Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thomas Petazzoni | 7942 | 37.63% | 12 | 7.50% |
Marcin Wojtas | 4567 | 21.64% | 11 | 6.88% |
Russell King | 2416 | 11.45% | 12 | 7.50% |
Gregory CLEMENT | 1220 | 5.78% | 17 | 10.62% |
Ezequiel García | 1050 | 4.97% | 13 | 8.12% |
JiSheng Zhang | 750 | 3.55% | 14 | 8.75% |
Yelena Krivosheev | 679 | 3.22% | 6 | 3.75% |
Willy Tarreau | 554 | 2.62% | 12 | 7.50% |
Maxime Ripard | 454 | 2.15% | 3 | 1.88% |
Sebastian Andrzej Siewior | 301 | 1.43% | 1 | 0.62% |
Jane Li | 276 | 1.31% | 1 | 0.62% |
Stas Sergeev | 217 | 1.03% | 4 | 2.50% |
Simon Guinot | 216 | 1.02% | 6 | 3.75% |
Marek Behún | 82 | 0.39% | 1 | 0.62% |
Maxime Chevallier | 71 | 0.34% | 3 | 1.88% |
Jingju Hou | 55 | 0.26% | 1 | 0.62% |
Jarod Wilson | 52 | 0.25% | 1 | 0.62% |
Andrew Lunn | 43 | 0.20% | 2 | 1.25% |
Arnaud Patard | 32 | 0.15% | 1 | 0.62% |
SF Markus Elfring | 19 | 0.09% | 4 | 2.50% |
Philippe Reynes | 16 | 0.08% | 2 | 1.25% |
Eric Dumazet | 12 | 0.06% | 2 | 1.25% |
Florian Fainelli | 10 | 0.05% | 2 | 1.25% |
Rosen Penev | 8 | 0.04% | 1 | 0.62% |
Dmitri Epshtein | 7 | 0.03% | 4 | 2.50% |
Uwe Kleine-König | 6 | 0.03% | 1 | 0.62% |
Johan Hovold | 6 | 0.03% | 1 | 0.62% |
Antoine Tenart | 5 | 0.02% | 3 | 1.88% |
Peter Chen | 5 | 0.02% | 1 | 0.62% |
Petr Štetiar | 5 | 0.02% | 2 | 1.25% |
Joe Perches | 4 | 0.02% | 1 | 0.62% |
Vlad Yasevich | 3 | 0.01% | 1 | 0.62% |
Wilfried Klaebe | 3 | 0.01% | 1 | 0.62% |
Justin Maggard | 3 | 0.01% | 1 | 0.62% |
Eric W. Biedermann | 2 | 0.01% | 1 | 0.62% |
Florian Westphal | 2 | 0.01% | 1 | 0.62% |
Baoyou Xie | 2 | 0.01% | 1 | 0.62% |
Andrew Pilloud | 2 | 0.01% | 1 | 0.62% |
Anna-Maria Gleixner | 2 | 0.01% | 1 | 0.62% |
Alexandre Belloni | 2 | 0.01% | 1 | 0.62% |
David S. Miller | 2 | 0.01% | 1 | 0.62% |
Johannes Berg | 1 | 0.00% | 1 | 0.62% |
Américo Wang | 1 | 0.00% | 1 | 0.62% |
Yue haibing | 1 | 0.00% | 1 | 0.62% |
Arnaud Ebalard | 1 | 0.00% | 1 | 0.62% |
Stephen Hemminger | 1 | 0.00% | 1 | 0.62% |
Total | 21108 | 160 |
/* * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs. * * Copyright (C) 2012 Marvell * * Rami Rosen <rosenr@marvell.com> * Thomas Petazzoni <thomas.petazzoni@free-electrons.com> * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. */ #include <linux/clk.h> #include <linux/cpu.h> #include <linux/etherdevice.h> #include <linux/if_vlan.h> #include <linux/inetdevice.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/mbus.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/of_mdio.h> #include <linux/of_net.h> #include <linux/phy/phy.h> #include <linux/phy.h> #include <linux/phylink.h> #include <linux/platform_device.h> #include <linux/skbuff.h> #include <net/hwbm.h> #include "mvneta_bm.h" #include <net/ip.h> #include <net/ipv6.h> #include <net/tso.h> /* Registers */ #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2)) #define MVNETA_RXQ_HW_BUF_ALLOC BIT(0) #define MVNETA_RXQ_SHORT_POOL_ID_SHIFT 4 #define MVNETA_RXQ_SHORT_POOL_ID_MASK 0x30 #define MVNETA_RXQ_LONG_POOL_ID_SHIFT 6 #define MVNETA_RXQ_LONG_POOL_ID_MASK 0xc0 #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8) #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8) #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2)) #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16) #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2)) #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2)) #define MVNETA_RXQ_BUF_SIZE_SHIFT 19 #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19) #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2)) #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2)) #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16 #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool) (0x1700 + ((pool) << 2)) #define MVNETA_PORT_POOL_BUFFER_SZ_SHIFT 3 #define MVNETA_PORT_POOL_BUFFER_SZ_MASK 0xfff8 #define MVNETA_PORT_RX_RESET 0x1cc0 #define MVNETA_PORT_RX_DMA_RESET BIT(0) #define MVNETA_PHY_ADDR 0x2000 #define MVNETA_PHY_ADDR_MASK 0x1f #define MVNETA_MBUS_RETRY 0x2010 #define MVNETA_UNIT_INTR_CAUSE 0x2080 #define MVNETA_UNIT_CONTROL 0x20B0 #define MVNETA_PHY_POLLING_ENABLE BIT(1) #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3)) #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3)) #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2)) #define MVNETA_BASE_ADDR_ENABLE 0x2290 #define MVNETA_ACCESS_PROTECT_ENABLE 0x2294 #define MVNETA_PORT_CONFIG 0x2400 #define MVNETA_UNI_PROMISC_MODE BIT(0) #define MVNETA_DEF_RXQ(q) ((q) << 1) #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4) #define MVNETA_TX_UNSET_ERR_SUM BIT(12) #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16) #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19) #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22) #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25) #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \ MVNETA_DEF_RXQ_ARP(q) | \ MVNETA_DEF_RXQ_TCP(q) | \ MVNETA_DEF_RXQ_UDP(q) | \ MVNETA_DEF_RXQ_BPDU(q) | \ MVNETA_TX_UNSET_ERR_SUM | \ MVNETA_RX_CSUM_WITH_PSEUDO_HDR) #define MVNETA_PORT_CONFIG_EXTEND 0x2404 #define MVNETA_MAC_ADDR_LOW 0x2414 #define MVNETA_MAC_ADDR_HIGH 0x2418 #define MVNETA_SDMA_CONFIG 0x241c #define MVNETA_SDMA_BRST_SIZE_16 4 #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1) #define MVNETA_RX_NO_DATA_SWAP BIT(4) #define MVNETA_TX_NO_DATA_SWAP BIT(5) #define MVNETA_DESC_SWAP BIT(6) #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22) #define MVNETA_PORT_STATUS 0x2444 #define MVNETA_TX_IN_PRGRS BIT(1) #define MVNETA_TX_FIFO_EMPTY BIT(8) #define MVNETA_RX_MIN_FRAME_SIZE 0x247c #define MVNETA_SERDES_CFG 0x24A0 #define MVNETA_SGMII_SERDES_PROTO 0x0cc7 #define MVNETA_QSGMII_SERDES_PROTO 0x0667 #define MVNETA_TYPE_PRIO 0x24bc #define MVNETA_FORCE_UNI BIT(21) #define MVNETA_TXQ_CMD_1 0x24e4 #define MVNETA_TXQ_CMD 0x2448 #define MVNETA_TXQ_DISABLE_SHIFT 8 #define MVNETA_TXQ_ENABLE_MASK 0x000000ff #define MVNETA_RX_DISCARD_FRAME_COUNT 0x2484 #define MVNETA_OVERRUN_FRAME_COUNT 0x2488 #define MVNETA_GMAC_CLOCK_DIVIDER 0x24f4 #define MVNETA_GMAC_1MS_CLOCK_ENABLE BIT(31) #define MVNETA_ACC_MODE 0x2500 #define MVNETA_BM_ADDRESS 0x2504 #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2)) #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00 #define MVNETA_CPU_RXQ_ACCESS(rxq) BIT(rxq) #define MVNETA_CPU_TXQ_ACCESS(txq) BIT(txq + 8) #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2)) /* Exception Interrupt Port/Queue Cause register * * Their behavior depend of the mapping done using the PCPX2Q * registers. For a given CPU if the bit associated to a queue is not * set, then for the register a read from this CPU will always return * 0 and a write won't do anything */ #define MVNETA_INTR_NEW_CAUSE 0x25a0 #define MVNETA_INTR_NEW_MASK 0x25a4 /* bits 0..7 = TXQ SENT, one bit per queue. * bits 8..15 = RXQ OCCUP, one bit per queue. * bits 16..23 = RXQ FREE, one bit per queue. * bit 29 = OLD_REG_SUM, see old reg ? * bit 30 = TX_ERR_SUM, one bit for 4 ports * bit 31 = MISC_SUM, one bit for 4 ports */ #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0) #define MVNETA_TX_INTR_MASK_ALL (0xff << 0) #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8) #define MVNETA_RX_INTR_MASK_ALL (0xff << 8) #define MVNETA_MISCINTR_INTR_MASK BIT(31) #define MVNETA_INTR_OLD_CAUSE 0x25a8 #define MVNETA_INTR_OLD_MASK 0x25ac /* Data Path Port/Queue Cause Register */ #define MVNETA_INTR_MISC_CAUSE 0x25b0 #define MVNETA_INTR_MISC_MASK 0x25b4 #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0) #define MVNETA_CAUSE_LINK_CHANGE BIT(1) #define MVNETA_CAUSE_PTP BIT(4) #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7) #define