Contributors: 19
Author Tokens Token Proportion Commits Commit Proportion
Peter P. Waskiewicz Jr 3066 39.57% 17 13.39%
Donald Skidmore 1820 23.49% 35 27.56%
Alexander Duyck 1297 16.74% 7 5.51%
Emil Tantilov 639 8.25% 27 21.26%
Mark D Rustad 419 5.41% 9 7.09%
Jacob E Keller 197 2.54% 9 7.09%
Mallikarjuna R Chilakala 181 2.34% 5 3.94%
Cathy Zhou 24 0.31% 1 0.79%
Atita Shirwaikar 24 0.31% 1 0.79%
Greg Rose 20 0.26% 2 1.57%
Joshua Hay 16 0.21% 2 1.57%
Anjali Singhai Jain 13 0.17% 1 0.79%
John Fastabend 11 0.14% 3 2.36%
Tony Nguyen 11 0.14% 2 1.57%
Yi Zou 5 0.06% 1 0.79%
Jeff Kirsher 2 0.03% 2 1.57%
Joe Perches 1 0.01% 1 0.79%
Fan Du 1 0.01% 1 0.79%
Jiri Kosina 1 0.01% 1 0.79%
Total 7748 127


// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 1999 - 2018 Intel Corporation. */

#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/sched.h>

#include "ixgbe.h"
#include "ixgbe_phy.h"
#include "ixgbe_mbx.h"

#define IXGBE_82599_MAX_TX_QUEUES 128
#define IXGBE_82599_MAX_RX_QUEUES 128
#define IXGBE_82599_RAR_ENTRIES   128
#define IXGBE_82599_MC_TBL_SIZE   128
#define IXGBE_82599_VFT_TBL_SIZE  128
#define IXGBE_82599_RX_PB_SIZE	  512

static void ixgbe_disable_tx_laser_multispeed_fiber(struct ixgbe_hw *hw);
static void ixgbe_enable_tx_laser_multispeed_fiber(struct ixgbe_hw *hw);
static void ixgbe_flap_tx_laser_multispeed_fiber(struct ixgbe_hw *hw);
static void
ixgbe_set_hard_rate_select_speed(struct ixgbe_hw *, ixgbe_link_speed);
static s32 ixgbe_setup_mac_link_smartspeed(struct ixgbe_hw *hw,
					   ixgbe_link_speed speed,
					   bool autoneg_wait_to_complete);
static void ixgbe_stop_mac_link_on_d3_82599(struct ixgbe_hw *hw);
static s32 ixgbe_start_mac_link_82599(struct ixgbe_hw *hw,
				      bool autoneg_wait_to_complete);
static s32 ixgbe_setup_mac_link_82599(struct ixgbe_hw *hw,
			       ixgbe_link_speed speed,
			       bool autoneg_wait_to_complete);
static s32 ixgbe_setup_copper_link_82599(struct ixgbe_hw *hw,
					 ixgbe_link_speed speed,
					 bool autoneg_wait_to_complete);
static s32 ixgbe_verify_fw_version_82599(struct ixgbe_hw *hw);
static s32 ixgbe_read_i2c_byte_82599(struct ixgbe_hw *hw, u8 byte_offset,
				     u8 dev_addr, u8 *data);
static s32 ixgbe_write_i2c_byte_82599(struct ixgbe_hw *hw, u8 byte_offset,
				      u8 dev_addr, u8 data);
static s32 ixgbe_reset_pipeline_82599(struct ixgbe_hw *hw);
static bool ixgbe_verify_lesm_fw_enabled_82599(struct ixgbe_hw *hw);

bool ixgbe_mng_enabled(struct ixgbe_hw *hw)
{
	u32 fwsm, manc, factps;

	fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
	if ((fwsm & IXGBE_FWSM_MODE_MASK) != IXGBE_FWSM_FW_MODE_PT)
		return false;

	manc = IXGBE_READ_REG(hw, IXGBE_MANC);
	if (!(manc & IXGBE_MANC_RCV_TCO_EN))
		return false;

	factps = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
	if (factps & IXGBE_FACTPS_MNGCG)
		return false;

	return true;
}

static void ixgbe_init_mac_link_ops_82599(struct ixgbe_hw *hw)
{
	struct ixgbe_mac_info *mac = &hw->mac;

	/* enable the laser control functions for SFP+ fiber
	 * and MNG not enabled
	 */
	if ((mac->ops.get_media_type(hw) == ixgbe_media_type_fiber) &&
	    !ixgbe_mng_enabled(hw)) {
		mac->ops.disable_tx_laser =
				       &ixgbe_disable_tx_laser_multispeed_fiber;
		mac->ops.enable_tx_laser =
					&ixgbe_enable_tx_laser_multispeed_fiber;
		mac->ops.flap_tx_laser = &ixgbe_flap_tx_laser_multispeed_fiber;
	} else {
		mac->ops.disable_tx_laser = NULL;
		mac->ops.enable_tx_laser = NULL;
		mac->ops.flap_tx_laser = NULL;
	}

	if (hw->phy.multispeed_fiber) {
		/* Set up dual speed SFP+ support */
		mac->ops.setup_link = &ixgbe_setup_mac_link_multispeed_fiber;
		mac->ops.setup_mac_link = ixgbe_setup_mac_link_82599;
		mac->ops.set_rate_select_speed =
					       ixgbe_set_hard_rate_select_speed;
	} else {
		if ((mac->ops.get_media_type(hw) ==
		     ixgbe_media_type_backplane) &&
		    (hw->phy.smart_speed == ixgbe_smart_speed_auto ||
		     hw->phy.smart_speed == ixgbe_smart_speed_on) &&
		     !ixgbe_verify_lesm_fw_enabled_82599(hw))
			mac->ops.setup_link = &ixgbe_setup_mac_link_smartspeed;
		else
			mac->ops.setup_link = &ixgbe_setup_mac_link_82599;
	}
}

static s32 ixgbe_setup_sfp_modules_82599(struct ixgbe_hw *hw)
{
	s32 ret_val;
	u16 list_offset, data_offset, data_value;

	if (hw->phy.sfp_type != ixgbe_sfp_type_unknown) {
		ixgbe_init_mac_link_ops_82599(hw);

		hw->phy.ops.reset = NULL;

		ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
							      &data_offset);
		if (ret_val)
			return ret_val;

		/* PHY config will finish before releasing the semaphore */
		ret_val = hw->mac.ops.acquire_swfw_sync(hw,
							IXGBE_GSSR_MAC_CSR_SM);
		if (ret_val)
			return IXGBE_ERR_SWFW_SYNC;

		if (hw->eeprom.ops.read(hw, ++data_offset, &data_value))
			goto setup_sfp_err;
		while (data_value != 0xffff) {
			IXGBE_WRITE_REG(hw, IXGBE_CORECTL, data_value);
			IXGBE_WRITE_FLUSH(hw);
			if (hw->eeprom.ops.read(hw, ++data_offset, &data_value))
				goto setup_sfp_err;
		}

		/* Release the semaphore */
		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
		/*
		 * Delay obtaining semaphore again to allow FW access,
		 * semaphore_delay is in ms usleep_range needs us.
		 */
		usleep_range(hw->eeprom.semaphore_delay * 1000,
			     hw->eeprom.semaphore_delay * 2000);

		/* Restart DSP and set SFI mode */
		ret_val = hw->mac.ops.prot_autoc_write(hw,
			hw->mac.orig_autoc | IXGBE_AUTOC_LMS_10G_SERIAL,
			false);

		if (ret_val) {
			hw_dbg(hw, " sfp module setup not complete\n");
			return IXGBE_ERR_SFP_SETUP_NOT_COMPLETE;
		}
	}

	return 0;

setup_sfp_err:
	/* Release the semaphore */
	hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);
	/* Delay obtaining semaphore again to allow FW access,
	 * semaphore_delay is in ms usleep_range needs us.
	 */
	usleep_range(hw->eeprom.semaphore_delay * 1000,
		     hw->eeprom.semaphore_delay * 2000);
	hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
	return IXGBE_ERR_SFP_SETUP_NOT_COMPLETE;
}

/**
 *  prot_autoc_read_82599 - Hides MAC differences needed for AUTOC read
 *  @hw: pointer to hardware structure
 *  @locked: Return the if we locked for this read.
 *  @reg_val: Value we read from AUTOC
 *
 *  For this part (82599) we need to wrap read-modify-writes with a possible
 *  FW/SW lock.  It is assumed this lock will be freed with the next
 *  prot_autoc_write_82599().  Note, that locked can only be true in cases
 *  where this function doesn't return an error.
 **/
static s32 prot_autoc_read_82599(struct ixgbe_hw *hw, bool *locked,
				 u32 *reg_val)
{
	s32 ret_val;

	*locked = false;
	/* If LESM is on then we need to hold the SW/FW semaphore. */
	if (ixgbe_verify_lesm_fw_enabled_82599(hw)) {
		ret_val = hw->mac.ops.acquire_swfw_sync(hw,
					IXGBE_GSSR_MAC_CSR_SM);
		if (ret_val)
			return IXGBE_ERR_SWFW_SYNC;

		*locked = true;
	}

	*reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	return 0;
}

/**
 * prot_autoc_write_82599 - Hides MAC differences needed for AUTOC write
 * @hw: pointer to hardware structure
 * @autoc: value to write to AUTOC
 * @locked: bool to indicate whether the SW/FW lock was already taken by
 *	     previous proc_autoc_read_82599.
 *
 * This part (82599) may need to hold a the SW/FW lock around all writes to
 * AUTOC. Likewise after a write we need to do a pipeline reset.
 **/
static s32 prot_autoc_write_82599(struct ixgbe_hw *hw, u32 autoc, bool locked)
{
	s32 ret_val = 0;

	/* Blocked by MNG FW so bail */
	if (ixgbe_check_reset_blocked(hw))
		goto out;

	/* We only need to get the lock if:
	 *  - We didn't do it already (in the read part of a read-modify-write)
	 *  - LESM is enabled.
	 */
	if (!locked && ixgbe_verify_lesm_fw_enabled_82599(hw)) {
		ret_val = hw->mac.ops.acquire_swfw_sync(hw,
					IXGBE_GSSR_MAC_CSR_SM);
		if (ret_val)
			return IXGBE_ERR_SWFW_SYNC;

		locked = true;
	}

	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc);
	ret_val = ixgbe_reset_pipeline_82599(hw);

out:
	/* Free the SW/FW semaphore as we either grabbed it here or
	 * already had it when this function was called.
	 */
	if (locked)
		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);

	return ret_val;
}

static s32 ixgbe_get_invariants_82599(struct ixgbe_hw *hw)
{
	struct ixgbe_mac_info *mac = &hw->mac;

	ixgbe_init_mac_link_ops_82599(hw);

	mac->mcft_size = IXGBE_82599_MC_TBL_SIZE;
	mac->vft_size = IXGBE_82599_VFT_TBL_SIZE;
	mac->num_rar_entries = IXGBE_82599_RAR_ENTRIES;
	mac->rx_pb_size = IXGBE_82599_RX_PB_SIZE;
	mac->max_rx_queues = IXGBE_82599_MAX_RX_QUEUES;
	mac->max_tx_queues = IXGBE_82599_MAX_TX_QUEUES;
	mac->max_msix_vectors = ixgbe_get_pcie_msix_count_generic(hw);

	return 0;
}

/**
 *  ixgbe_init_phy_ops_82599 - PHY/SFP specific init
 *  @hw: pointer to hardware structure
 *
 *  Initialize any function pointers that were not able to be
 *  set during get_invariants because the PHY/SFP type was
 *  not known.  Perform the SFP init if necessary.
 *
 **/
static s32 ixgbe_init_phy_ops_82599(struct ixgbe_hw *hw)
{
	struct ixgbe_mac_info *mac = &hw->mac;
	struct ixgbe_phy_info *phy = &hw->phy;
	s32 ret_val;
	u32 esdp;

	if (hw->device_id == IXGBE_DEV_ID_82599_QSFP_SF_QP) {
		/* Store flag indicating I2C bus access control unit. */
		hw->phy.qsfp_shared_i2c_bus = true;

