, ctrl_reg); if (pap_reg != 0) IXGB_WRITE_REG(hw, PAP, pap_reg); /* Set the flow control receive threshold registers. Normally, * these registers will be set to a default threshold that may be * adjusted later by the driver's runtime code. However, if the * ability to transmit pause frames in not enabled, then these * registers will be set to 0. */ if (!(hw->fc.type & ixgb_fc_tx_pause)) { IXGB_WRITE_REG(hw, FCRTL, 0); IXGB_WRITE_REG(hw, FCRTH, 0); } else { /* We need to set up the Receive Threshold high and low water * marks as well as (optionally) enabling the transmission of XON * frames. */ if (hw->fc.send_xon) { IXGB_WRITE_REG(hw, FCRTL, (hw->fc.low_water | IXGB_FCRTL_XONE)); } else { IXGB_WRITE_REG(hw, FCRTL, hw->fc.low_water); } IXGB_WRITE_REG(hw, FCRTH, hw->fc.high_water); } return status; } /****************************************************************************** * Reads a word from a device over the Management Data Interface (MDI) bus. * This interface is used to manage Physical layer devices. * * hw - Struct containing variables accessed by hw code * reg_address - Offset of device register being read. * phy_address - Address of device on MDI. * * Returns: Data word (16 bits) from MDI device. * * The 82597EX has support for several MDI access methods. This routine * uses the new protocol MDI Single Command and Address Operation. * This requires that first an address cycle command is sent, followed by a * read command. *****************************************************************************/ static u16 ixgb_read_phy_reg(struct ixgb_hw *hw, u32 reg_address, u32 phy_address, u32 device_type) { u32 i; u32 data; u32 command = 0; ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS); ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS); ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE); /* Setup and write the address cycle command */ command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) | (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) | (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) | (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND)); IXGB_WRITE_REG(hw, MSCA, command); /************************************************************** ** Check every 10 usec to see if the address cycle completed ** The COMMAND bit will clear when the operation is complete. ** This may take as long as 64 usecs (we'll wait 100 usecs max) ** from the CPU Write to the Ready bit assertion. **************************************************************/ for (i = 0; i < 10; i++) { udelay(10); command = IXGB_READ_REG(hw, MSCA); if ((command & IXGB_MSCA_MDI_COMMAND) == 0) break; } ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0); /* Address cycle complete, setup and write the read command */ command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) | (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) | (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) | (IXGB_MSCA_READ | IXGB_MSCA_MDI_COMMAND)); IXGB_WRITE_REG(hw, MSCA, command); /************************************************************** ** Check every 10 usec to see if the read command completed ** The COMMAND bit will clear when the operation is complete. ** The read may take as long as 64 usecs (we'll wait 100 usecs max) ** from the CPU Write to the Ready bit assertion. **************************************************************/ for (i = 0; i < 10; i++) { udelay(10); command = IXGB_READ_REG(hw, MSCA); if ((command & IXGB_MSCA_MDI_COMMAND) == 0) break; } ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0); /* Operation is complete, get the data from the MDIO Read/Write Data * register and return. */ data = IXGB_READ_REG(hw, MSRWD); data >>= IXGB_MSRWD_READ_DATA_SHIFT; return((u16) data); } /****************************************************************************** * Writes a word to a device over the Management Data Interface (MDI) bus. * This interface is used to manage Physical layer devices. * * hw - Struct containing variables accessed by hw code * reg_address - Offset of device register being read. * phy_address - Address of device on MDI. * device_type - Also known as the Device ID or DID. * data - 16-bit value to be written * * Returns: void. * * The 82597EX has support for several MDI access methods. This