MVNETA_CAUSE_RX_OVERRUN BIT(8) #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9) #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10) #define MVNETA_CAUSE_TX_UNDERUN BIT(11) #define MVNETA_CAUSE_PRBS_ERR BIT(12) #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13) #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14) #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16 #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT) #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool))) #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24 #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT) #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q))) #define MVNETA_INTR_ENABLE 0x25b8 #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00 #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0x000000ff #define MVNETA_RXQ_CMD 0x2680 #define MVNETA_RXQ_DISABLE_SHIFT 8 #define MVNETA_RXQ_ENABLE_MASK 0x000000ff #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4)) #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4)) #define MVNETA_GMAC_CTRL_0 0x2c00 #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2 #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc #define MVNETA_GMAC0_PORT_1000BASE_X BIT(1) #define MVNETA_GMAC0_PORT_ENABLE BIT(0) #define MVNETA_GMAC_CTRL_2 0x2c08 #define MVNETA_GMAC2_INBAND_AN_ENABLE BIT(0) #define MVNETA_GMAC2_PCS_ENABLE BIT(3) #define MVNETA_GMAC2_PORT_RGMII BIT(4) #define MVNETA_GMAC2_PORT_RESET BIT(6) #define MVNETA_GMAC_STATUS 0x2c10 #define MVNETA_GMAC_LINK_UP BIT(0) #define MVNETA_GMAC_SPEED_1000 BIT(1) #define MVNETA_GMAC_SPEED_100 BIT(2) #define MVNETA_GMAC_FULL_DUPLEX BIT(3) #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4) #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5) #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6) #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7) #define MVNETA_GMAC_AN_COMPLETE BIT(11) #define MVNETA_GMAC_SYNC_OK BIT(14) #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0) #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1) #define MVNETA_GMAC_INBAND_AN_ENABLE BIT(2) #define MVNETA_GMAC_AN_BYPASS_ENABLE BIT(3) #define MVNETA_GMAC_INBAND_RESTART_AN BIT(4) #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5) #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6) #define MVNETA_GMAC_AN_SPEED_EN BIT(7) #define MVNETA_GMAC_CONFIG_FLOW_CTRL BIT(8) #define MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL BIT(9) #define MVNETA_GMAC_AN_FLOW_CTRL_EN BIT(11) #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12) #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13) #define MVNETA_GMAC_CTRL_4 0x2c90 #define MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE BIT(1) #define MVNETA_MIB_COUNTERS_BASE 0x3000 #define MVNETA_MIB_LATE_COLLISION 0x7c #define MVNETA_DA_FILT_SPEC_MCAST 0x3400 #define MVNETA_DA_FILT_OTH_MCAST 0x3500 #define MVNETA_DA_FILT_UCAST_BASE 0x3600 #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2)) #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2)) #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000 #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16) #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2)) #define MVNETA_TXQ_DEC_SENT_SHIFT 16 #define MVNETA_TXQ_DEC_SENT_MASK 0xff #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2)) #define MVNETA_TXQ_SENT_DESC_SHIFT 16 #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000 #define MVNETA_PORT_TX_RESET 0x3cf0 #define MVNETA_PORT_TX_DMA_RESET BIT(0) #define MVNETA_TX_MTU 0x3e0c #define MVNETA_TX_TOKEN_SIZE 0x3e14 #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2)) #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff #define MVNETA_LPI_CTRL_0 0x2cc0 #define MVNETA_LPI_CTRL_1 0x2cc4 #define MVNETA_LPI_REQUEST_ENABLE BIT(0) #define MVNETA_LPI_CTRL_2 0x2cc8 #define MVNETA_LPI_STATUS 0x2ccc #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff /* Descriptor ring Macros */ #define MVNETA_QUEUE_NEXT_DESC(q, index) \ (((index) < (q)->last_desc) ? ((index) + 1) : 0) /* Various constants */ /* Coalescing */ #define MVNETA_TXDONE_COAL_PKTS 0 /* interrupt per packet */ #define MVNETA_RX_COAL_PKTS 32 #define MVNETA_RX_COAL_USEC 100 /* The two bytes Marvell header. Either contains a special value used * by Marvell switches when a specific hardware mode is enabled (not * supported by this driver) or is filled automatically by zeroes on * the RX side. Those two bytes being at the front of the Ethernet * header, they allow to have the IP header aligned on a 4 bytes * boundary automatically: the hardware skips those two bytes on its * own. */ #define MVNETA_MH_SIZE 2 #define MVNETA_VLAN_TAG_LEN 4 #define MVNETA_TX_CSUM_DEF_SIZE 1600 #define MVNETA_TX_CSUM_MAX_SIZE 9800 #define MVNETA_ACC_MODE_EXT1 1 #define MVNETA_ACC_MODE_EXT2 2 #define MVNETA_MAX_DECODE_WIN 6 /* Timeout constants */ #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000 #define MVNETA_TX_MTU_MAX 0x3ffff /* The RSS lookup table actually has 256 entries but we do not use * them yet */ #define MVNETA_RSS_LU_TABLE_SIZE 1 /* Max number of Rx descriptors */ #define MVNETA_MAX_RXD 512 /* Max number of Tx descriptors */ #define MVNETA_MAX_TXD 1024 /* Max number of allowed TCP segments for software TSO */ #define MVNETA_MAX_TSO_SEGS 100 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS) /* descriptor aligned size */ #define MVNETA_DESC_ALIGNED_SIZE 32 /* Number of bytes to be taken into account by HW when putting incoming data * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers. */ #define MVNETA_RX_PKT_OFFSET_CORRECTION 64 #define MVNETA_RX_PKT_SIZE(mtu) \ ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \ ETH_HLEN + ETH_FCS_LEN, \ cache_line_size()) #define IS_TSO_HEADER(txq, addr) \ ((addr >= txq->tso_hdrs_phys) && \ (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE)) #define MVNETA_RX_GET_BM_POOL_ID(rxd) \ (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT) enum { ETHTOOL_STAT_EEE_WAKEUP, ETHTOOL_STAT_SKB_ALLOC_ERR, ETHTOOL_STAT_REFILL_ERR, ETHTOOL_MAX_STATS, }; struct mvneta_statistic { unsigned short offset; unsigned short type; const char name[ETH_GSTRING_LEN]; }; #define T_REG_32 32 #define T_REG_64 64 #define T_SW 1 static const struct mvneta_statistic mvneta_statistics[] = { { 0x3000, T_REG_64, "good_octets_received", }, { 0x3010, T_REG_32, "good_frames_received", }, { 0x3008, T_REG_32, "bad_octets_received", }, { 0x3014, T_REG_32, "bad_frames_received", }, { 0x3018, T_REG_32, "broadcast_frames_received", }, { 0x301c, T_REG_32, "multicast_frames_received", }, { 0x3050, T_REG_32, "unrec_mac_control_received", }, { 0x3058, T_REG_32, "good_fc_received", }, { 0x305c, T_REG_32, "bad_fc_received", }, { 0x3060, T_REG_32, "undersize_received", }, { 0x3064, T_REG_32, "fragments_received", }, { 0x3068, T_REG_32, "oversize_received", }, { 0x306c, T_REG_32, "jabber_received", }, { 0x3070, T_REG_32, "mac_receive_error", }, { 0x3074, T_REG_32, "bad_crc_event", }, { 0x3078, T_REG_32, "collision", }, { 0x307c, T_REG_32, "late_collision", }, { 0x2484, T_REG_32, "rx_discard", }, { 0x2488, T_REG_32, "rx_overrun", }, { 0x3020, T_REG_32, "frames_64_octets", }, { 0x3024, T_REG_32, "frames_65_to_127_octets", }, { 0x3028, T_REG_32, "frames_128_to_255_octets", }, { 0x302c, T_REG_32, "frames_256_to_511_octets", }, { 0x3030, T_REG_32, "frames_512_to_1023_octets", }, { 0x3034, T_REG_32, "frames_1024_to_max_octets", }, { 0x3038, T_REG_64, "good_octets_sent", }, { 0x3040, T_REG_32, "good_frames_sent", }, { 0x3044, T_REG_32, "excessive_collision", }, { 0x3048, T_REG_32, "multicast_frames_sent", }, { 