		/* Initialize access to QSFP+ I2C bus */
		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
		esdp |= IXGBE_ESDP_SDP0_DIR;
		esdp &= ~IXGBE_ESDP_SDP1_DIR;
		esdp &= ~IXGBE_ESDP_SDP0;
		esdp &= ~IXGBE_ESDP_SDP0_NATIVE;
		esdp &= ~IXGBE_ESDP_SDP1_NATIVE;
		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
		IXGBE_WRITE_FLUSH(hw);

		phy->ops.read_i2c_byte = &ixgbe_read_i2c_byte_82599;
		phy->ops.write_i2c_byte = &ixgbe_write_i2c_byte_82599;
	}

	/* Identify the PHY or SFP module */
	ret_val = phy->ops.identify(hw);

	/* Setup function pointers based on detected SFP module and speeds */
	ixgbe_init_mac_link_ops_82599(hw);

	/* If copper media, overwrite with copper function pointers */
	if (mac->ops.get_media_type(hw) == ixgbe_media_type_copper) {
		mac->ops.setup_link = &ixgbe_setup_copper_link_82599;
		mac->ops.get_link_capabilities =
			&ixgbe_get_copper_link_capabilities_generic;
	}

	/* Set necessary function pointers based on phy type */
	switch (hw->phy.type) {
	case ixgbe_phy_tn:
		phy->ops.check_link = &ixgbe_check_phy_link_tnx;
		phy->ops.setup_link = &ixgbe_setup_phy_link_tnx;
		break;
	default:
		break;
	}

	return ret_val;
}

/**
 *  ixgbe_get_link_capabilities_82599 - Determines link capabilities
 *  @hw: pointer to hardware structure
 *  @speed: pointer to link speed
 *  @autoneg: true when autoneg or autotry is enabled
 *
 *  Determines the link capabilities by reading the AUTOC register.
 **/
static s32 ixgbe_get_link_capabilities_82599(struct ixgbe_hw *hw,
					     ixgbe_link_speed *speed,
					     bool *autoneg)
{
	u32 autoc = 0;

	/* Determine 1G link capabilities off of SFP+ type */
	if (hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
	    hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
	    hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
	    hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
	    hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
	    hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1) {
		*speed = IXGBE_LINK_SPEED_1GB_FULL;
		*autoneg = true;
		return 0;
	}

	/*
	 * Determine link capabilities based on the stored value of AUTOC,
	 * which represents EEPROM defaults.  If AUTOC value has not been
	 * stored, use the current register value.
	 */
	if (hw->mac.orig_link_settings_stored)
		autoc = hw->mac.orig_autoc;
	else
		autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);

	switch (autoc & IXGBE_AUTOC_LMS_MASK) {
	case IXGBE_AUTOC_LMS_1G_LINK_NO_AN:
		*speed = IXGBE_LINK_SPEED_1GB_FULL;
		*autoneg = false;
		break;

	case IXGBE_AUTOC_LMS_10G_LINK_NO_AN:
		*speed = IXGBE_LINK_SPEED_10GB_FULL;
		*autoneg = false;
		break;

	case IXGBE_AUTOC_LMS_1G_AN:
		*speed = IXGBE_LINK_SPEED_1GB_FULL;
		*autoneg = true;
		break;

	case IXGBE_AUTOC_LMS_10G_SERIAL:
		*speed = IXGBE_LINK_SPEED_10GB_FULL;
		*autoneg = false;
		break;

	case IXGBE_AUTOC_LMS_KX4_KX_KR:
	case IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN:
		*speed = IXGBE_LINK_SPEED_UNKNOWN;
		if (autoc & IXGBE_AUTOC_KR_SUPP)
			*speed |= IXGBE_LINK_SPEED_10GB_FULL;
		if (autoc & IXGBE_AUTOC_KX4_SUPP)
			*speed |= IXGBE_LINK_SPEED_10GB_FULL;
		if (autoc & IXGBE_AUTOC_KX_SUPP)
			*speed |= IXGBE_LINK_SPEED_1GB_FULL;
		*autoneg = true;
		break;

	case IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII:
		*speed = IXGBE_LINK_SPEED_100_FULL;
		if (autoc & IXGBE_AUTOC_KR_SUPP)
			*speed |= IXGBE_LINK_SPEED_10GB_FULL;
		if (autoc & IXGBE_AUTOC_KX4_SUPP)
			*speed |= IXGBE_LINK_SPEED_10GB_FULL;
		if (autoc & IXGBE_AUTOC_KX_SUPP)
			*speed |= IXGBE_LINK_SPEED_1GB_FULL;
		*autoneg = true;
		break;

	case IXGBE_AUTOC_LMS_SGMII_1G_100M:
		*speed = IXGBE_LINK_SPEED_1GB_FULL | IXGBE_LINK_SPEED_100_FULL;
		*autoneg = false;
		break;

	default:
		return IXGBE_ERR_LINK_SETUP;
	}

	if (hw->phy.multispeed_fiber) {
		*speed |= IXGBE_LINK_SPEED_10GB_FULL |
			  IXGBE_LINK_SPEED_1GB_FULL;

		/* QSFP must not enable auto-negotiation */
		if (hw->phy.media_type == ixgbe_media_type_fiber_qsfp)
			*autoneg = false;
		else
			*autoneg = true;
	}

	return 0;
}

/**
 *  ixgbe_get_media_type_82599 - Get media type
 *  @hw: pointer to hardware structure
 *
 *  Returns the media type (fiber, copper, backplane)
 **/
static enum ixgbe_media_type ixgbe_get_media_type_82599(struct ixgbe_hw *hw)
{
	/* Detect if there is a copper PHY attached. */
	switch (hw->phy.type) {
	case ixgbe_phy_cu_unknown:
	case ixgbe_phy_tn:
		return ixgbe_media_type_copper;

	default:
		break;
	}

	switch (hw->device_id) {
	case IXGBE_DEV_ID_82599_KX4:
	case IXGBE_DEV_ID_82599_KX4_MEZZ:
	case IXGBE_DEV_ID_82599_COMBO_BACKPLANE:
	case IXGBE_DEV_ID_82599_KR:
	case IXGBE_DEV_ID_82599_BACKPLANE_FCOE:
	case IXGBE_DEV_ID_82599_XAUI_LOM:
		/* Default device ID is mezzanine card KX/KX4 */
		return ixgbe_media_type_backplane;

	case IXGBE_DEV_ID_82599_SFP:
	case IXGBE_DEV_ID_82599_SFP_FCOE:
	case IXGBE_DEV_ID_82599_SFP_EM:
	case IXGBE_DEV_ID_82599_SFP_SF2:
	case IXGBE_DEV_ID_82599_SFP_SF_QP:
	case IXGBE_DEV_ID_82599EN_SFP:
		return ixgbe_media_type_fiber;

	case IXGBE_DEV_ID_82599_CX4:
		return ixgbe_media_type_cx4;

	case IXGBE_DEV_ID_82599_T3_LOM:
		return ixgbe_media_type_copper;

	case IXGBE_DEV_ID_82599_LS:
		return ixgbe_media_type_fiber_lco;

	case IXGBE_DEV_ID_82599_QSFP_SF_QP:
		return ixgbe_media_type_fiber_qsfp;

	default:
		return ixgbe_media_type_unknown;
	}
}

/**
 * ixgbe_stop_mac_link_on_d3_82599 - Disables link on D3
 * @hw: pointer to hardware structure
 *
 * Disables link, should be called during D3 power down sequence.
 *
 **/
static void ixgbe_stop_mac_link_on_d3_82599(struct ixgbe_hw *hw)
{
	u32 autoc2_reg;
	u16 ee_ctrl_2 = 0;

	hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_2, &ee_ctrl_2);

	if (!ixgbe_mng_present(hw) && !hw->wol_enabled &&
	    ee_ctrl_2 & IXGBE_EEPROM_CCD_BIT) {
		autoc2_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC2);
		autoc2_reg |= IXGBE_AUTOC2_LINK_DISABLE_ON_D3_MASK;
		IXGBE_WRITE_REG(hw, IXGBE_AUTOC2, autoc2_reg);
	}
}

/**
 *  ixgbe_start_mac_link_82599 - Setup MAC link settings
 *  @hw: pointer to hardware structure
 *  @autoneg_wait_to_complete: true when waiting for completion is needed
 *
 *  Configures link settings based on values in the ixgbe_hw struct.
 *  Restarts the link.  Performs autonegotiation if needed.
 **/
static s32 ixgbe_start_mac_link_82599(struct ixgbe_hw *hw,
			       bool autoneg_wait_to_complete)
{
	u32 autoc_reg;
	u32 links_reg;
	u32 i;
	s32 status = 0;
	bool got_lock = false;

	if (ixgbe_verify_lesm_fw_enabled_82599(hw)) {
		status = hw->mac.ops.acquire_swfw_sync(hw,
						IXGBE_GSSR_MAC_CSR_SM);
		if (status)
			return status;

		got_lock = true;
	}

	/* Restart link */
	ixgbe_reset_pipeline_82599(hw);

	if (got_lock)
		hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_MAC_CSR_SM);

	/* Only poll for autoneg to complete if specified to do so */
	if (autoneg_wait_to_complete) {
		autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
		if ((autoc_reg & IXGBE_AUTOC_LMS_MASK) ==
		     IXGBE_AUTOC_LMS_KX4_KX_KR ||
		    (autoc_reg & IXGBE_AUTOC_LMS_MASK) ==
		     IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
		    (autoc_reg & IXGBE_AUTOC_LMS_MASK) ==
		     IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
			links_reg = 0; /* Just in case Autoneg time = 0 */
			for (i = 0; i < IXGBE_AUTO_NEG_TIME; i++) {
				links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
				if (links_reg & IXGBE_LINKS_KX_AN_COMP)
					break;
				msleep(100);
			}
			if (!(links_reg & IXGBE_LINKS_KX_AN_COMP)) {
				status = IXGBE_ERR_AUTONEG_NOT_COMPLETE;
				hw_dbg(hw, "Autoneg did not complete.\n");
			}
		}
	}

	/* Add delay to filter out noises during initial link setup */
	msleep(50);

	return status;
}

/**
 *  ixgbe_disable_tx_laser_multispeed_fiber - Disable Tx laser
 *  @hw: pointer to hardware structure
 *
 *  The base drivers may require better control over SFP+ module
 *  PHY states.  This includes selectively shutting down the Tx
 *  laser on the PHY, effectively halting physical link.
 **/
static void ixgbe_disable_tx_laser_multispeed_fiber(struct ixgbe_hw *hw)
{
	u32 esdp_reg = IXGBE_READ_REG(hw, IXGBE_ESDP);

	/* Blocked by MNG FW so bail */
	if (ixgbe_check_reset_blocked(hw))
		return;

	/* Disable tx laser; allow 100us to go dark per spec */
	esdp_reg |= IXGBE_ESDP_SDP3;
	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
	IXGBE_WRITE_FLUSH(hw);
	udelay(100);
}