routine * uses the new protocol MDI Single Command and Address Operation. * This requires that first an address cycle command is sent, followed by a * write command. *****************************************************************************/ static void ixgb_write_phy_reg(struct ixgb_hw *hw, u32 reg_address, u32 phy_address, u32 device_type, u16 data) { u32 i; u32 command = 0; ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS); ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS); ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE); /* Put the data in the MDIO Read/Write Data register */ IXGB_WRITE_REG(hw, MSRWD, (u32)data); /* Setup and write the address cycle command */ command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) | (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) | (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) | (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND)); IXGB_WRITE_REG(hw, MSCA, command); /************************************************************** ** Check every 10 usec to see if the address cycle completed ** The COMMAND bit will clear when the operation is complete. ** This may take as long as 64 usecs (we'll wait 100 usecs max) ** from the CPU Write to the Ready bit assertion. **************************************************************/ for (i = 0; i < 10; i++) { udelay(10); command = IXGB_READ_REG(hw, MSCA); if ((command & IXGB_MSCA_MDI_COMMAND) == 0) break; } ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0); /* Address cycle complete, setup and write the write command */ command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) | (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) | (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) | (IXGB_MSCA_WRITE | IXGB_MSCA_MDI_COMMAND)); IXGB_WRITE_REG(hw, MSCA, command); /************************************************************** ** Check every 10 usec to see if the read command completed ** The COMMAND bit will clear when the operation is complete. ** The write may take as long as 64 usecs (we'll wait 100 usecs max) ** from the CPU Write to the Ready bit assertion. **************************************************************/ for (i = 0; i < 10; i++) { udelay(10); command = IXGB_READ_REG(hw, MSCA); if ((command & IXGB_MSCA_MDI_COMMAND) == 0) break; } ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0); /* Operation is complete, return. */ } /****************************************************************************** * Checks to see if the link status of the hardware has changed. * * hw - Struct containing variables accessed by hw code * * Called by any function that needs to check the link status of the adapter. *****************************************************************************/ void ixgb_check_for_link(struct ixgb_hw *hw) { u32 status_reg; u32 xpcss_reg; ENTER(); xpcss_reg = IXGB_READ_REG(hw, XPCSS); status_reg = IXGB_READ_REG(hw, STATUS); if ((xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) && (status_reg & IXGB_STATUS_LU)) { hw->link_up = true; } else if (!(xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) && (status_reg & IXGB_STATUS_LU)) { pr_debug("XPCSS Not Aligned while Status:LU is set\n"); hw->link_up = ixgb_link_reset(hw); } else { /* * 82597EX errata. Since the lane deskew problem may prevent * link, reset the link before reporting link down. */ hw->link_up = ixgb_link_reset(hw); } /* Anything else for 10 Gig?? */ } /****************************************************************************** * Check for a bad link condition that may have occurred. * The indication is that the RFC / LFC registers may be incrementing * continually. A full adapter reset is required to recover. * * hw - Struct containing variables accessed by hw code * * Called by any function that needs to check the link status of the adapter. *****************************************************************************/ bool ixgb_check_for_bad_link(struct ixgb_hw *hw) { u32 newLFC, newRFC; bool bad_link_returncode = false; if (hw->phy_type == ixgb_phy_type_txn17401) { newLFC = IXGB_READ_REG(hw, LFC); newRFC = IXGB_READ_REG(hw, RFC); if ((hw->lastLFC + 250 < newLFC) || (hw->lastRFC + 250 < newRFC)) { pr_debug("BAD LINK! too many LFC/RFC since last check\n"); bad_link_returncode = true; } hw->lastLFC = newLFC; hw->lastRFC = newRFC; } return bad_link_returncode; } /****************************************************************************** * Clears all hardware statistics counters. * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static void ixgb_clear_hw_cntrs(struct ixgb_hw *hw) { volatile u32 temp_reg; ENTER(); /* if we are stopped or resetting exit gracefully */ if (hw->adapter_stopped) { pr_debug("Exiting because the adapter is stopped!!!