0x304c, T_REG_32, "broadcast_frames_sent", }, { 0x3054, T_REG_32, "fc_sent", }, { 0x300c, T_REG_32, "internal_mac_transmit_err", }, { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", }, { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", }, { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", }, }; struct mvneta_pcpu_stats { struct u64_stats_sync syncp; u64 rx_packets; u64 rx_bytes; u64 tx_packets; u64 tx_bytes; }; struct mvneta_pcpu_port { /* Pointer to the shared port */ struct mvneta_port *pp; /* Pointer to the CPU-local NAPI struct */ struct napi_struct napi; /* Cause of the previous interrupt */ u32 cause_rx_tx; }; struct mvneta_port { u8 id; struct mvneta_pcpu_port __percpu *ports; struct mvneta_pcpu_stats __percpu *stats; int pkt_size; void __iomem *base; struct mvneta_rx_queue *rxqs; struct mvneta_tx_queue *txqs; struct net_device *dev; struct hlist_node node_online; struct hlist_node node_dead; int rxq_def; /* Protect the access to the percpu interrupt registers, * ensuring that the configuration remains coherent. */ spinlock_t lock; bool is_stopped; u32 cause_rx_tx; struct napi_struct napi; /* Core clock */ struct clk *clk; /* AXI clock */ struct clk *clk_bus; u8 mcast_count[256]; u16 tx_ring_size; u16 rx_ring_size; phy_interface_t phy_interface; struct device_node *dn; unsigned int tx_csum_limit; struct phylink *phylink; struct phy *comphy; struct mvneta_bm *bm_priv; struct mvneta_bm_pool *pool_long; struct mvneta_bm_pool *pool_short; int bm_win_id; bool eee_enabled; bool eee_active; bool tx_lpi_enabled; u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)]; u32 indir[MVNETA_RSS_LU_TABLE_SIZE]; /* Flags for special SoC configurations */ bool neta_armada3700; u16 rx_offset_correction; const struct mbus_dram_target_info *dram_target_info; }; /* The mvneta_tx_desc and mvneta_rx_desc structures describe the * layout of the transmit and reception DMA descriptors, and their * layout is therefore defined by the hardware design */ #define MVNETA_TX_L3_OFF_SHIFT 0 #define MVNETA_TX_IP_HLEN_SHIFT 8 #define MVNETA_TX_L4_UDP BIT(16) #define MVNETA_TX_L3_IP6 BIT(17) #define MVNETA_TXD_IP_CSUM BIT(18) #define MVNETA_TXD_Z_PAD BIT(19) #define MVNETA_TXD_L_DESC BIT(20) #define MVNETA_TXD_F_DESC BIT(21) #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \ MVNETA_TXD_L_DESC | \ MVNETA_TXD_F_DESC) #define MVNETA_TX_L4_CSUM_FULL BIT(30) #define MVNETA_TX_L4_CSUM_NOT BIT(31) #define MVNETA_RXD_ERR_CRC 0x0 #define MVNETA_RXD_BM_POOL_SHIFT 13 #define MVNETA_RXD_BM_POOL_MASK (BIT(13) | BIT(14)) #define MVNETA_RXD_ERR_SUMMARY BIT(16) #define MVNETA_RXD_ERR_OVERRUN BIT(17) #define MVNETA_RXD_ERR_LEN BIT(18) #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18)) #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18)) #define MVNETA_RXD_L3_IP4 BIT(25) #define MVNETA_RXD_LAST_DESC BIT(26) #define MVNETA_RXD_FIRST_DESC BIT(27) #define MVNETA_RXD_FIRST_LAST_DESC (MVNETA_RXD_FIRST_DESC | \ MVNETA_RXD_LAST_DESC) #define MVNETA_RXD_L4_CSUM_OK BIT(30) #if defined(__LITTLE_ENDIAN) struct mvneta_tx_desc { u32 command; /* Options used by HW for packet transmitting.*/ u16 reserved1; /* csum_l4 (for future use) */ u16 data_size; /* Data size of transmitted packet in bytes */ u32 buf_phys_addr; /* Physical addr of transmitted buffer */ u32 reserved2; /* hw_cmd - (for future use, PMT) */ u32 reserved3[4]; /* Reserved - (for future use) */ }; struct mvneta_rx_desc { u32 status; /* Info about received packet */ u16 reserved1; /* pnc_info - (for future use, PnC) */ u16 data_size; /* Size of received packet in bytes */ u32 buf_phys_addr; /* Physical address of the buffer */ u32 reserved2; /* pnc_flow_id (for future use, PnC) */ u32 buf_cookie; /* cookie for access to RX buffer in rx path */ u16 reserved3; /* prefetch_cmd, for future use */ u16 reserved4; /* csum_l4 - (for future use, PnC) */ u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ }; #else struct mvneta_tx_desc { u16 data_size; /* Data size of transmitted packet in bytes */ u16 reserved1; /* csum_l4 (for future use) */ u32 command; /* Options used by HW for packet transmitting.*/ u32 reserved2; /* hw_cmd - (for future use, PMT) */ u32 buf_phys_addr; /* Physical addr of transmitted buffer */ u32 reserved3[4]; /* Reserved - (for future use) */ }; struct mvneta_rx_desc { u16 data_size; /* Size of received packet in bytes */ u16 reserved1; /* pnc_info - (for future use, PnC) */ u32 status; /* Info about received packet */ u32 reserved2; /* pnc_flow_id (for future use, PnC) */ u32 buf_phys_addr; /* Physical address of the buffer */ u16 reserved4; /* csum_l4 - (for future use, PnC) */ u16 reserved3; /* prefetch_cmd, for future use */ u32 buf_cookie; /* cookie for access to RX buffer in rx path */ u32 reserved5; /* pnc_extra PnC (for future use, PnC) */ u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */ }; #endif struct mvneta_tx_queue { /* Number of this TX queue, in the range 0-7 */ u8 id; /* Number of TX DMA descriptors in the descriptor ring */ int size; /* Number of currently used TX DMA descriptor in the * descriptor ring */ int count; int pending; int tx_stop_threshold; int tx_wake_threshold; /* Array of transmitted skb */ struct sk_buff **tx_skb; /* Index of last TX DMA descriptor that was inserted */ int txq_put_index; /* Index of the TX DMA descriptor to be cleaned up */ int txq_get_index; u32 done_pkts_coal; /* Virtual address of the TX DMA descriptors array */ struct mvneta_tx_desc *descs; /* DMA address of the TX DMA descriptors array */ dma_addr_t descs_phys; /* Index of the last TX DMA descriptor */ int last_desc; /* Index of the next TX DMA descriptor to process */ int next_desc_to_proc; /* DMA buffers for TSO headers */ char *tso_hdrs; /* DMA address of TSO headers */ dma_addr_t tso_hdrs_phys; /* Affinity mask for CPUs*/ cpumask_t affinity_mask; }; struct mvneta_rx_queue { /* rx queue number, in the range 0-7 */ u8 id; /* num of rx descriptors in the rx descriptor ring */ int size; u32 pkts_coal; u32 time_coal; /* Virtual address of the RX buffer */ void **buf_virt_addr; /* Virtual address of the RX DMA descriptors array */ struct mvneta_rx_desc *descs; /* DMA address of the RX DMA descriptors array */ dma_addr_t descs_phys; /* Index of the last RX DMA descriptor */ int last_desc; /* Index of the next RX DMA descriptor to process */ int next_desc_to_proc; /* Index of first RX DMA descriptor to refill */ int first_to_refill; u32 refill_num; /* pointer to uncomplete skb buffer */ struct sk_buff *skb; int left_size; /* error counters */ u32 skb_alloc_err; u32 refill_err; }; static enum cpuhp_state online_hpstate; /* The hardware supports eight (8) rx queues, but we are only allowing * the first one to be used. Therefore, let's just allocate one queue. */ static int rxq_number = 8; static int txq_number = 8; static int rxq_def; static int rx_copybreak __read_mostly = 256; static int rx_header_size __read_mostly = 128; /* HW BM need that each port be identify by a unique ID */ static int global_port_id; #define MVNETA_DRIVER_NAME "mvneta" #define MVNETA_DRIVER_VERSION "1.0" /* Utility/helper methods */ /* Write helper method */ static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data) { writel(data, pp->base + offset); } /* Read helper method */ static u32 mvreg_read(struct mvneta_port *pp, u32 offset) { return readl(pp->base + offset); } /* Increment txq get counter */ static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq) { txq->txq_get_index++; if (txq->txq_get_index == txq->size) txq->txq_get_index = 0; } /* Increment txq put counter */ static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq) { txq->txq_put_index++; if (txq->txq_put_index == txq->size) txq->txq_put_index = 0; } /* Clear all MIB counters */ static void mvneta_mib_counters_clear(struct mvneta_port *pp) { int i; u32 dummy; /* Perform dummy reads from MIB counters */ for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4) dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i)); dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT); dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT); } /* Get System Network Statistics */ static void mvneta_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { struct mvneta_port *pp = netdev_priv(dev); unsigned int start; int cpu; for_each_possible_cpu(cpu) { struct mvneta_pcpu_stats *cpu_stats; u64 rx_packets; u64 rx_bytes; u64 tx_packets; u64 tx_bytes; cpu_stats = per_cpu_ptr(pp->stats, cpu); do { start = u64_stats_fetch_begin_irq(&cpu_stats->syncp); rx_packets = cpu_stats->rx_packets; rx_bytes = cpu_stats->rx_bytes; tx_packets = cpu_stats->tx_packets; tx_bytes = cpu_stats->tx_bytes; } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start)); stats->rx_packets += rx_packets; stats->rx_bytes += rx_bytes; stats->tx_packets += tx_packets; stats->tx_bytes += tx_bytes; } stats->rx_errors = dev->stats.rx_errors; stats->rx_dropped = dev->stats.rx_dropped; stats->tx_dropped = dev->stats.tx_dropped; } /* Rx descriptors helper methods */ /* Checks whether the RX descriptor having this status is both the first * and the last descriptor for the RX packet. Each RX packet is currently * received through a single RX descriptor, so not having each RX * descriptor with its first and last bits set is an error */ static int mvneta_rxq_desc_is_first_last(u32 status) { return (status & MVNETA_RXD_FIRST_LAST_DESC) == MVNETA_RXD_FIRST_LAST_DESC; } /* Add number of descriptors ready to receive new packets */ static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, int ndescs) { /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can * be added at once */ while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) { mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX; } mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT)); } /* Get number of RX descriptors occupied by received packets */ static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) { u32 val; val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id)); return val & MVNETA_RXQ_OCCUPIED_ALL_MASK; } /* Update num of rx desc called upon return from rx path or * from mvneta_rxq_drop_pkts(). */ static void mvneta_rxq_desc_num_update(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, int rx_done, int rx_filled) { u32 val; if ((rx_done <= 0xff) && (rx_filled <= 0xff)) { val = rx_done | (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT); mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); return; } /* Only 255 descriptors can be added at once */ while ((rx_done > 0) || (rx_filled > 0)) { if (rx_done <= 0xff) { val = rx_done; rx_done = 0; } else { val = 0xff; rx_done -= 0xff; } if (rx_filled <= 0xff) { val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; rx_filled = 0; } else { val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT; rx_filled -= 0xff; } mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val); } } /* Get pointer to next RX descriptor to be processed by SW */ static struct mvneta_rx_desc * mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq) { int rx_desc = rxq->next_desc_to_proc; rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc); prefetch(rxq->descs + rxq->next_desc_to_proc); return rxq->descs + rx_desc; } /* Change maximum receive size of the port. */ static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size) { u32 val; val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK; val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) << MVNETA_GMAC_MAX_RX_SIZE_SHIFT; mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); } /* Set rx queue offset */ static void mvneta_rxq_offset_set(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, int offset) { u32 val; val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK; /* Offset is in */ val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3); mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); } /* Tx descriptors helper methods */ /* Update HW with number of TX descriptors to be sent */ static void mvneta_txq_pend_desc_add(struct mvneta_port *pp, struct mvneta_tx_queue *txq, int pend_desc) { u32 val; pend_desc += txq->pending; /* Only 255 Tx descriptors can be added at once */ do { val = min(pend_desc, 255); mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); pend_desc -= val; } while (pend_desc > 0); txq->pending = 0; } /* Get pointer to next TX descriptor to be processed (send) by HW */ static struct mvneta_tx_desc * mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq) { int tx_desc = txq->next_desc_to_proc; txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc); return txq->descs + tx_desc; } /* Release the last allocated TX descriptor. Useful to handle DMA * mapping failures in the TX path. */ static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq) { if (txq->next_desc_to_proc == 0) txq->next_desc_to_proc = txq->last_desc - 1; else txq->next_desc_to_proc--; } /* Set rxq buf size */ static void mvneta_rxq_buf_size_set(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, int buf_size) { u32 val; val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id)); val &= ~MVNETA_RXQ_BUF_SIZE_MASK; val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT); mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val); } /* Disable buffer management (BM) */ static void mvneta_rxq_bm_disable(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) { u32 val; val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); val &= ~MVNETA_RXQ_HW_BUF_ALLOC; mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); } /* Enable buffer management (BM) */ static void mvneta_rxq_bm_enable(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) { u32 val; val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); val |= MVNETA_RXQ_HW_BUF_ALLOC; mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); } /* Notify HW about port's assignment of pool for bigger packets */ static void mvneta_rxq_long_pool_set(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) { u32 val; val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK; val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT); mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); } /* Notify HW about port's assignment of pool for smaller packets */ static void mvneta_rxq_short_pool_set(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) { u32 val; val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id)); val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK; val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT); mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val); } /* Set port's receive buffer size for assigned BM pool */ static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp, int buf_size, u8 pool_id) { u32 val; if (!IS_ALIGNED(buf_size, 8)) { dev_warn(pp->dev->dev.parent, "illegal buf_size value %d, round to %d\n", buf_size, ALIGN(buf_size, 8)); buf_size = ALIGN(buf_size, 8); } val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id)); val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK; mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val); } /* Configure MBUS window in order to enable access BM internal SRAM */ static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize, u8 target, u8 attr) { u32 win_enable, win_protect; int