/**
 *  ixgbe_enable_tx_laser_multispeed_fiber - Enable Tx laser
 *  @hw: pointer to hardware structure
 *
 *  The base drivers may require better control over SFP+ module
 *  PHY states.  This includes selectively turning on the Tx
 *  laser on the PHY, effectively starting physical link.
 **/
static void ixgbe_enable_tx_laser_multispeed_fiber(struct ixgbe_hw *hw)
{
	u32 esdp_reg = IXGBE_READ_REG(hw, IXGBE_ESDP);

	/* Enable tx laser; allow 100ms to light up */
	esdp_reg &= ~IXGBE_ESDP_SDP3;
	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
	IXGBE_WRITE_FLUSH(hw);
	msleep(100);
}

/**
 *  ixgbe_flap_tx_laser_multispeed_fiber - Flap Tx laser
 *  @hw: pointer to hardware structure
 *
 *  When the driver changes the link speeds that it can support,
 *  it sets autotry_restart to true to indicate that we need to
 *  initiate a new autotry session with the link partner.  To do
 *  so, we set the speed then disable and re-enable the tx laser, to
 *  alert the link partner that it also needs to restart autotry on its
 *  end.  This is consistent with true clause 37 autoneg, which also
 *  involves a loss of signal.
 **/
static void ixgbe_flap_tx_laser_multispeed_fiber(struct ixgbe_hw *hw)
{
	/* Blocked by MNG FW so bail */
	if (ixgbe_check_reset_blocked(hw))
		return;

	if (hw->mac.autotry_restart) {
		ixgbe_disable_tx_laser_multispeed_fiber(hw);
		ixgbe_enable_tx_laser_multispeed_fiber(hw);
		hw->mac.autotry_restart = false;
	}
}

/**
 * ixgbe_set_hard_rate_select_speed - Set module link speed
 * @hw: pointer to hardware structure
 * @speed: link speed to set
 *
 * Set module link speed via RS0/RS1 rate select pins.
 */
static void
ixgbe_set_hard_rate_select_speed(struct ixgbe_hw *hw, ixgbe_link_speed speed)
{
	u32 esdp_reg = IXGBE_READ_REG(hw, IXGBE_ESDP);

	switch (speed) {
	case IXGBE_LINK_SPEED_10GB_FULL:
		esdp_reg |= (IXGBE_ESDP_SDP5_DIR | IXGBE_ESDP_SDP5);
		break;
	case IXGBE_LINK_SPEED_1GB_FULL:
		esdp_reg &= ~IXGBE_ESDP_SDP5;
		esdp_reg |= IXGBE_ESDP_SDP5_DIR;
		break;
	default:
		hw_dbg(hw, "Invalid fixed module speed\n");
		return;
	}

	IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp_reg);
	IXGBE_WRITE_FLUSH(hw);
}

/**
 *  ixgbe_setup_mac_link_smartspeed - Set MAC link speed using SmartSpeed
 *  @hw: pointer to hardware structure
 *  @speed: new link speed
 *  @autoneg_wait_to_complete: true when waiting for completion is needed
 *
 *  Implements the Intel SmartSpeed algorithm.
 **/
static s32 ixgbe_setup_mac_link_smartspeed(struct ixgbe_hw *hw,
				     ixgbe_link_speed speed,
				     bool autoneg_wait_to_complete)
{
	s32 status = 0;
	ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
	s32 i, j;
	bool link_up = false;
	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);

	 /* Set autoneg_advertised value based on input link speed */
	hw->phy.autoneg_advertised = 0;

	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;

	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;

	if (speed & IXGBE_LINK_SPEED_100_FULL)
		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;

	/*
	 * Implement Intel SmartSpeed algorithm.  SmartSpeed will reduce the
	 * autoneg advertisement if link is unable to be established at the
	 * highest negotiated rate.  This can sometimes happen due to integrity
	 * issues with the physical media connection.
	 */

	/* First, try to get link with full advertisement */
	hw->phy.smart_speed_active = false;
	for (j = 0; j < IXGBE_SMARTSPEED_MAX_RETRIES; j++) {
		status = ixgbe_setup_mac_link_82599(hw, speed,
						    autoneg_wait_to_complete);
		if (status != 0)
			goto out;

		/*
		 * Wait for the controller to acquire link.  Per IEEE 802.3ap,
		 * Section 73.10.2, we may have to wait up to 500ms if KR is
		 * attempted, or 200ms if KX/KX4/BX/BX4 is attempted, per
		 * Table 9 in the AN MAS.
		 */
		for (i = 0; i < 5; i++) {
			mdelay(100);

			/* If we have link, just jump out */
			status = hw->mac.ops.check_link(hw, &link_speed,
							&link_up, false);
			if (status != 0)
				goto out;

			if (link_up)
				goto out;
		}
	}

	/*
	 * We didn't get link.  If we advertised KR plus one of KX4/KX
	 * (or BX4/BX), then disable KR and try again.
	 */
	if (((autoc_reg & IXGBE_AUTOC_KR_SUPP) == 0) ||
	    ((autoc_reg & IXGBE_AUTOC_KX4_KX_SUPP_MASK) == 0))
		goto out;

	/* Turn SmartSpeed on to disable KR support */
	hw->phy.smart_speed_active = true;
	status = ixgbe_setup_mac_link_82599(hw, speed,
					    autoneg_wait_to_complete);
	if (status != 0)
		goto out;

	/*
	 * Wait for the controller to acquire link.  600ms will allow for
	 * the AN link_fail_inhibit_timer as well for multiple cycles of
	 * parallel detect, both 10g and 1g. This allows for the maximum
	 * connect attempts as defined in the AN MAS table 73-7.
	 */
	for (i = 0; i < 6; i++) {
		mdelay(100);

		/* If we have link, just jump out */
		status = hw->mac.ops.check_link(hw, &link_speed,
						&link_up, false);
		if (status != 0)
			goto out;

		if (link_up)
			goto out;
	}

	/* We didn't get link.  Turn SmartSpeed back off. */
	hw->phy.smart_speed_active = false;
	status = ixgbe_setup_mac_link_82599(hw, speed,
					    autoneg_wait_to_complete);

out:
	if (link_up && (link_speed == IXGBE_LINK_SPEED_1GB_FULL))
		hw_dbg(hw, "Smartspeed has downgraded the link speed from the maximum advertised\n");
	return status;
}

/**
 *  ixgbe_setup_mac_link_82599 - Set MAC link speed
 *  @hw: pointer to hardware structure
 *  @speed: new link speed
 *  @autoneg_wait_to_complete: true when waiting for completion is needed
 *
 *  Set the link speed in the AUTOC register and restarts link.
 **/
static s32 ixgbe_setup_mac_link_82599(struct ixgbe_hw *hw,
				      ixgbe_link_speed speed,
				      bool autoneg_wait_to_complete)
{
	bool autoneg = false;
	s32 status;
	u32 pma_pmd_1g, link_mode, links_reg, i;
	u32 autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2);
	u32 pma_pmd_10g_serial = autoc2 & IXGBE_AUTOC2_10G_SERIAL_PMA_PMD_MASK;
	ixgbe_link_speed link_capabilities = IXGBE_LINK_SPEED_UNKNOWN;

	/* holds the value of AUTOC register at this current point in time */
	u32 current_autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	/* holds the cached value of AUTOC register */
	u32 orig_autoc = 0;
	/* temporary variable used for comparison purposes */
	u32 autoc = current_autoc;

	/* Check to see if speed passed in is supported. */
	status = hw->mac.ops.get_link_capabilities(hw, &link_capabilities,
						   &autoneg);
	if (status)
		return status;

	speed &= link_capabilities;

	if (speed == IXGBE_LINK_SPEED_UNKNOWN)
		return IXGBE_ERR_LINK_SETUP;

	/* Use stored value (EEPROM defaults) of AUTOC to find KR/KX4 support*/
	if (hw->mac.orig_link_settings_stored)
		orig_autoc = hw->mac.orig_autoc;
	else
		orig_autoc = autoc;

	link_mode = autoc & IXGBE_AUTOC_LMS_MASK;
	pma_pmd_1g = autoc & IXGBE_AUTOC_1G_PMA_PMD_MASK;

	if (link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR ||
	    link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
	    link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
		/* Set KX4/KX/KR support according to speed requested */
		autoc &= ~(IXGBE_AUTOC_KX4_KX_SUPP_MASK | IXGBE_AUTOC_KR_SUPP);
		if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
			if (orig_autoc & IXGBE_AUTOC_KX4_SUPP)
				autoc |= IXGBE_AUTOC_KX4_SUPP;
			if ((orig_autoc & IXGBE_AUTOC_KR_SUPP) &&
			    (hw->phy.smart_speed_active == false))
				autoc |= IXGBE_AUTOC_KR_SUPP;
		}
		if (speed & IXGBE_LINK_SPEED_1GB_FULL)
			autoc |= IXGBE_AUTOC_KX_SUPP;
	} else if ((pma_pmd_1g == IXGBE_AUTOC_1G_SFI) &&
		   (link_mode == IXGBE_AUTOC_LMS_1G_LINK_NO_AN ||
		    link_mode == IXGBE_AUTOC_LMS_1G_AN)) {
		/* Switch from 1G SFI to 10G SFI if requested */
		if ((speed == IXGBE_LINK_SPEED_10GB_FULL) &&
		    (pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI)) {
			autoc &= ~IXGBE_AUTOC_LMS_MASK;
			autoc |= IXGBE_AUTOC_LMS_10G_SERIAL;
		}
	} else if ((pma_pmd_10g_serial == IXGBE_AUTOC2_10G_SFI) &&
		   (link_mode == IXGBE_AUTOC_LMS_10G_SERIAL)) {
		/* Switch from 10G SFI to 1G SFI if requested */
		if ((speed == IXGBE_LINK_SPEED_1GB_FULL) &&
		    (pma_pmd_1g == IXGBE_AUTOC_1G_SFI)) {
			autoc &= ~IXGBE_AUTOC_LMS_MASK;
			if (autoneg)
				autoc |= IXGBE_AUTOC_LMS_1G_AN;
			else
				autoc |= IXGBE_AUTOC_LMS_1G_LINK_NO_AN;
		}
	}

	if (autoc != current_autoc) {
		/* Restart link */
		status = hw->mac.ops.prot_autoc_write(hw, autoc, false);
		if (status)
			return status;

		/* Only poll for autoneg to complete if specified to do so */
		if (autoneg_wait_to_complete) {
			if (link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR ||
			    link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_1G_AN ||
			    link_mode == IXGBE_AUTOC_LMS_KX4_KX_KR_SGMII) {
				links_reg = 0; /*Just in case Autoneg time=0*/
				for (i = 0; i < IXGBE_AUTO_NEG_TIME; i++) {
					links_reg =
					       IXGBE_READ_REG(hw, IXGBE_LINKS);
					if (links_reg & IXGBE_LINKS_KX_AN_COMP)
						break;
					msleep(100);
				}
				if (!(links_reg & IXGBE_LINKS_KX_AN_COMP)) {
					status =
						IXGBE_ERR_AUTONEG_NOT_COMPLETE;
					hw_dbg(hw, "Autoneg did not complete.\n");
				}
			}
		}

		/* Add delay to filter out noises during initial link setup */
		msleep(50);
	}

	return status;
}

/**
 *  ixgbe_setup_copper_link_82599 - Set the PHY autoneg advertised field
 *  @hw: pointer to hardware structure
 *  @speed: new link speed
 *  @autoneg_wait_to_complete: true if waiting is needed to complete
 *
 *  Restarts link on PHY and MAC based on settings passed in.
 **/
static s32 ixgbe_setup_copper_link_82599(struct ixgbe_hw *hw,
					 ixgbe_link_speed speed,
					 bool autoneg_wait_to_complete)
{
	s32 status;