\n"); return; } temp_reg = IXGB_READ_REG(hw, TPRL); temp_reg = IXGB_READ_REG(hw, TPRH); temp_reg = IXGB_READ_REG(hw, GPRCL); temp_reg = IXGB_READ_REG(hw, GPRCH); temp_reg = IXGB_READ_REG(hw, BPRCL); temp_reg = IXGB_READ_REG(hw, BPRCH); temp_reg = IXGB_READ_REG(hw, MPRCL); temp_reg = IXGB_READ_REG(hw, MPRCH); temp_reg = IXGB_READ_REG(hw, UPRCL); temp_reg = IXGB_READ_REG(hw, UPRCH); temp_reg = IXGB_READ_REG(hw, VPRCL); temp_reg = IXGB_READ_REG(hw, VPRCH); temp_reg = IXGB_READ_REG(hw, JPRCL); temp_reg = IXGB_READ_REG(hw, JPRCH); temp_reg = IXGB_READ_REG(hw, GORCL); temp_reg = IXGB_READ_REG(hw, GORCH); temp_reg = IXGB_READ_REG(hw, TORL); temp_reg = IXGB_READ_REG(hw, TORH); temp_reg = IXGB_READ_REG(hw, RNBC); temp_reg = IXGB_READ_REG(hw, RUC); temp_reg = IXGB_READ_REG(hw, ROC); temp_reg = IXGB_READ_REG(hw, RLEC); temp_reg = IXGB_READ_REG(hw, CRCERRS); temp_reg = IXGB_READ_REG(hw, ICBC); temp_reg = IXGB_READ_REG(hw, ECBC); temp_reg = IXGB_READ_REG(hw, MPC); temp_reg = IXGB_READ_REG(hw, TPTL); temp_reg = IXGB_READ_REG(hw, TPTH); temp_reg = IXGB_READ_REG(hw, GPTCL); temp_reg = IXGB_READ_REG(hw, GPTCH); temp_reg = IXGB_READ_REG(hw, BPTCL); temp_reg = IXGB_READ_REG(hw, BPTCH); temp_reg = IXGB_READ_REG(hw, MPTCL); temp_reg = IXGB_READ_REG(hw, MPTCH); temp_reg = IXGB_READ_REG(hw, UPTCL); temp_reg = IXGB_READ_REG(hw, UPTCH); temp_reg = IXGB_READ_REG(hw, VPTCL); temp_reg = IXGB_READ_REG(hw, VPTCH); temp_reg = IXGB_READ_REG(hw, JPTCL); temp_reg = IXGB_READ_REG(hw, JPTCH); temp_reg = IXGB_READ_REG(hw, GOTCL); temp_reg = IXGB_READ_REG(hw, GOTCH); temp_reg = IXGB_READ_REG(hw, TOTL); temp_reg = IXGB_READ_REG(hw, TOTH); temp_reg = IXGB_READ_REG(hw, DC); temp_reg = IXGB_READ_REG(hw, PLT64C); temp_reg = IXGB_READ_REG(hw, TSCTC); temp_reg = IXGB_READ_REG(hw, TSCTFC); temp_reg = IXGB_READ_REG(hw, IBIC); temp_reg = IXGB_READ_REG(hw, RFC); temp_reg = IXGB_READ_REG(hw, LFC); temp_reg = IXGB_READ_REG(hw, PFRC); temp_reg = IXGB_READ_REG(hw, PFTC); temp_reg = IXGB_READ_REG(hw, MCFRC); temp_reg = IXGB_READ_REG(hw, MCFTC); temp_reg = IXGB_READ_REG(hw, XONRXC); temp_reg = IXGB_READ_REG(hw, XONTXC); temp_reg = IXGB_READ_REG(hw, XOFFRXC); temp_reg = IXGB_READ_REG(hw, XOFFTXC); temp_reg = IXGB_READ_REG(hw, RJC); } /****************************************************************************** * Turns on the software controllable LED * * hw - Struct containing variables accessed by shared code *****************************************************************************/ void ixgb_led_on(struct ixgb_hw *hw) { u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0); /* To turn on the LED, clear software-definable pin 0 (SDP0). */ ctrl0_reg &= ~IXGB_CTRL0_SDP0; IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg); } /****************************************************************************** * Turns off the software controllable LED * * hw - Struct containing variables accessed by shared code *****************************************************************************/ void ixgb_led_off(struct ixgb_hw *hw) { u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0); /* To turn off the LED, set software-definable pin 0 (SDP0). */ ctrl0_reg |= IXGB_CTRL0_SDP0; IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg); } /****************************************************************************** * Gets the current PCI bus type, speed, and width of the hardware * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static void ixgb_get_bus_info(struct ixgb_hw *hw) { u32 status_reg; status_reg = IXGB_READ_REG(hw, STATUS); hw->bus.type = (status_reg & IXGB_STATUS_PCIX_MODE) ? ixgb_bus_type_pcix : ixgb_bus_type_pci; if (hw->bus.type == ixgb_bus_type_pci) { hw->bus.speed = (status_reg & IXGB_STATUS_PCI_SPD) ? ixgb_bus_speed_66 : ixgb_bus_speed_33; } else { switch (status_reg & IXGB_STATUS_PCIX_SPD_MASK) { case