i; win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE); if (pp->bm_win_id < 0) { /* Find first not occupied window */ for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) { if (win_enable & (1 << i)) { pp->bm_win_id = i; break; } } if (i == MVNETA_MAX_DECODE_WIN) return -ENOMEM; } else { i = pp->bm_win_id; } mvreg_write(pp, MVNETA_WIN_BASE(i), 0); mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); if (i < 4) mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) | (attr << 8) | target); mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000); win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE); win_protect |= 3 << (2 * i); mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); win_enable &= ~(1 << i); mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); return 0; } static int mvneta_bm_port_mbus_init(struct mvneta_port *pp) { u32 wsize; u8 target, attr; int err; /* Get BM window information */ err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize, &target, &attr); if (err < 0) return err; pp->bm_win_id = -1; /* Open NETA -> BM window */ err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize, target, attr); if (err < 0) { netdev_info(pp->dev, "fail to configure mbus window to BM\n"); return err; } return 0; } /* Assign and initialize pools for port. In case of fail * buffer manager will remain disabled for current port. */ static int mvneta_bm_port_init(struct platform_device *pdev, struct mvneta_port *pp) { struct device_node *dn = pdev->dev.of_node; u32 long_pool_id, short_pool_id; if (!pp->neta_armada3700) { int ret; ret = mvneta_bm_port_mbus_init(pp); if (ret) return ret; } if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) { netdev_info(pp->dev, "missing long pool id\n"); return -EINVAL; } /* Create port's long pool depending on mtu */ pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id, MVNETA_BM_LONG, pp->id, MVNETA_RX_PKT_SIZE(pp->dev->mtu)); if (!pp->pool_long) { netdev_info(pp->dev, "fail to obtain long pool for port\n"); return -ENOMEM; } pp->pool_long->port_map |= 1 << pp->id; mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size, pp->pool_long->id); /* If short pool id is not defined, assume using single pool */ if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id)) short_pool_id = long_pool_id; /* Create port's short pool */ pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id, MVNETA_BM_SHORT, pp->id, MVNETA_BM_SHORT_PKT_SIZE); if (!pp->pool_short) { netdev_info(pp->dev, "fail to obtain short pool for port\n"); mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); return -ENOMEM; } if (short_pool_id != long_pool_id) { pp->pool_short->port_map |= 1 << pp->id; mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size, pp->pool_short->id); } return 0; } /* Update settings of a pool for bigger packets */ static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu) { struct mvneta_bm_pool *bm_pool = pp->pool_long; struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool; int num; /* Release all buffers from long pool */ mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id); if (hwbm_pool->buf_num) { WARN(1, "cannot free all buffers in pool %d\n", bm_pool->id); goto bm_mtu_err; } bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu); bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size); hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) + SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size)); /* Fill entire long pool */ num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC); if (num != hwbm_pool->size) { WARN(1, "pool %d: %d of %d allocated\n", bm_pool->id, num, hwbm_pool->size); goto bm_mtu_err; } mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id); return; bm_mtu_err: mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); pp->bm_priv = NULL; mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1); netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n"); } /* Start the Ethernet port RX and TX activity */ static void mvneta_port_up(struct mvneta_port *pp) { int queue; u32 q_map; /* Enable all initialized TXs. */ q_map = 0; for (queue = 0; queue < txq_number; queue++) { struct mvneta_tx_queue *txq = &pp->txqs[queue]; if (txq->descs) q_map |= (1 << queue); } mvreg_write(pp, MVNETA_TXQ_CMD, q_map); q_map = 0; /* Enable all initialized RXQs. */ for (queue = 0; queue < rxq_number; queue++) { struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; if (rxq->descs) q_map |= (1 << queue); } mvreg_write(pp, MVNETA_RXQ_CMD, q_map); } /* Stop the Ethernet port activity */ static void mvneta_port_down(struct mvneta_port *pp) { u32 val; int count; /* Stop Rx port activity. Check port Rx activity. */ val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK; /* Issue stop command for active channels only */ if (val != 0) mvreg_write(pp, MVNETA_RXQ_CMD, val << MVNETA_RXQ_DISABLE_SHIFT); /* Wait for all Rx activity to terminate. */ count = 0; do { if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) { netdev_warn(pp->dev, "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n", val); break; } mdelay(1); val = mvreg_read(pp, MVNETA_RXQ_CMD); } while (val & MVNETA_RXQ_ENABLE_MASK); /* Stop Tx port activity. Check port Tx activity. Issue stop * command for active channels only */ val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK; if (val != 0) mvreg_write(pp, MVNETA_TXQ_CMD, (val << MVNETA_TXQ_DISABLE_SHIFT)); /* Wait for all Tx activity to terminate. */ count = 0; do { if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) { netdev_warn(pp->dev, "TIMEOUT for TX stopped status=0x%08x\n", val); break; } mdelay(1); /* Check TX Command reg that all Txqs are stopped */ val = mvreg_read(pp, MVNETA_TXQ_CMD); } while (val & MVNETA_TXQ_ENABLE_MASK); /* Double check to verify that TX FIFO is empty */ count = 0; do { if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) { netdev_warn(pp->dev, "TX FIFO empty timeout status=0x%08x\n", val); break; } mdelay(1); val = mvreg_read(pp, MVNETA_PORT_STATUS); } while (!(val & MVNETA_TX_FIFO_EMPTY) && (val & MVNETA_TX_IN_PRGRS)); udelay(200); } /* Enable the port by setting the port enable bit of the MAC control register */ static void mvneta_port_enable(struct mvneta_port *pp) { u32 val; /* Enable port */ val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); val |= MVNETA_GMAC0_PORT_ENABLE; mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); } /* Disable the port and wait for about 200 usec before retuning */ static void mvneta_port_disable(struct mvneta_port *pp) { u32 val; /* Reset the Enable bit in the Serial Control Register */ val = mvreg_read(pp, MVNETA_GMAC_CTRL_0); val &= ~MVNETA_GMAC0_PORT_ENABLE; mvreg_write(pp, MVNETA_GMAC_CTRL_0, val); udelay(200); } /* Multicast tables methods */ /* Set all entries in Unicast MAC Table; queue==-1 means reject all */ static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue) { int offset; u32 val; if (queue == -1) { val = 0; } else { val = 0x1 | (queue << 1); val |= (val << 24) | (val << 16) | (val << 8); } for (offset = 0; offset <= 0xc; offset += 4) mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val); } /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */ static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue) { int offset; u32 val; if (queue == -1) { val = 0; } else { val = 0x1 | (queue << 1); val |= (val << 24) | (val << 16) | (val << 8); } for (offset = 0; offset <= 0xfc; offset += 4) mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val); } /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */ static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue) { int offset; u32 val; if (queue == -1) { memset(pp->mcast_count, 0, sizeof(pp->mcast_count)); val = 0; } else { memset(pp->mcast_count, 1, sizeof(pp->mcast_count)); val = 0x1 | (queue << 1); val |= (val << 24) | (val << 16) | (val << 8); } for (offset = 0; offset <= 0xfc; offset += 4) mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val); } static void mvneta_percpu_unmask_interrupt(void *arg) { struct mvneta_port *pp = arg; /* All the queue are unmasked, but actually only the ones * mapped to this CPU will be unmasked */ mvreg_write(pp, MVNETA_INTR_NEW_MASK, MVNETA_RX_INTR_MASK_ALL | MVNETA_TX_INTR_MASK_ALL | MVNETA_MISCINTR_INTR_MASK); } static void mvneta_percpu_mask_interrupt(void *arg) { struct mvneta_port *pp = arg; /* All the queue are masked, but actually only the ones * mapped to this CPU will be masked */ mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0); mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0); } static void mvneta_percpu_clear_intr_cause(void *arg) { struct mvneta_port *pp = arg; /* All the queue are cleared, but actually only the ones * mapped to this CPU will be cleared */ mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0); mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0); } /* This method sets defaults to the NETA port: * Clears interrupt Cause and Mask registers. * Clears all MAC tables. * Sets defaults to all registers. * Resets RX and TX descriptor rings. * Resets PHY. * This method can be called after mvneta_port_down() to return the port * settings to defaults. */ static void mvneta_defaults_set(struct mvneta_port *pp) { int cpu; int queue; u32 val; int max_cpu = num_present_cpus(); /* Clear all Cause registers */ on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); /* Mask all interrupts */ on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); mvreg_write(pp, MVNETA_INTR_ENABLE, 0); /* Enable MBUS Retry bit16 */ mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20); /* Set CPU queue access map. CPUs are assigned to the RX and * TX queues modulo their number. If there is only one TX * queue then it is assigned to the CPU associated to the * default RX queue. */ for_each_present_cpu(cpu) { int rxq_map = 0, txq_map = 0; int rxq, txq; if (!pp->neta_armada3700) { for (rxq = 0; rxq < rxq_number; rxq++) if ((rxq % max_cpu) == cpu) rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); for (txq = 0; txq < txq_number; txq++) if ((txq % max_cpu) == cpu) txq_map |= MVNETA_CPU_TXQ_ACCESS(txq); /* With only one TX queue we configure a special case * which will allow to get all the irq on a single * CPU */ if (txq_number == 1) txq_map = (cpu == pp->rxq_def) ? MVNETA_CPU_TXQ_ACCESS(1) : 0; } else { txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK; rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK; } mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); } /* Reset RX and TX DMAs */ mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); /* Disable Legacy WRR, Disable EJP, Release from reset */ mvreg_write(pp, MVNETA_TXQ_CMD_1, 0); for (queue = 0; queue < txq_number; queue++) { mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0); mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0); } mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); /* Set Port Acceleration Mode */ if (pp->bm_priv) /* HW buffer management + legacy parser */ val = MVNETA_ACC_MODE_EXT2; else /* SW buffer management + legacy parser */ val = MVNETA_ACC_MODE_EXT1; mvreg_write(pp, MVNETA_ACC_MODE, val); if (pp->bm_priv) mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr); /* Update val of portCfg register accordingly with all RxQueue types */ val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); mvreg_write(pp, MVNETA_PORT_CONFIG, val); val = 0; mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val); mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64); /* Build PORT_SDMA_CONFIG_REG */ val = 0; /* Default burst size */ val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16); val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP; #if defined(__BIG_ENDIAN) val |= MVNETA_DESC_SWAP; #endif /* Assign port SDMA configuration */ mvreg_write(pp, MVNETA_SDMA_CONFIG, val); /* Disable PHY polling in hardware, since we're using the * kernel phylib to do this. */ val = mvreg_read(pp, MVNETA_UNIT_CONTROL); val &= ~MVNETA_PHY_POLLING_ENABLE; mvreg_write(pp, MVNETA_UNIT_CONTROL, val); mvneta_set_ucast_table(pp, -1); mvneta_set_special_mcast_table(pp, -1); mvneta_set_other_mcast_table(pp, -1); /* Set port interrupt enable register - default enable all */ mvreg_write(pp, MVNETA_INTR_ENABLE, (MVNETA_RXQ_INTR_ENABLE_ALL_MASK | MVNETA_TXQ_INTR_ENABLE_ALL_MASK)); mvneta_mib_counters_clear(pp); } /* Set max sizes for tx queues */ static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size) { u32 val, size, mtu; int queue; mtu = max_tx_size * 8; if (mtu > MVNETA_TX_MTU_MAX) mtu = MVNETA_TX_MTU_MAX; /* Set MTU */ val = mvreg_read(pp, MVNETA_TX_MTU); val &= ~MVNETA_TX_MTU_MAX; val |= mtu; mvreg_write(pp, MVNETA_TX_MTU, val); /* TX token size and all TXQs token size must be larger that MTU */ val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE); size = val & MVNETA_TX_TOKEN_SIZE_MAX; if (size < mtu) { size = mtu; val &= ~MVNETA_TX_TOKEN_SIZE_MAX; val |= size; mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val); } for (queue = 0; queue < txq_number; queue++) { val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue)); size = val & MVNETA_TXQ_TOKEN_SIZE_MAX; if (size < mtu) { size = mtu; val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX; val |= size; mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val); } } } /* Set unicast address */ static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble, int queue) { unsigned int unicast_reg; unsigned int tbl_offset; unsigned int reg_offset; /* Locate the Unicast table entry */ last_nibble = (0xf & last_nibble); /* offset from unicast tbl base */ tbl_offset = (last_nibble / 4) * 4; /* offset within the above reg */ reg_offset = last_nibble % 4; unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset)); if (queue == -1) { /* Clear accepts frame bit at specified unicast DA tbl entry */ unicast_reg &= ~(0xff << (8 * reg_offset)); } else { unicast_reg &= ~(0xff << (8 * reg_offset)); unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); } mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg); } /* Set mac address */ static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr, int queue) { unsigned int mac_h; unsigned int mac_l; if (queue != -1) { mac_l = (addr[4] << 8) | (addr[5]); mac_h = (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | (addr[3] << 0); mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l); mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h); } /* Accept frames of this address */ mvneta_set_ucast_addr(pp, addr[5], queue); } /* Set the number of packets that will be received before RX interrupt * will be generated by HW. */ static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, u32 value) { mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id), value | MVNETA_RXQ_NON_OCCUPIED(0)); } /* Set the time delay in usec before RX interrupt will be generated by * HW. */ static void mvneta_rx_time_coal_set(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, u32 value) { u32 val; unsigned long clk_rate; clk_rate = clk_get_rate(pp->clk); val = (clk_rate / 1000000) * value; mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val); } /* Set threshold for TX_DONE pkts coalescing */ static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp, struct mvneta_tx_queue *txq, u32 value) { u32 