	/* Setup the PHY according to input speed */
	status = hw->phy.ops.setup_link_speed(hw, speed,
					      autoneg_wait_to_complete);
	/* Set up MAC */
	ixgbe_start_mac_link_82599(hw, autoneg_wait_to_complete);

	return status;
}

/**
 *  ixgbe_reset_hw_82599 - Perform hardware reset
 *  @hw: pointer to hardware structure
 *
 *  Resets the hardware by resetting the transmit and receive units, masks
 *  and clears all interrupts, perform a PHY reset, and perform a link (MAC)
 *  reset.
 **/
static s32 ixgbe_reset_hw_82599(struct ixgbe_hw *hw)
{
	ixgbe_link_speed link_speed;
	s32 status;
	u32 ctrl, i, autoc, autoc2;
	u32 curr_lms;
	bool link_up = false;

	/* Call adapter stop to disable tx/rx and clear interrupts */
	status = hw->mac.ops.stop_adapter(hw);
	if (status)
		return status;

	/* flush pending Tx transactions */
	ixgbe_clear_tx_pending(hw);

	/* PHY ops must be identified and initialized prior to reset */

	/* Identify PHY and related function pointers */
	status = hw->phy.ops.init(hw);

	if (status == IXGBE_ERR_SFP_NOT_SUPPORTED)
		return status;

	/* Setup SFP module if there is one present. */
	if (hw->phy.sfp_setup_needed) {
		status = hw->mac.ops.setup_sfp(hw);
		hw->phy.sfp_setup_needed = false;
	}

	if (status == IXGBE_ERR_SFP_NOT_SUPPORTED)
		return status;

	/* Reset PHY */
	if (hw->phy.reset_disable == false && hw->phy.ops.reset != NULL)
		hw->phy.ops.reset(hw);

	/* remember AUTOC from before we reset */
	curr_lms = IXGBE_READ_REG(hw, IXGBE_AUTOC) & IXGBE_AUTOC_LMS_MASK;

mac_reset_top:
	/*
	 * Issue global reset to the MAC. Needs to be SW reset if link is up.
	 * If link reset is used when link is up, it might reset the PHY when
	 * mng is using it.  If link is down or the flag to force full link
	 * reset is set, then perform link reset.
	 */
	ctrl = IXGBE_CTRL_LNK_RST;
	if (!hw->force_full_reset) {
		hw->mac.ops.check_link(hw, &link_speed, &link_up, false);
		if (link_up)
			ctrl = IXGBE_CTRL_RST;
	}

	ctrl |= IXGBE_READ_REG(hw, IXGBE_CTRL);
	IXGBE_WRITE_REG(hw, IXGBE_CTRL, ctrl);
	IXGBE_WRITE_FLUSH(hw);
	usleep_range(1000, 1200);

	/* Poll for reset bit to self-clear indicating reset is complete */
	for (i = 0; i < 10; i++) {
		ctrl = IXGBE_READ_REG(hw, IXGBE_CTRL);
		if (!(ctrl & IXGBE_CTRL_RST_MASK))
			break;
		udelay(1);
	}

	if (ctrl & IXGBE_CTRL_RST_MASK) {
		status = IXGBE_ERR_RESET_FAILED;
		hw_dbg(hw, "Reset polling failed to complete.\n");
	}

	msleep(50);

	/*
	 * Double resets are required for recovery from certain error
	 * conditions.  Between resets, it is necessary to stall to allow time
	 * for any pending HW events to complete.
	 */
	if (hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED) {
		hw->mac.flags &= ~IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
		goto mac_reset_top;
	}

	/*
	 * Store the original AUTOC/AUTOC2 values if they have not been
	 * stored off yet.  Otherwise restore the stored original
	 * values since the reset operation sets back to defaults.
	 */
	autoc = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	autoc2 = IXGBE_READ_REG(hw, IXGBE_AUTOC2);

	/* Enable link if disabled in NVM */
	if (autoc2 & IXGBE_AUTOC2_LINK_DISABLE_MASK) {
		autoc2 &= ~IXGBE_AUTOC2_LINK_DISABLE_MASK;
		IXGBE_WRITE_REG(hw, IXGBE_AUTOC2, autoc2);
		IXGBE_WRITE_FLUSH(hw);
	}

	if (hw->mac.orig_link_settings_stored == false) {
		hw->mac.orig_autoc = autoc;
		hw->mac.orig_autoc2 = autoc2;
		hw->mac.orig_link_settings_stored = true;
	} else {

		/* If MNG FW is running on a multi-speed device that
		 * doesn't autoneg with out driver support we need to
		 * leave LMS in the state it was before we MAC reset.
		 * Likewise if we support WoL we don't want change the
		 * LMS state either.
		 */
		if ((hw->phy.multispeed_fiber && ixgbe_mng_enabled(hw)) ||
		    hw->wol_enabled)
			hw->mac.orig_autoc =
				(hw->mac.orig_autoc & ~IXGBE_AUTOC_LMS_MASK) |
				curr_lms;

		if (autoc != hw->mac.orig_autoc) {
			status = hw->mac.ops.prot_autoc_write(hw,
							hw->mac.orig_autoc,
							false);
			if (status)
				return status;
		}

		if ((autoc2 & IXGBE_AUTOC2_UPPER_MASK) !=
		    (hw->mac.orig_autoc2 & IXGBE_AUTOC2_UPPER_MASK)) {
			autoc2 &= ~IXGBE_AUTOC2_UPPER_MASK;
			autoc2 |= (hw->mac.orig_autoc2 &
				   IXGBE_AUTOC2_UPPER_MASK);
			IXGBE_WRITE_REG(hw, IXGBE_AUTOC2, autoc2);
		}
	}

	/* Store the permanent mac address */
	hw->mac.ops.get_mac_addr(hw, hw->mac.perm_addr);

	/*
	 * Store MAC address from RAR0, clear receive address registers, and
	 * clear the multicast table.  Also reset num_rar_entries to 128,
	 * since we modify this value when programming the SAN MAC address.
	 */
	hw->mac.num_rar_entries = IXGBE_82599_RAR_ENTRIES;
	hw->mac.ops.init_rx_addrs(hw);

	/* Store the permanent SAN mac address */
	hw->mac.ops.get_san_mac_addr(hw, hw->mac.san_addr);

	/* Add the SAN MAC address to the RAR only if it's a valid address */
	if (is_valid_ether_addr(hw->mac.san_addr)) {
		/* Save the SAN MAC RAR index */
		hw->mac.san_mac_rar_index = hw->mac.num_rar_entries - 1;

		hw->mac.ops.set_rar(hw, hw->mac.san_mac_rar_index,
				    hw->mac.san_addr, 0, IXGBE_RAH_AV);

		/* clear VMDq pool/queue selection for this RAR */
		hw->mac.ops.clear_vmdq(hw, hw->mac.san_mac_rar_index,
				       IXGBE_CLEAR_VMDQ_ALL);

		/* Reserve the last RAR for the SAN MAC address */
		hw->mac.num_rar_entries--;
	}

	/* Store the alternative WWNN/WWPN prefix */
	hw->mac.ops.get_wwn_prefix(hw, &hw->mac.wwnn_prefix,
				       &hw->mac.wwpn_prefix);

	return status;
}

/**
 * ixgbe_fdir_check_cmd_complete - poll to check whether FDIRCMD is complete
 * @hw: pointer to hardware structure
 * @fdircmd: current value of FDIRCMD register
 */
static s32 ixgbe_fdir_check_cmd_complete(struct ixgbe_hw *hw, u32 *fdircmd)
{
	int i;

	for (i = 0; i < IXGBE_FDIRCMD_CMD_POLL; i++) {
		*fdircmd = IXGBE_READ_REG(hw, IXGBE_FDIRCMD);
		if (!(*fdircmd & IXGBE_FDIRCMD_CMD_MASK))
			return 0;
		udelay(10);
	}

	return IXGBE_ERR_FDIR_CMD_INCOMPLETE;
}

/**
 *  ixgbe_reinit_fdir_tables_82599 - Reinitialize Flow Director tables.
 *  @hw: pointer to hardware structure
 **/
s32 ixgbe_reinit_fdir_tables_82599(struct ixgbe_hw *hw)
{
	int i;
	u32 fdirctrl = IXGBE_READ_REG(hw, IXGBE_FDIRCTRL);
	u32 fdircmd;
	s32 err;

	fdirctrl &= ~IXGBE_FDIRCTRL_INIT_DONE;

	/*
	 * Before starting reinitialization process,
	 * FDIRCMD.CMD must be zero.
	 */
	err = ixgbe_fdir_check_cmd_complete(hw, &fdircmd);
	if (err) {
		hw_dbg(hw, "Flow Director previous command did not complete, aborting table re-initialization.\n");
		return err;
	}

	IXGBE_WRITE_REG(hw, IXGBE_FDIRFREE, 0);
	IXGBE_WRITE_FLUSH(hw);
	/*
	 * 82599 adapters flow director init flow cannot be restarted,
	 * Workaround 82599 silicon errata by performing the following steps
	 * before re-writing the FDIRCTRL control register with the same value.
	 * - write 1 to bit 8 of FDIRCMD register &
	 * - write 0 to bit 8 of FDIRCMD register
	 */
	IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD,
			(IXGBE_READ_REG(hw, IXGBE_FDIRCMD) |
			 IXGBE_FDIRCMD_CLEARHT));
	IXGBE_WRITE_FLUSH(hw);
	IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD,
			(IXGBE_READ_REG(hw, IXGBE_FDIRCMD) &
			 ~IXGBE_FDIRCMD_CLEARHT));
	IXGBE_WRITE_FLUSH(hw);
	/*
	 * Clear FDIR Hash register to clear any leftover hashes
	 * waiting to be programmed.
	 */
	IXGBE_WRITE_REG(hw, IXGBE_FDIRHASH, 0x00);
	IXGBE_WRITE_FLUSH(hw);

	IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl);
	IXGBE_WRITE_FLUSH(hw);

	/* Poll init-done after we write FDIRCTRL register */
	for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) {
		if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) &
				   IXGBE_FDIRCTRL_INIT_DONE)
			break;
		usleep_range(1000, 2000);
	}
	if (i >= IXGBE_FDIR_INIT_DONE_POLL) {
		hw_dbg(hw, "Flow Director Signature poll time exceeded!\n");
		return IXGBE_ERR_FDIR_REINIT_FAILED;
	}

	/* Clear FDIR statistics registers (read to clear) */
	IXGBE_READ_REG(hw, IXGBE_FDIRUSTAT);
	IXGBE_READ_REG(hw, IXGBE_FDIRFSTAT);
	IXGBE_READ_REG(hw, IXGBE_FDIRMATCH);
	IXGBE_READ_REG(hw, IXGBE_FDIRMISS);
	IXGBE_READ_REG(hw, IXGBE_FDIRLEN);

	return 0;
}

/**
 *  ixgbe_fdir_enable_82599 - Initialize Flow Director control registers
 *  @hw: pointer to hardware structure
 *  @fdirctrl: value to write to flow director control register
 **/
static void ixgbe_fdir_enable_82599(struct ixgbe_hw *hw, u32 fdirctrl)
{
	int i;