IXGB_STATUS_PCIX_SPD_66: hw->bus.speed = ixgb_bus_speed_66; break; case IXGB_STATUS_PCIX_SPD_100: hw->bus.speed = ixgb_bus_speed_100; break; case IXGB_STATUS_PCIX_SPD_133: hw->bus.speed = ixgb_bus_speed_133; break; default: hw->bus.speed = ixgb_bus_speed_reserved; break; } } hw->bus.width = (status_reg & IXGB_STATUS_BUS64) ? ixgb_bus_width_64 : ixgb_bus_width_32; } /****************************************************************************** * Tests a MAC address to ensure it is a valid Individual Address * * mac_addr - pointer to MAC address. * *****************************************************************************/ static bool mac_addr_valid(u8 *mac_addr) { bool is_valid = true; ENTER(); /* Make sure it is not a multicast address */ if (is_multicast_ether_addr(mac_addr)) { pr_debug("MAC address is multicast\n"); is_valid = false; } /* Not a broadcast address */ else if (is_broadcast_ether_addr(mac_addr)) { pr_debug("MAC address is broadcast\n"); is_valid = false; } /* Reject the zero address */ else if (is_zero_ether_addr(mac_addr)) { pr_debug("MAC address is all zeros\n"); is_valid = false; } return is_valid; } /****************************************************************************** * Resets the 10GbE link. Waits the settle time and returns the state of * the link. * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static bool ixgb_link_reset(struct ixgb_hw *hw) { bool link_status = false; u8 wait_retries = MAX_RESET_ITERATIONS; u8 lrst_retries = MAX_RESET_ITERATIONS; do { /* Reset the link */ IXGB_WRITE_REG(hw, CTRL0, IXGB_READ_REG(hw, CTRL0) | IXGB_CTRL0_LRST); /* Wait for link-up and lane re-alignment */ do { udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET); link_status = ((IXGB_READ_REG(hw, STATUS) & IXGB_STATUS_LU) && (IXGB_READ_REG(hw, XPCSS) & IXGB_XPCSS_ALIGN_STATUS)) ? true : false; } while (!link_status && --wait_retries); } while (!link_status && --lrst_retries); return link_status; } /****************************************************************************** * Resets the 10GbE optics module. * * hw - Struct containing variables accessed by shared code *****************************************************************************/ static void ixgb_optics_reset(struct ixgb_hw *hw) { if (hw->phy_type == ixgb_phy_type_txn17401) { u16 mdio_reg; ixgb_write_phy_reg(hw, MDIO_CTRL1, IXGB_PHY_ADDRESS, MDIO_MMD_PMAPMD, MDIO_CTRL1_RESET); mdio_reg = ixgb_read_phy_reg(hw, MDIO_CTRL1, IXGB_PHY_ADDRESS, MDIO_MMD_PMAPMD); } } /****************************************************************************** * Resets the 10GbE optics module for Sun variant NIC. * * hw - Struct containing variables accessed by shared code *****************************************************************************/ #define IXGB_BCM8704_USER_PMD_TX_CTRL_REG 0xC803 #define IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL 0x0164 #define IXGB_BCM8704_USER_CTRL_REG 0xC800 #define IXGB_BCM8704_USER_CTRL_REG_VAL 0x7FBF #define IXGB_BCM8704_USER_DEV3_ADDR 0x0003 #define IXGB_SUN_PHY_ADDRESS 0x0000 #define IXGB_SUN_PHY_RESET_DELAY 305 static void ixgb_optics_reset_bcm(struct ixgb_hw *hw) { u32 ctrl = IXGB_READ_REG(hw, CTRL0); ctrl &= ~IXGB_CTRL0_SDP2; ctrl |= IXGB_CTRL0_SDP3; IXGB_WRITE_REG(hw, CTRL0, ctrl); IXGB_WRITE_FLUSH(hw); /* SerDes needs extra delay */ msleep(IXGB_SUN_PHY_RESET_DELAY); /* Broadcom 7408L configuration */ /* Reference clock config */ ixgb_write_phy_reg(hw, IXGB_BCM8704_USER_PMD_TX_CTRL_REG, IXGB_SUN_PHY_ADDRESS, IXGB_BCM8704_USER_DEV3_ADDR, IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL); /* we must read the registers twice */ ixgb_read_phy_reg(hw, IXGB_BCM8704_USER_PMD_TX_CTRL_REG, IXGB_SUN_PHY_ADDRESS, IXGB_BCM8704_USER_DEV3_ADDR); ixgb_read_phy_reg(hw, IXGB_BCM8704_USER_PMD_TX_CTRL_REG, IXGB_SUN_PHY_ADDRESS, IXGB_BCM8704_USER_DEV3_ADDR); ixgb_write_phy_reg(hw, IXGB_BCM8704_USER_CTRL_REG, IXGB_SUN_PHY_ADDRESS, IXGB_BCM8704_USER_DEV3_ADDR, IXGB_BCM8704_USER_CTRL_REG_VAL); ixgb_read_phy_reg(hw, IXGB_BCM8704_USER_CTRL_REG, IXGB_SUN_PHY_ADDRESS, IXGB_BCM8704_USER_DEV3_ADDR); ixgb_read_phy_reg(hw, IXGB_BCM8704_USER_CTRL_REG, IXGB_SUN_PHY_ADDRESS, IXGB_BCM8704_USER_DEV3_ADDR); /* SerDes needs extra delay */ msleep(IXGB_SUN_PHY_RESET_DELAY); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1