val; val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id)); val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK; val |= MVNETA_TXQ_SENT_THRESH_MASK(value); mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val); } /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */ static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc, u32 phys_addr, void *virt_addr, struct mvneta_rx_queue *rxq) { int i; rx_desc->buf_phys_addr = phys_addr; i = rx_desc - rxq->descs; rxq->buf_virt_addr[i] = virt_addr; } /* Decrement sent descriptors counter */ static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp, struct mvneta_tx_queue *txq, int sent_desc) { u32 val; /* Only 255 TX descriptors can be updated at once */ while (sent_desc > 0xff) { val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT; mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); sent_desc = sent_desc - 0xff; } val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT; mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val); } /* Get number of TX descriptors already sent by HW */ static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp, struct mvneta_tx_queue *txq) { u32 val; int sent_desc; val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id)); sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >> MVNETA_TXQ_SENT_DESC_SHIFT; return sent_desc; } /* Get number of sent descriptors and decrement counter. * The number of sent descriptors is returned. */ static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp, struct mvneta_tx_queue *txq) { int sent_desc; /* Get number of sent descriptors */ sent_desc = mvneta_txq_sent_desc_num_get(pp, txq); /* Decrement sent descriptors counter */ if (sent_desc) mvneta_txq_sent_desc_dec(pp, txq, sent_desc); return sent_desc; } /* Set TXQ descriptors fields relevant for CSUM calculation */ static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto, int ip_hdr_len, int l4_proto) { u32 command; /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, * G_L4_chk, L4_type; required only for checksum * calculation */ command = l3_offs << MVNETA_TX_L3_OFF_SHIFT; command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT; if (l3_proto == htons(ETH_P_IP)) command |= MVNETA_TXD_IP_CSUM; else command |= MVNETA_TX_L3_IP6; if (l4_proto == IPPROTO_TCP) command |= MVNETA_TX_L4_CSUM_FULL; else if (l4_proto == IPPROTO_UDP) command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL; else command |= MVNETA_TX_L4_CSUM_NOT; return command; } /* Display more error info */ static void mvneta_rx_error(struct mvneta_port *pp, struct mvneta_rx_desc *rx_desc) { u32 status = rx_desc->status; switch (status & MVNETA_RXD_ERR_CODE_MASK) { case MVNETA_RXD_ERR_CRC: netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n", status, rx_desc->data_size); break; case MVNETA_RXD_ERR_OVERRUN: netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n", status, rx_desc->data_size); break; case MVNETA_RXD_ERR_LEN: netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n", status, rx_desc->data_size); break; case MVNETA_RXD_ERR_RESOURCE: netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n", status, rx_desc->data_size); break; } } /* Handle RX checksum offload based on the descriptor's status */ static void mvneta_rx_csum(struct mvneta_port *pp, u32 status, struct sk_buff *skb) { if ((pp->dev->features & NETIF_F_RXCSUM) && (status & MVNETA_RXD_L3_IP4) && (status & MVNETA_RXD_L4_CSUM_OK)) { skb->csum = 0; skb->ip_summed = CHECKSUM_UNNECESSARY; return; } skb->ip_summed = CHECKSUM_NONE; } /* Return tx queue pointer (find last set bit) according to <cause> returned * form tx_done reg. <cause> must not be null. The return value is always a * valid queue for matching the first one found in <cause>. */ static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp, u32 cause) { int queue = fls(cause) - 1; return &pp->txqs[queue]; } /* Free tx queue skbuffs */ static void mvneta_txq_bufs_free(struct mvneta_port *pp, struct mvneta_tx_queue *txq, int num, struct netdev_queue *nq) { unsigned int bytes_compl = 0, pkts_compl = 0; int i; for (i = 0; i < num; i++) { struct mvneta_tx_desc *tx_desc = txq->descs + txq->txq_get_index; struct sk_buff *skb = txq->tx_skb[txq->txq_get_index]; if (skb) { bytes_compl += skb->len; pkts_compl++; } mvneta_txq_inc_get(txq); if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr, tx_desc->data_size, DMA_TO_DEVICE); if (!skb) continue; dev_kfree_skb_any(skb); } netdev_tx_completed_queue(nq, pkts_compl, bytes_compl); } /* Handle end of transmission */ static void mvneta_txq_done(struct mvneta_port *pp, struct mvneta_tx_queue *txq) { struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); int tx_done; tx_done = mvneta_txq_sent_desc_proc(pp, txq); if (!tx_done) return; mvneta_txq_bufs_free(pp, txq, tx_done, nq); txq->count -= tx_done; if (netif_tx_queue_stopped(nq)) { if (txq->count <= txq->tx_wake_threshold) netif_tx_wake_queue(nq); } } /* Refill processing for SW buffer management */ /* Allocate page per descriptor */ static int mvneta_rx_refill(struct mvneta_port *pp, struct mvneta_rx_desc *rx_desc, struct mvneta_rx_queue *rxq, gfp_t gfp_mask) { dma_addr_t phys_addr; struct page *page; page = __dev_alloc_page(gfp_mask); if (!page) return -ENOMEM; /* map page for use */ phys_addr = dma_map_page(pp->dev->dev.parent, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) { __free_page(page); return -ENOMEM; } phys_addr += pp->rx_offset_correction; mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq); return 0; } /* Handle tx checksum */ static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb) { if (skb->ip_summed == CHECKSUM_PARTIAL) { int ip_hdr_len = 0; __be16 l3_proto = vlan_get_protocol(skb); u8 l4_proto; if (l3_proto == htons(ETH_P_IP)) { struct iphdr *ip4h = ip_hdr(skb); /* Calculate IPv4 checksum and L4 checksum */ ip_hdr_len = ip4h->ihl; l4_proto = ip4h->protocol; } else if (l3_proto == htons(ETH_P_IPV6)) { struct ipv6hdr *ip6h = ipv6_hdr(skb); /* Read l4_protocol from one of IPv6 extra headers */ if (skb_network_header_len(skb) > 0) ip_hdr_len = (skb_network_header_len(skb) >> 2); l4_proto = ip6h->nexthdr; } else return MVNETA_TX_L4_CSUM_NOT; return mvneta_txq_desc_csum(skb_network_offset(skb), l3_proto, ip_hdr_len, l4_proto); } return MVNETA_TX_L4_CSUM_NOT; } /* Drop packets received by the RXQ and free buffers */ static void mvneta_rxq_drop_pkts(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) { int rx_done, i; rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); if (rx_done) mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); if (pp->bm_priv) { for (i = 0; i < rx_done; i++) { struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); struct mvneta_bm_pool *bm_pool; bm_pool = &pp->bm_priv->bm_pools[pool_id]; /* Return dropped buffer to the pool */ mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, rx_desc->buf_phys_addr); } return; } for (i = 0; i < rxq->size; i++) { struct mvneta_rx_desc *rx_desc = rxq->descs + i; void *data = rxq->buf_virt_addr[i]; if (!data || !(rx_desc->buf_phys_addr)) continue; dma_unmap_page(pp->dev->dev.parent, rx_desc->buf_phys_addr, PAGE_SIZE, DMA_FROM_DEVICE); __free_page(data); } } static inline int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) { struct mvneta_rx_desc *rx_desc; int curr_desc = rxq->first_to_refill; int i; for (i = 0; (i < rxq->refill_num) && (i < 64); i++) { rx_desc = rxq->descs + curr_desc; if (!