	/* Prime the keys for hashing */
	IXGBE_WRITE_REG(hw, IXGBE_FDIRHKEY, IXGBE_ATR_BUCKET_HASH_KEY);
	IXGBE_WRITE_REG(hw, IXGBE_FDIRSKEY, IXGBE_ATR_SIGNATURE_HASH_KEY);

	/*
	 * Poll init-done after we write the register.  Estimated times:
	 *      10G: PBALLOC = 11b, timing is 60us
	 *       1G: PBALLOC = 11b, timing is 600us
	 *     100M: PBALLOC = 11b, timing is 6ms
	 *
	 *     Multiple these timings by 4 if under full Rx load
	 *
	 * So we'll poll for IXGBE_FDIR_INIT_DONE_POLL times, sleeping for
	 * 1 msec per poll time.  If we're at line rate and drop to 100M, then
	 * this might not finish in our poll time, but we can live with that
	 * for now.
	 */
	IXGBE_WRITE_REG(hw, IXGBE_FDIRCTRL, fdirctrl);
	IXGBE_WRITE_FLUSH(hw);
	for (i = 0; i < IXGBE_FDIR_INIT_DONE_POLL; i++) {
		if (IXGBE_READ_REG(hw, IXGBE_FDIRCTRL) &
				   IXGBE_FDIRCTRL_INIT_DONE)
			break;
		usleep_range(1000, 2000);
	}

	if (i >= IXGBE_FDIR_INIT_DONE_POLL)
		hw_dbg(hw, "Flow Director poll time exceeded!\n");
}

/**
 *  ixgbe_init_fdir_signature_82599 - Initialize Flow Director signature filters
 *  @hw: pointer to hardware structure
 *  @fdirctrl: value to write to flow director control register, initially
 *             contains just the value of the Rx packet buffer allocation
 **/
s32 ixgbe_init_fdir_signature_82599(struct ixgbe_hw *hw, u32 fdirctrl)
{
	/*
	 * Continue setup of fdirctrl register bits:
	 *  Move the flexible bytes to use the ethertype - shift 6 words
	 *  Set the maximum length per hash bucket to 0xA filters
	 *  Send interrupt when 64 filters are left
	 */
	fdirctrl |= (0x6 << IXGBE_FDIRCTRL_FLEX_SHIFT) |
		    (0xA << IXGBE_FDIRCTRL_MAX_LENGTH_SHIFT) |
		    (4 << IXGBE_FDIRCTRL_FULL_THRESH_SHIFT);

	/* write hashes and fdirctrl register, poll for completion */
	ixgbe_fdir_enable_82599(hw, fdirctrl);

	return 0;
}

/**
 *  ixgbe_init_fdir_perfect_82599 - Initialize Flow Director perfect filters
 *  @hw: pointer to hardware structure
 *  @fdirctrl: value to write to flow director control register, initially
 *             contains just the value of the Rx packet buffer allocation
 **/
s32 ixgbe_init_fdir_perfect_82599(struct ixgbe_hw *hw, u32 fdirctrl)
{
	/*
	 * Continue setup of fdirctrl register bits:
	 *  Turn perfect match filtering on
	 *  Initialize the drop queue
	 *  Move the flexible bytes to use the ethertype - shift 6 words
	 *  Set the maximum length per hash bucket to 0xA filters
	 *  Send interrupt when 64 (0x4 * 16) filters are left
	 */
	fdirctrl |= IXGBE_FDIRCTRL_PERFECT_MATCH |
		    (IXGBE_FDIR_DROP_QUEUE << IXGBE_FDIRCTRL_DROP_Q_SHIFT) |
		    (0x6 << IXGBE_FDIRCTRL_FLEX_SHIFT) |
		    (0xA << IXGBE_FDIRCTRL_MAX_LENGTH_SHIFT) |
		    (4 << IXGBE_FDIRCTRL_FULL_THRESH_SHIFT);

	/* write hashes and fdirctrl register, poll for completion */
	ixgbe_fdir_enable_82599(hw, fdirctrl);

	return 0;
}

/*
 * These defines allow us to quickly generate all of the necessary instructions
 * in the function below by simply calling out IXGBE_COMPUTE_SIG_HASH_ITERATION
 * for values 0 through 15
 */
#define IXGBE_ATR_COMMON_HASH_KEY \
		(IXGBE_ATR_BUCKET_HASH_KEY & IXGBE_ATR_SIGNATURE_HASH_KEY)
#define IXGBE_COMPUTE_SIG_HASH_ITERATION(_n) \
do { \
	u32 n = (_n); \
	if (IXGBE_ATR_COMMON_HASH_KEY & BIT(n)) \
		common_hash ^= lo_hash_dword >> n; \
	else if (IXGBE_ATR_BUCKET_HASH_KEY & BIT(n)) \
		bucket_hash ^= lo_hash_dword >> n; \
	else if (IXGBE_ATR_SIGNATURE_HASH_KEY & BIT(n)) \
		sig_hash ^= lo_hash_dword << (16 - n); \
	if (IXGBE_ATR_COMMON_HASH_KEY & BIT(n + 16)) \
		common_hash ^= hi_hash_dword >> n; \
	else if (IXGBE_ATR_BUCKET_HASH_KEY & BIT(n + 16)) \
		bucket_hash ^= hi_hash_dword >> n; \
	else if (IXGBE_ATR_SIGNATURE_HASH_KEY & BIT(n + 16)) \
		sig_hash ^= hi_hash_dword << (16 - n); \
} while (0)

/**
 *  ixgbe_atr_compute_sig_hash_82599 - Compute the signature hash
 *  @input: input bitstream to compute the hash on
 *  @common: compressed common input dword
 *
 *  This function is almost identical to the function above but contains
 *  several optimizations such as unwinding all of the loops, letting the
 *  compiler work out all of the conditional ifs since the keys are static
 *  defines, and computing two keys at once since the hashed dword stream
 *  will be the same for both keys.
 **/
static u32 ixgbe_atr_compute_sig_hash_82599(union ixgbe_atr_hash_dword input,
					    union ixgbe_atr_hash_dword common)
{
	u32 hi_hash_dword, lo_hash_dword, flow_vm_vlan;
	u32 sig_hash = 0, bucket_hash = 0, common_hash = 0;

	/* record the flow_vm_vlan bits as they are a key part to the hash */
	flow_vm_vlan = ntohl(input.dword);

	/* generate common hash dword */
	hi_hash_dword = ntohl(common.dword);

	/* low dword is word swapped version of common */
	lo_hash_dword = (hi_hash_dword >> 16) | (hi_hash_dword << 16);

	/* apply flow ID/VM pool/VLAN ID bits to hash words */
	hi_hash_dword ^= flow_vm_vlan ^ (flow_vm_vlan >> 16);

	/* Process bits 0 and 16 */
	IXGBE_COMPUTE_SIG_HASH_ITERATION(0);

	/*
	 * apply flow ID/VM pool/VLAN ID bits to lo hash dword, we had to
	 * delay this because bit 0 of the stream should not be processed
	 * so we do not add the vlan until after bit 0 was processed
	 */
	lo_hash_dword ^= flow_vm_vlan ^ (flow_vm_vlan << 16);

	/* Process remaining 30 bit of the key */
	IXGBE_COMPUTE_SIG_HASH_ITERATION(1);
	IXGBE_COMPUTE_SIG_HASH_ITERATION(2);
	IXGBE_COMPUTE_SIG_HASH_ITERATION(3);
	IXGBE_COMPUTE_SIG_HASH_ITERATION(4);
	IXGBE_COMPUTE_SIG_HASH_ITERATION(5);
	IXGBE_COMPUTE_SIG_HASH_ITERATION(6);
	IXGBE_COMPUTE_SIG_HASH_ITERATION(7);
	IXGBE_COMPUTE_SIG_HASH_ITERATION(8);
	IXGBE_COMPUTE_SIG_HASH_ITERATION(9);
	IXGBE_COMPUTE_SIG_HASH_ITERATION(10);
	IXGBE_COMPUTE_SIG_HASH_ITERATION(11);
	IXGBE_COMPUTE_SIG_HASH_ITERATION(12);
	IXGBE_COMPUTE_SIG_HASH_ITERATION(13);
	IXGBE_COMPUTE_SIG_HASH_ITERATION(14);
	IXGBE_COMPUTE_SIG_HASH_ITERATION(15);

	/* combine common_hash result with signature and bucket hashes */
	bucket_hash ^= common_hash;
	bucket_hash &= IXGBE_ATR_HASH_MASK;

	sig_hash ^= common_hash << 16;
	sig_hash &= IXGBE_ATR_HASH_MASK << 16;

	/* return completed signature hash */
	return sig_hash ^ bucket_hash;
}

/**
 *  ixgbe_atr_add_signature_filter_82599 - Adds a signature hash filter
 *  @hw: pointer to hardware structure
 *  @input: unique input dword
 *  @common: compressed common input dword
 *  @queue: queue index to direct traffic to
 *
 * Note that the tunnel bit in input must not be set when the hardware
 * tunneling support does not exist.
 **/
s32 ixgbe_fdir_add_signature_filter_82599(struct ixgbe_hw *hw,
					  union ixgbe_atr_hash_dword input,
					  union ixgbe_atr_hash_dword common,
					  u8 queue)
{
	u64 fdirhashcmd;
	u8 flow_type;
	bool tunnel;
	u32 fdircmd;

	/*
	 * Get the flow_type in order to program FDIRCMD properly
	 * lowest 2 bits are FDIRCMD.L4TYPE, third lowest bit is FDIRCMD.IPV6
	 */
	tunnel = !!(input.formatted.flow_type & IXGBE_ATR_L4TYPE_TUNNEL_MASK);
	flow_type = input.formatted.flow_type &
		    (IXGBE_ATR_L4TYPE_TUNNEL_MASK - 1);
	switch (flow_type) {
	case IXGBE_ATR_FLOW_TYPE_TCPV4:
	case IXGBE_ATR_FLOW_TYPE_UDPV4:
	case IXGBE_ATR_FLOW_TYPE_SCTPV4:
	case IXGBE_ATR_FLOW_TYPE_TCPV6:
	case IXGBE_ATR_FLOW_TYPE_UDPV6:
	case IXGBE_ATR_FLOW_TYPE_SCTPV6:
		break;
	default:
		hw_dbg(hw, " Error on flow type input\n");
		return IXGBE_ERR_CONFIG;
	}

	/* configure FDIRCMD register */
	fdircmd = IXGBE_FDIRCMD_CMD_ADD_FLOW | IXGBE_FDIRCMD_FILTER_UPDATE |
		  IXGBE_FDIRCMD_LAST | IXGBE_FDIRCMD_QUEUE_EN;
	fdircmd |= (u32)flow_type << IXGBE_FDIRCMD_FLOW_TYPE_SHIFT;
	fdircmd |= (u32)queue << IXGBE_FDIRCMD_RX_QUEUE_SHIFT;
	if (tunnel)
		fdircmd |= IXGBE_FDIRCMD_TUNNEL_FILTER;

	/*
	 * The lower 32-bits of fdirhashcmd is for FDIRHASH, the upper 32-bits
	 * is for FDIRCMD.  Then do a 64-bit register write from FDIRHASH.
	 */
	fdirhashcmd = (u64)fdircmd << 32;
	fdirhashcmd |= ixgbe_atr_compute_sig_hash_82599(input, common);
	IXGBE_WRITE_REG64(hw, IXGBE_FDIRHASH, fdirhashcmd);

	hw_dbg(hw, "Tx Queue=%x hash=%x\n", queue, (u32)fdirhashcmd);

	return 0;
}

#define IXGBE_COMPUTE_BKT_HASH_ITERATION(_n) \
do { \
	u32 n = (_n); \
	if (IXGBE_ATR_BUCKET_HASH_KEY & BIT(n)) \
		bucket_hash ^= lo_hash_dword >> n; \
	if (IXGBE_ATR_BUCKET_HASH_KEY & BIT(n + 16)) \
		bucket_hash ^= hi_hash_dword >> n; \
} while (0)

/**
 *  ixgbe_atr_compute_perfect_hash_82599 - Compute the perfect filter hash
 *  @input: input bitstream to compute the hash on
 *  @input_mask: mask for the input bitstream
 *
 *  This function serves two main purposes.  First it applies the input_mask
 *  to the atr_input resulting in a cleaned up atr_input data stream.
 *  Secondly it computes the hash and stores it in the bkt_hash field at
 *  the end of the input byte stream.  This way it will be available for
 *  future use without needing to recompute the hash.
 **/
void ixgbe_atr_compute_perfect_hash_82599(union ixgbe_atr_input *input,
					  union ixgbe_atr_input *input_mask)
{

	u32 hi_hash_dword, lo_hash_dword, flow_vm_vlan;
	u32 bucket_hash = 0;
	__be32 hi_dword = 0;
	int i;

	/* Apply masks to input data */
	for (i = 0; i <= 10; i++)
		input->dword_stream[i] &= input_mask->dword_stream[i];

	/* record the flow_vm_vlan bits as they are a key part to the hash */
	flow_vm_vlan = ntohl(input->dword_stream[0]);

	/* generate common hash dword */
	for (i = 1; i <= 10; i++)
		hi_dword ^= input->dword_stream[i];
	hi_hash_dword = ntohl(hi_dword);

	/* low dword is word swapped version of common */
	lo_hash_dword = (hi_hash_dword >> 16) | (hi_hash_dword << 16);

	/* apply flow ID/VM pool/VLAN ID bits to hash words */
	hi_hash_dword ^= flow_vm_vlan ^ (flow_vm_vlan >> 16);

	/* Process bits 0 and 16 */
	IXGBE_COMPUTE_BKT_HASH_ITERATION(0);

	/*
	 * apply flow ID/VM pool/VLAN ID bits to lo hash dword, we had to
	 * delay this because bit 0 of the stream should not be processed
	 * so we do not add the vlan until after bit 0 was processed
	 */
	lo_hash_dword ^= flow_vm_vlan ^ (flow_vm_vlan << 16);

	/* Process remaining 30 bit of the key */
	for (i = 1; i <= 15; i++)
		IXGBE_COMPUTE_BKT_HASH_ITERATION(i);

	/*
	 * Limit hash to 13 bits since max bucket count is 8K.
	 * Store result at the end of the input stream.
	 */
	input->formatted.bkt_hash = (__force __be16)(bucket_hash & 0x1FFF);
}

/**
 *  ixgbe_get_fdirtcpm_82599 - generate a tcp port from atr_input_masks
 *  @input_mask: mask to be bit swapped
 *
 *  The source and destination port masks for flow director are bit swapped
 *  in that bit 15 effects bit 0, 14 effects 1, 13, 2 etc.  In order to
 *  generate a correctly swapped value we need to bit swap the mask and that
 *  is what is accomplished by this function.
 **/
static u32 ixgbe_get_fdirtcpm_82599(union ixgbe_atr_input *input_mask)
{
	u32 mask = ntohs(input_mask->formatted.dst_port);

	mask <<= IXGBE_FDIRTCPM_DPORTM_SHIFT;
	mask |= ntohs(input_mask->formatted.src_port);
	mask = ((mask & 0x55555555) << 1) | ((mask & 0xAAAAAAAA) >> 1);
	mask = ((mask & 0x33333333) << 2) | ((mask & 0xCCCCCCCC) >> 2);
	mask = ((mask & 0x0F0F0F0F) << 4) | ((mask & 0xF0F0F0F0) >> 4);
	return ((mask & 0x00FF00FF) << 8) | ((mask & 0xFF00FF00) >> 8);
}

/*
 * These two macros are meant to address the fact that we have registers
 * that are either all or in part big-endian.  As a result on big-endian
 * systems we will end up byte swapping the value to little-endian before
 * it is byte swapped again and written to the hardware in the original
 * big-endian format.
 */
#define IXGBE_STORE_AS_BE32(_value) \
	(((u32)(_value) >> 24) | (((u32)(_value) & 0x00FF0000) >> 8) | \
	 (((u32)(_value) & 0x0000FF00) << 8) | ((u32)(_value) << 24))

#define IXGBE_WRITE_REG_BE32(a, reg, value) \
	IXGBE_WRITE_REG((a), (reg), IXGBE_STORE_AS_BE32(ntohl(value)))

#define IXGBE_STORE_AS_BE16(_value) \
	ntohs(((u16)(_value) >> 8) | ((u16)(_value) << 8))

s32 ixgbe_fdir_set_input_mask_82599(struct ixgbe_hw *hw,
				    union ixgbe_atr_input *input_mask)
{
	/* mask IPv6 since it is currently not supported */
	u32 fdirm = IXGBE_FDIRM_DIPv6;
	u32 fdirtcpm;

	/*
	 * Program the relevant mask registers.  If src/dst_port or src/dst_addr
	 * are zero, then assume a full mask for that field.  Also assume that
	 * a VLAN of 0 is unspecified, so mask that out as well.  L4type
	 * cannot be masked out in this implementation.
	 *
	 * This also assumes IPv4 only.  IPv6 masking isn't supported at this
	 * point in time.
	 */

	/* verify bucket hash is cleared on hash generation */
	if (input_mask->formatted.bkt_hash)
		hw_dbg(hw, " bucket hash should always be 0 in mask\n");

	/* Program FDIRM and verify partial masks */
	switch (input_mask->formatted.vm_pool & 0x7F) {
	case 0x0:
		fdirm |= IXGBE_FDIRM_POOL;
	case 0x7F:
		break;
	default:
		hw_dbg(hw, " Error on vm pool mask\n");
		return IXGBE_ERR_CONFIG;
	}

	switch (input_mask->formatted.flow_type & IXGBE_ATR_L4TYPE_MASK) {
	case 0x0:
		fdirm |= IXGBE_FDIRM_L4P;
		if (input_mask->formatted.dst_port ||
		    input_mask->formatted.src_port) {
			hw_dbg(hw, " Error on src/dst port mask\n");
			return IXGBE_ERR_CONFIG;
		}
	case IXGBE_ATR_L4TYPE_MASK:
		break;
	default:
		hw_dbg(hw, " Error on flow type mask\n");
		return IXGBE_ERR_CONFIG;
	}

	switch (ntohs(input_mask->formatted.vlan_id) & 0xEFFF) {
	case 0x0000:
		/* mask VLAN ID */
		fdirm |= IXGBE_FDIRM_VLANID;
		/* fall through */
	case 0x0FFF:
		/* mask VLAN priority */
		fdirm |= IXGBE_FDIRM_VLANP;
		break;
	case 0xE000:
		/* mask VLAN ID only */
		fdirm |= IXGBE_FDIRM_VLANID;
		/* fall through */
	case 0xEFFF:
		/* no VLAN fields masked */
		break;
	default:
		hw_dbg(hw, " Error on VLAN mask\n");
		return IXGBE_ERR_CONFIG;
	}

	switch ((__force u16)input_mask->formatted.flex_bytes & 0xFFFF) {
	case 0x0000:
		/* Mask Flex Bytes */
		fdirm |= IXGBE_FDIRM_FLEX;
		/* fall through */
	case 0xFFFF:
		break;
	default:
		hw_dbg(hw, " Error on flexible byte mask\n");
		return IXGBE_ERR_CONFIG;
	}

	/* Now mask VM pool and destination IPv6 - bits 5 and 2 */
	IXGBE_WRITE_REG(hw, IXGBE_FDIRM, fdirm);

	/* store the TCP/UDP port masks, bit reversed from port layout */
	fdirtcpm = ixgbe_get_fdirtcpm_82599(input_mask);

	/* write both the same so that UDP and TCP use the same mask */
	IXGBE_WRITE_REG(hw, IXGBE_FDIRTCPM, ~fdirtcpm);
	IXGBE_WRITE_REG(hw, IXGBE_FDIRUDPM, ~fdirtcpm);

	/* also use it for SCTP */
	switch (hw->mac.type) {
	case ixgbe_mac_X550:
	case ixgbe_mac_X550EM_x:
	case ixgbe_mac_x550em_a:
		IXGBE_WRITE_REG(hw, IXGBE_FDIRSCTPM, ~fdirtcpm);
		break;
	default:
		break;
	}

	/* store source and destination IP masks (big-enian) */
	IXGBE_WRITE_REG_BE32(hw, IXGBE_FDIRSIP4M,
			     ~input_mask->formatted.src_ip[0]);
	IXGBE_WRITE_REG_BE32(hw, IXGBE_FDIRDIP4M,
			     ~input_mask->formatted.dst_ip[0]);

	return 0;
}

s32 ixgbe_fdir_write_perfect_filter_82599(struct ixgbe_hw *hw,
					  union ixgbe_atr_input *input,
					  u16 soft_id, u8 queue)
{
	u32 fdirport, fdirvlan, fdirhash, fdircmd;
	s32 err;

	/* currently IPv6 is not supported, must be programmed with 0 */
	IXGBE_WRITE_REG_BE32(hw, IXGBE_FDIRSIPv6(0),
			     input->formatted.src_ip[0]);
	IXGBE_WRITE_REG_BE32(hw, IXGBE_FDIRSIPv6(1),
			     input->formatted.src_ip[1]);
	IXGBE_WRITE_REG_BE32(hw, IXGBE_FDIRSIPv6(2),
			     input->formatted.src_ip[2]);

	/* record the source address (big-endian) */
	IXGBE_WRITE_REG_BE32(hw, IXGBE_FDIRIPSA, input->formatted.src_ip[0]);

	/* record the first 32 bits of the destination address (big-endian) */
	IXGBE_WRITE_REG_BE32(hw, IXGBE_FDIRIPDA, input->formatted.dst_ip[0]);

	/* record source and destination port (little-endian)*/
	fdirport = ntohs(input->formatted.dst_port);
	fdirport <<= IXGBE_FDIRPORT_DESTINATION_SHIFT;
	fdirport |= ntohs(input->formatted.src_port);
	IXGBE_WRITE_REG(hw, IXGBE_FDIRPORT, fdirport);

	/* record vlan (little-endian) and flex_bytes(big-endian) */
	fdirvlan = IXGBE_STORE_AS_BE16((__force u16)input->formatted.flex_bytes);
	fdirvlan <<= IXGBE_FDIRVLAN_FLEX_SHIFT;
	fdirvlan |= ntohs(input->formatted.vlan_id);
	IXGBE_WRITE_REG(hw, IXGBE_FDIRVLAN, fdirvlan);

	/* configure FDIRHASH register */
	fdirhash = (__force u32)input->formatted.bkt_hash;
	fdirhash |= soft_id << IXGBE_FDIRHASH_SIG_SW_INDEX_SHIFT;
	IXGBE_WRITE_REG(hw, IXGBE_FDIRHASH, fdirhash);

	/*
	 * flush all previous writes to make certain registers are
	 * programmed prior to issuing the command
	 */
	IXGBE_WRITE_FLUSH(hw);

	/* configure FDIRCMD register */
	fdircmd = IXGBE_FDIRCMD_CMD_ADD_FLOW | IXGBE_FDIRCMD_FILTER_UPDATE |
		  IXGBE_FDIRCMD_LAST | IXGBE_FDIRCMD_QUEUE_EN;
	if (queue == IXGBE_FDIR_DROP_QUEUE)
		fdircmd |= IXGBE_FDIRCMD_DROP;
	fdircmd |= input->formatted.flow_type << IXGBE_FDIRCMD_FLOW_TYPE_SHIFT;
	fdircmd |= (u32)queue << IXGBE_FDIRCMD_RX_QUEUE_SHIFT;
	fdircmd |= (u32)input->formatted.vm_pool << IXGBE_FDIRCMD_VT_POOL_SHIFT;

	IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD, fdircmd);
	err = ixgbe_fdir_check_cmd_complete(hw, &fdircmd);
	if (err) {
		hw_dbg(hw, "Flow Director command did not complete!\n");
		return err;
	}

	return 0;
}

s32 ixgbe_fdir_erase_perfect_filter_82599(struct ixgbe_hw *hw,
					  union ixgbe_atr_input *input,
					  u16 soft_id)
{
	u32 fdirhash;
	u32 fdircmd;
	s32 err;

	/* configure FDIRHASH register */
	fdirhash = (__force u32)input->formatted.bkt_hash;
	fdirhash |= soft_id << IXGBE_FDIRHASH_SIG_SW_INDEX_SHIFT;
	IXGBE_WRITE_REG(hw, IXGBE_FDIRHASH, fdirhash);

	/* flush hash to HW */
	IXGBE_WRITE_FLUSH(hw);

	/* Query if filter is present */
	IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD, IXGBE_FDIRCMD_CMD_QUERY_REM_FILT);

	err = ixgbe_fdir_check_cmd_complete(hw, &fdircmd);
	if (err) {
		hw_dbg(hw, "Flow Director command did not complete!\n");
		return err;
	}

	/* if filter exists in hardware then remove it */
	if (fdircmd & IXGBE_FDIRCMD_FILTER_VALID) {
		IXGBE_WRITE_REG(hw, IXGBE_FDIRHASH, fdirhash);
		IXGBE_WRITE_FLUSH(hw);
		IXGBE_WRITE_REG(hw, IXGBE_FDIRCMD,
				IXGBE_FDIRCMD_CMD_REMOVE_FLOW);
	}

	return 0;
}

/**
 *  ixgbe_read_analog_reg8_82599 - Reads 8 bit Omer analog register
 *  @hw: pointer to hardware structure
 *  @reg: analog register to read
 *  @val: read value
 *
 *  Performs read operation to Omer analog register specified.
 **/
static s32 ixgbe_read_analog_reg8_82599(struct ixgbe_hw *hw, u32 reg, u8 *val)
{
	u32  core_ctl;

	IXGBE_WRITE_REG(hw, IXGBE_CORECTL, IXGBE_CORECTL_WRITE_CMD |
			(reg << 8));
	IXGBE_WRITE_FLUSH(hw);
	udelay(10);
	core_ctl = IXGBE_READ_REG(hw, IXGBE_CORECTL);
	*val = (u8)core_ctl;

	return 0;
}

/**
 *  ixgbe_write_analog_reg8_82599 - Writes 8 bit Omer analog register
 *  @hw: pointer to hardware structure
 *  @reg: atlas register to write
 *  @val: value to write
 *
 *  Performs write operation to Omer analog register specified.
 **/
static s32 ixgbe_write_analog_reg8_82599(struct ixgbe_hw *hw, u32 reg, u8 val)
{
	u32  core_ctl;

	core_ctl = (reg << 8) | val;
	IXGBE_WRITE_REG(hw, IXGBE_CORECTL, core_ctl);
	IXGBE_WRITE_FLUSH(hw);
	udelay(10);

	return 0;
}

/**
 *  ixgbe_start_hw_82599 - Prepare hardware for Tx/Rx
 *  @hw: pointer to hardware structure
 *
 *  Starts the hardware using the generic start_hw function
 *  and the generation start_hw function.
 *  Then performs revision-specific operations, if any.
 **/
static s32 ixgbe_start_hw_82599(struct ixgbe_hw *hw)
{
	s32 ret_val = 0;

	ret_val = ixgbe_start_hw_generic(hw);
	if (ret_val)
		return ret_val;

	ret_val = ixgbe_start_hw_gen2(hw);
	if (ret_val)
		return ret_val;

	/* We need to run link autotry after the driver loads */
	hw->mac.autotry_restart = true;

	return ixgbe_verify_fw_version_82599(hw);
}

/**
 *  ixgbe_identify_phy_82599 - Get physical layer module
 *  @hw: pointer to hardware structure
 *
 *  Determines the physical layer module found on the current adapter.
 *  If PHY already detected, maintains current PHY type in hw struct,
 *  otherwise executes the PHY detection routine.
 **/
static s32 ixgbe_identify_phy_82599(struct ixgbe_hw *hw)
{
	s32 status;

	/* Detect PHY if not unknown - returns success if already detected. */
	status = ixgbe_identify_phy_generic(hw);
	if (status) {
		/* 82599 10GBASE-T requires an external PHY */
		if (hw->mac.ops.get_media_type(hw) == ixgbe_media_type_copper)
			return status;
		status = ixgbe_identify_module_generic(hw);
	}

	/* Set PHY type none if no PHY detected */
	if (hw->phy.type == ixgbe_phy_unknown) {
		hw->phy.type = ixgbe_phy_none;
		status = 0;
	}

	/* Return error if SFP module has been detected but is not supported */
	if (hw->phy.type == ixgbe_phy_sfp_unsupported)
		return IXGBE_ERR_SFP_NOT_SUPPORTED;

	return status;
}

/**
 *  ixgbe_enable_rx_dma_82599 - Enable the Rx DMA unit on 82599
 *  @hw: pointer to hardware structure
 *  @regval: register value to write to RXCTRL
 *
 *  Enables the Rx DMA unit for 82599
 **/
static s32 ixgbe_enable_rx_dma_82599(struct ixgbe_hw *hw, u32 regval)
{
	/*
	 * Workaround for 82599 silicon errata when enabling the Rx datapath.
	 * If traffic is incoming before we enable the Rx unit, it could hang
	 * the Rx DMA unit.  Therefore, make sure the security engine is
	 * completely disabled prior to enabling the Rx unit.
	 */
	hw->mac.ops.disable_rx_buff(hw);

	if (regval & IXGBE_RXCTRL_RXEN)
		hw->mac.ops.enable_rx(hw);
	else
		hw->mac.ops.disable_rx(hw);

	hw->mac.ops.enable_rx_buff(hw);

	return 0;
}

/**
 *  ixgbe_verify_fw_version_82599 - verify fw version for 82599
 *  @hw: pointer to hardware structure
 *
 *  Verifies that installed the firmware version is 0.6 or higher
 *  for SFI devices. All 82599 SFI devices should have version 0.6 or higher.
 *
 *  Returns IXGBE_ERR_EEPROM_VERSION if the FW is not present or
 *  if the FW version is not supported.
 **/
static s32 ixgbe_verify_fw_version_82599(struct ixgbe_hw *hw)
{
	s32 status = IXGBE_ERR_EEPROM_VERSION;
	u16 fw_offset, fw_ptp_cfg_offset;
	u16 offset;
	u16 fw_version = 0;

	/* firmware check is only necessary for SFI devices */
	if (hw->phy.media_type != ixgbe_media_type_fiber)
		return 0;

	/* get the offset to the Firmware Module block */
	offset = IXGBE_FW_PTR;
	if (hw->eeprom.ops.read(hw, offset, &fw_offset))
		goto fw_version_err;

	if (fw_offset == 0 || fw_offset == 0xFFFF)
		return IXGBE_ERR_EEPROM_VERSION;

	/* get the offset to the Pass Through Patch Configuration block */
	offset = fw_offset + IXGBE_FW_PASSTHROUGH_PATCH_CONFIG_PTR;
	if (hw->eeprom.ops.read(hw, offset, &fw_ptp_cfg_offset))
		goto fw_version_err;

	if (fw_ptp_cfg_offset == 0 || fw_ptp_cfg_offset == 0xFFFF)
		return IXGBE_ERR_EEPROM_VERSION;

	/* get the firmware version */
	offset = fw_ptp_cfg_offset + IXGBE_FW_PATCH_VERSION_4;
	if (hw->eeprom.ops.read(hw, offset, &fw_version))
		goto fw_version_err;

	if (fw_version > 0x5)
		status = 0;

	return status;

fw_version_err:
	hw_err(hw, "eeprom read at offset %d failed\n", offset);
	return IXGBE_ERR_EEPROM_VERSION;
}

/**
 *  ixgbe_verify_lesm_fw_enabled_82599 - Checks LESM FW module state.
 *  @hw: pointer to hardware structure
 *
 *  Returns true if the LESM FW module is present and enabled. Otherwise
 *  returns false. Smart Speed must be disabled if LESM FW module is enabled.
 **/
static bool ixgbe_verify_lesm_fw_enabled_82599(struct ixgbe_hw *hw)
{
	u16 fw_offset, fw_lesm_param_offset, fw_lesm_state;
	s32 status;

	/* get the offset to the Firmware Module block */
	status = hw->eeprom.ops.read(hw, IXGBE_FW_PTR, &fw_offset);

	if (status || fw_offset == 0 || fw_offset == 0xFFFF)
		return false;

	/* get the offset to the LESM Parameters block */
	status = hw->eeprom.ops.read(hw, (fw_offset +
				     IXGBE_FW_LESM_PARAMETERS_PTR),
				     &fw_lesm_param_offset);

	if (status ||
	    fw_lesm_param_offset == 0 || fw_lesm_param_offset == 0xFFFF)
		return false;

	/* get the lesm state word */
	status = hw->eeprom.ops.read(hw, (fw_lesm_param_offset +
				     IXGBE_FW_LESM_STATE_1),
				     &fw_lesm_state);

	if (!status && (fw_lesm_state & IXGBE_FW_LESM_STATE_ENABLED))
		return true;

	return false;
}

/**
 *  ixgbe_read_eeprom_buffer_82599 - Read EEPROM word(s) using
 *  fastest available method
 *
 *  @hw: pointer to hardware structure
 *  @offset: offset of  word in EEPROM to read
 *  @words: number of words
 *  @data: word(s) read from the EEPROM
 *
 *  Retrieves 16 bit word(s) read from EEPROM
 **/
static s32 ixgbe_read_eeprom_buffer_82599(struct ixgbe_hw *hw, u16 offset,
					  u16 words, u16 *data)
{
	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;

	/* If EEPROM is detected and can be addressed using 14 bits,
	 * use EERD otherwise use bit bang
	 */
	if (eeprom->type == ixgbe_eeprom_spi &&
	    offset + (words - 1) <= IXGBE_EERD_MAX_ADDR)
		return ixgbe_read_eerd_buffer_generic(hw, offset, words, data);

	return ixgbe_read_eeprom_buffer_bit_bang_generic(hw, offset, words,
							 data);
}

/**
 *  ixgbe_read_eeprom_82599 - Read EEPROM word using
 *  fastest available method
 *
 *  @hw: pointer to hardware structure
 *  @offset: offset of  word in the EEPROM to read
 *  @data: word read from the EEPROM
 *
 *  Reads a 16 bit word from the EEPROM
 **/
static s32 ixgbe_read_eeprom_82599(struct ixgbe_hw *hw,
				   u16 offset, u16 *data)
{
	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;

	/*
	 * If EEPROM is detected and can be addressed using 14 bits,
	 * use EERD otherwise use bit bang
	 */
	if (eeprom->type == ixgbe_eeprom_spi && offset <= IXGBE_EERD_MAX_ADDR)
		return ixgbe_read_eerd_generic(hw, offset, data);

	return ixgbe_read_eeprom_bit_bang_generic(hw, offset, data);
}

/**
 * ixgbe_reset_pipeline_82599 - perform pipeline reset
 *
 * @hw: pointer to hardware structure
 *
 * Reset pipeline by asserting Restart_AN together with LMS change to ensure
 * full pipeline reset.  Note - We must hold the SW/FW semaphore before writing
 * to AUTOC, so this function assumes the semaphore is held.
 **/
static s32 ixgbe_reset_pipeline_82599(struct ixgbe_hw *hw)
{
	s32 ret_val;
	u32 anlp1_reg = 0;
	u32 i, autoc_reg, autoc2_reg;

	/* Enable link if disabled in NVM */
	autoc2_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC2);
	if (autoc2_reg & IXGBE_AUTOC2_LINK_DISABLE_MASK) {
		autoc2_reg &= ~IXGBE_AUTOC2_LINK_DISABLE_MASK;
		IXGBE_WRITE_REG(hw, IXGBE_AUTOC2, autoc2_reg);
		IXGBE_WRITE_FLUSH(hw);
	}

	autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
	autoc_reg |= IXGBE_AUTOC_AN_RESTART;

	/* Write AUTOC register with toggled LMS[2] bit and Restart_AN */
	IXGBE_WRITE_REG(hw, IXGBE_AUTOC,
			autoc_reg ^ (0x4 << IXGBE_AUTOC_LMS_SHIFT));

	/* Wait for AN to leave state 0 */
	for (i = 0; i < 10; i++) {
		usleep_range(4000, 8000);
		anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
		if (anlp1_reg & IXGBE_ANLP1_AN_STATE_MASK)
			break;
	}

	if (!(anlp1_reg & IXGBE_ANLP1_AN_STATE_MASK)) {
		hw_dbg(hw, "auto negotiation not completed\n");
		ret_val = IXGBE_ERR_RESET_FAILED;
		goto reset_pipeline_out;
	}

	ret_val = 0;

reset_pipeline_out:
	/* Write AUTOC register with original LMS field and Restart_AN */
	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
	IXGBE_WRITE_FLUSH(hw);

	return ret_val;
}

/**
 *  ixgbe_read_i2c_byte_82599 - Reads 8 bit word over I2C
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to read
 *  @dev_addr: address to read from
 *  @data: value read
 *
 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
 *  a specified device address.
 **/
static s32 ixgbe_read_i2c_byte_82599(struct ixgbe_hw *hw, u8 byte_offset,
				     u8 dev_addr, u8 *data)
{
	u32 esdp;
	s32 status;
	s32 timeout = 200;

	if (hw->phy.qsfp_shared_i2c_bus == true) {
		/* Acquire I2C bus ownership. */
		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
		esdp |= IXGBE_ESDP_SDP0;
		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
		IXGBE_WRITE_FLUSH(hw);

		while (timeout) {
			esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
			if (esdp & IXGBE_ESDP_SDP1)
				break;

			usleep_range(5000, 10000);
			timeout--;
		}

		if (!timeout) {
			hw_dbg(hw, "Driver can't access resource, acquiring I2C bus timeout.\n");
			status = IXGBE_ERR_I2C;
			goto release_i2c_access;
		}
	}

	status = ixgbe_read_i2c_byte_generic(hw, byte_offset, dev_addr, data);

release_i2c_access:
	if (hw->phy.qsfp_shared_i2c_bus == true) {
		/* Release I2C bus ownership. */
		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
		esdp &= ~IXGBE_ESDP_SDP0;
		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
		IXGBE_WRITE_FLUSH(hw);
	}

	return status;
}

/**
 *  ixgbe_write_i2c_byte_82599 - Writes 8 bit word over I2C
 *  @hw: pointer to hardware structure
 *  @byte_offset: byte offset to write
 *  @dev_addr: address to write to
 *  @data: value to write
 *
 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
 *  a specified device address.
 **/
static s32 ixgbe_write_i2c_byte_82599(struct ixgbe_hw *hw, u8 byte_offset,
				      u8 dev_addr, u8 data)
{
	u32 esdp;
	s32 status;
	s32 timeout = 200;

	if (hw->phy.qsfp_shared_i2c_bus == true) {
		/* Acquire I2C bus ownership. */
		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
		esdp |= IXGBE_ESDP_SDP0;
		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
		IXGBE_WRITE_FLUSH(hw);

		while (timeout) {
			esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
			if (esdp & IXGBE_ESDP_SDP1)
				break;

			usleep_range(5000, 10000);
			timeout--;
		}

		if (!timeout) {
			hw_dbg(hw, "Driver can't access resource, acquiring I2C bus timeout.\n");
			status = IXGBE_ERR_I2C;
			goto release_i2c_access;
		}
	}

	status = ixgbe_write_i2c_byte_generic(hw, byte_offset, dev_addr, data);

release_i2c_access:
	if (hw->phy.qsfp_shared_i2c_bus == true) {
		/* Release I2C bus ownership. */
		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
		esdp &= ~IXGBE_ESDP_SDP0;
		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
		IXGBE_WRITE_FLUSH(hw);
	}

	return status;
}

static const struct ixgbe_mac_operations mac_ops_82599 = {
	.init_hw                = &ixgbe_init_hw_generic,
	.reset_hw               = &ixgbe_reset_hw_82599,
	.start_hw               = &ixgbe_start_hw_82599,
	.clear_hw_cntrs         = &ixgbe_clear_hw_cntrs_generic,
	.get_media_type         = &ixgbe_get_media_type_82599,
	.enable_rx_dma          = &ixgbe_enable_rx_dma_82599,
	.disable_rx_buff	= &ixgbe_disable_rx_buff_generic,
	.enable_rx_buff		= &ixgbe_enable_rx_buff_generic,
	.get_mac_addr           = &ixgbe_get_mac_addr_generic,
	.get_san_mac_addr       = &ixgbe_get_san_mac_addr_generic,
	.get_device_caps        = &ixgbe_get_device_caps_generic,
	.get_wwn_prefix         = &ixgbe_get_wwn_prefix_generic,
	.stop_adapter           = &ixgbe_stop_adapter_generic,
	.get_bus_info           = &ixgbe_get_bus_info_generic,
	.set_lan_id             = &ixgbe_set_lan_id_multi_port_pcie,
	.read_analog_reg8       = &ixgbe_read_analog_reg8_82599,
	.write_analog_reg8      = &ixgbe_write_analog_reg8_82599,
	.stop_link_on_d3	= &ixgbe_stop_mac_link_on_d3_82599,
	.setup_link             = &ixgbe_setup_mac_link_82599,
	.set_rxpba		= &ixgbe_set_rxpba_generic,
	.check_link             = &ixgbe_check_mac_link_generic,
	.get_link_capabilities  = &ixgbe_get_link_capabilities_82599,
	.led_on                 = &ixgbe_led_on_generic,
	.led_off                = &ixgbe_led_off_generic,
	.init_led_link_act	= ixgbe_init_led_link_act_generic,
	.blink_led_start        = &ixgbe_blink_led_start_generic,
	.blink_led_stop         = &ixgbe_blink_led_stop_generic,
	.set_rar                = &ixgbe_set_rar_generic,
	.clear_rar              = &ixgbe_clear_rar_generic,
	.set_vmdq               = &ixgbe_set_vmdq_generic,
	.set_vmdq_san_mac	= &ixgbe_set_vmdq_san_mac_generic,
	.clear_vmdq             = &ixgbe_clear_vmdq_generic,
	.init_rx_addrs          = &ixgbe_init_rx_addrs_generic,
	.update_mc_addr_list    = &ixgbe_update_mc_addr_list_generic,
	.enable_mc              = &ixgbe_enable_mc_generic,
	.disable_mc             = &ixgbe_disable_mc_generic,
	.clear_vfta             = &ixgbe_clear_vfta_generic,
	.set_vfta               = &ixgbe_set_vfta_generic,
	.fc_enable              = &ixgbe_fc_enable_generic,
	.setup_fc		= ixgbe_setup_fc_generic,
	.fc_autoneg		= ixgbe_fc_autoneg,
	.set_fw_drv_ver         = &ixgbe_set_fw_drv_ver_generic,
	.init_uta_tables        = &ixgbe_init_uta_tables_generic,
	.setup_sfp              = &ixgbe_setup_sfp_modules_82599,
	.set_mac_anti_spoofing  = &ixgbe_set_mac_anti_spoofing,
	.set_vlan_anti_spoofing = &ixgbe_set_vlan_anti_spoofing,
	.acquire_swfw_sync      = &ixgbe_acquire_swfw_sync,
	.release_swfw_sync      = &ixgbe_release_swfw_sync,
	.init_swfw_sync		= NULL,
	.get_thermal_sensor_data = &ixgbe_get_thermal_sensor_data_generic,
	.init_thermal_sensor_thresh = &ixgbe_init_thermal_sensor_thresh_generic,
	.prot_autoc_read	= &prot_autoc_read_82599,
	.prot_autoc_write	= &prot_autoc_write_82599,
	.enable_rx		= &ixgbe_enable_rx_generic,
	.disable_rx		= &ixgbe_disable_rx_generic,
};

static const struct ixgbe_eeprom_operations eeprom_ops_82599 = {
	.init_params		= &ixgbe_init_eeprom_params_generic,
	.read			= &ixgbe_read_eeprom_82599,
	.read_buffer		= &ixgbe_read_eeprom_buffer_82599,
	.write			= &ixgbe_write_eeprom_generic,
	.write_buffer		= &ixgbe_write_eeprom_buffer_bit_bang_generic,
	.calc_checksum		= &ixgbe_calc_eeprom_checksum_generic,
	.validate_checksum	= &ixgbe_validate_eeprom_checksum_generic,
	.update_checksum	= &ixgbe_update_eeprom_checksum_generic,
};

static const struct ixgbe_phy_operations phy_ops_82599 = {
	.identify		= &ixgbe_identify_phy_82599,
	.identify_sfp		= &ixgbe_identify_module_generic,
	.init			= &ixgbe_init_phy_ops_82599,
	.reset			= &ixgbe_reset_phy_generic,
	.read_reg		= &ixgbe_read_phy_reg_generic,
	.write_reg		= &ixgbe_write_phy_reg_generic,
	.setup_link		= &ixgbe_setup_phy_link_generic,
	.setup_link_speed	= &ixgbe_setup_phy_link_speed_generic,
	.read_i2c_byte		= &ixgbe_read_i2c_byte_generic,
	.write_i2c_byte		= &ixgbe_write_i2c_byte_generic,
	.read_i2c_sff8472	= &ixgbe_read_i2c_sff8472_generic,
	.read_i2c_eeprom	= &ixgbe_read_i2c_eeprom_generic,
	.write_i2c_eeprom	= &ixgbe_write_i2c_eeprom_generic,
	.check_overtemp		= &ixgbe_tn_check_overtemp,
};

const struct ixgbe_info ixgbe_82599_info = {
	.mac                    = ixgbe_mac_82599EB,
	.get_invariants         = &ixgbe_get_invariants_82599,
	.mac_ops                = &mac_ops_82599,
	.eeprom_ops             = &eeprom_ops_82599,
	.phy_ops                = &phy_ops_82599,
	.mbx_ops                = &mbx_ops_generic,
	.mvals			= ixgbe_mvals_8259X,
};