(rx_desc->buf_phys_addr)) { if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) { pr_err("Can't refill queue %d. Done %d from %d\n", rxq->id, i, rxq->refill_num); rxq->refill_err++; break; } } curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc); } rxq->refill_num -= i; rxq->first_to_refill = curr_desc; return i; } /* Main rx processing when using software buffer management */ static int mvneta_rx_swbm(struct napi_struct *napi, struct mvneta_port *pp, int budget, struct mvneta_rx_queue *rxq) { struct net_device *dev = pp->dev; int rx_todo, rx_proc; int refill = 0; u32 rcvd_pkts = 0; u32 rcvd_bytes = 0; /* Get number of received packets */ rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq); rx_proc = 0; /* Fairness NAPI loop */ while ((rcvd_pkts < budget) && (rx_proc < rx_todo)) { struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); unsigned char *data; struct page *page; dma_addr_t phys_addr; u32 rx_status, index; int rx_bytes, skb_size, copy_size; int frag_num, frag_size, frag_offset; index = rx_desc - rxq->descs; page = (struct page *)rxq->buf_virt_addr[index]; data = page_address(page); /* Prefetch header */ prefetch(data); phys_addr = rx_desc->buf_phys_addr; rx_status = rx_desc->status; rx_proc++; rxq->refill_num++; if (rx_status & MVNETA_RXD_FIRST_DESC) { /* Check errors only for FIRST descriptor */ if (rx_status & MVNETA_RXD_ERR_SUMMARY) { mvneta_rx_error(pp, rx_desc); dev->stats.rx_errors++; /* leave the descriptor untouched */ continue; } rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); /* Allocate small skb for each new packet */ skb_size = max(rx_copybreak, rx_header_size); rxq->skb = netdev_alloc_skb_ip_align(dev, skb_size); if (unlikely(!rxq->skb)) { netdev_err(dev, "Can't allocate skb on queue %d\n", rxq->id); dev->stats.rx_dropped++; rxq->skb_alloc_err++; continue; } copy_size = min(skb_size, rx_bytes); /* Copy data from buffer to SKB, skip Marvell header */ memcpy(rxq->skb->data, data + MVNETA_MH_SIZE, copy_size); skb_put(rxq->skb, copy_size); rxq->left_size = rx_bytes - copy_size; mvneta_rx_csum(pp, rx_status, rxq->skb); if (rxq->left_size == 0) { int size = copy_size + MVNETA_MH_SIZE; dma_sync_single_range_for_cpu(dev->dev.parent, phys_addr, 0, size, DMA_FROM_DEVICE); /* leave the descriptor and buffer untouched */ } else { /* refill descriptor with new buffer later */ rx_desc->buf_phys_addr = 0; frag_num = 0; frag_offset = copy_size + MVNETA_MH_SIZE; frag_size = min(rxq->left_size, (int)(PAGE_SIZE - frag_offset)); skb_add_rx_frag(rxq->skb, frag_num, page, frag_offset, frag_size, PAGE_SIZE); dma_unmap_page(dev->dev.parent, phys_addr, PAGE_SIZE, DMA_FROM_DEVICE); rxq->left_size -= frag_size; } } else { /* Middle or Last descriptor */ if (unlikely(!rxq->skb)) { pr_debug("no skb for rx_status 0x%x\n", rx_status); continue; } if (!rxq->left_size) { /* last descriptor has only FCS */ /* and can be discarded */ dma_sync_single_range_for_cpu(dev->dev.parent, phys_addr, 0, ETH_FCS_LEN, DMA_FROM_DEVICE); /* leave the descriptor and buffer untouched */ } else { /* refill descriptor with new buffer later */ rx_desc->buf_phys_addr = 0; frag_num = skb_shinfo(rxq->skb)->nr_frags; frag_offset = 0; frag_size = min(rxq->left_size, (int)(PAGE_SIZE - frag_offset)); skb_add_rx_frag(rxq->skb, frag_num, page, frag_offset, frag_size, PAGE_SIZE); dma_unmap_page(dev->dev.parent, phys_addr, PAGE_SIZE, DMA_FROM_DEVICE); rxq->left_size -= frag_size; } } /* Middle or Last descriptor */ if (!(rx_status & MVNETA_RXD_LAST_DESC)) /* no last descriptor this time */ continue; if (rxq->left_size) { pr_err("get last desc, but left_size (%d) != 0\n", rxq->left_size); dev_kfree_skb_any(rxq->skb); rxq->left_size = 0; rxq->skb = NULL; continue; } rcvd_pkts++; rcvd_bytes += rxq->skb->len; /* Linux processing */ rxq->skb->protocol = eth_type_trans(rxq->skb, dev); napi_gro_receive(napi, rxq->skb); /* clean uncomplete skb pointer in queue */ rxq->skb = NULL; rxq->left_size = 0; } if (rcvd_pkts) { struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); u64_stats_update_begin(&stats->syncp); stats->rx_packets += rcvd_pkts; stats->rx_bytes += rcvd_bytes; u64_stats_update_end(&stats->syncp); } /* return some buffers to hardware queue, one at a time is too slow */ refill = mvneta_rx_refill_queue(pp, rxq); /* Update rxq management counters */ mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill); return rcvd_pkts; } /* Main rx processing when using hardware buffer management */ static int mvneta_rx_hwbm(struct napi_struct *napi, struct mvneta_port *pp, int rx_todo, struct mvneta_rx_queue *rxq) { struct net_device *dev = pp->dev; int rx_done; u32 rcvd_pkts = 0; u32 rcvd_bytes = 0; /* Get number of received packets */ rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq); if (rx_todo > rx_done) rx_todo = rx_done; rx_done = 0; /* Fairness NAPI loop */ while (rx_done < rx_todo) { struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq); struct mvneta_bm_pool *bm_pool = NULL; struct sk_buff *skb; unsigned char *data; dma_addr_t phys_addr; u32 rx_status, frag_size; int rx_bytes, err; u8 pool_id; rx_done++; rx_status = rx_desc->status; rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE); data = (u8 *)(uintptr_t)rx_desc->buf_cookie; phys_addr = rx_desc->buf_phys_addr; pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc); bm_pool = &pp->bm_priv->bm_pools[pool_id]; if (!mvneta_rxq_desc_is_first_last(rx_status) || (rx_status & MVNETA_RXD_ERR_SUMMARY)) { err_drop_frame_ret_pool: /* Return the buffer to the pool */ mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, rx_desc->buf_phys_addr); err_drop_frame: dev->stats.rx_errors++; mvneta_rx_error(pp, rx_desc); /* leave the descriptor untouched */ continue; } if (rx_bytes <= rx_copybreak) { /* better copy a small frame and not unmap the DMA region */ skb = netdev_alloc_skb_ip_align(dev, rx_bytes); if (unlikely(!skb)) goto err_drop_frame_ret_pool; dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev, rx_desc->buf_phys_addr, MVNETA_MH_SIZE + NET_SKB_PAD, rx_bytes, DMA_FROM_DEVICE); skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD, rx_bytes); skb->protocol = eth_type_trans(skb, dev); mvneta_rx_csum(pp, rx_status, skb); napi_gro_receive(napi, skb); rcvd_pkts++; rcvd_bytes += rx_bytes; /* Return the buffer to the pool */ mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool, rx_desc->buf_phys_addr); /* leave the descriptor and buffer untouched */ continue; } /* Refill processing */ err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC); if (err) { netdev_err(dev, "Linux processing - Can't refill\n"); rxq->refill_err++; goto err_drop_frame_ret_pool; } frag_size = bm_pool->hwbm_pool.frag_size; skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size); /* After refill old buffer has to be unmapped regardless * the skb is successfully built or not. */ dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr, bm_pool->buf_size, DMA_FROM_DEVICE); if (!skb) goto err_drop_frame; rcvd_pkts++; rcvd_bytes += rx_bytes; /* Linux processing */ skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD); skb_put(skb, rx_bytes); skb->protocol = eth_type_trans(skb, dev); mvneta_rx_csum(pp, rx_status, skb); napi_gro_receive(napi, skb); } if (rcvd_pkts) { struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); u64_stats_update_begin(&stats->syncp); stats->rx_packets += rcvd_pkts; stats->rx_bytes += rcvd_bytes; u64_stats_update_end(&stats->syncp); } /* Update rxq management counters */ mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done); return rx_done; } static inline void mvneta_tso_put_hdr(struct sk_buff *skb, struct mvneta_port *pp, struct mvneta_tx_queue *txq) { struct mvneta_tx_desc *tx_desc; int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); txq->tx_skb[txq->txq_put_index] = NULL; tx_desc = mvneta_txq_next_desc_get(txq); tx_desc->data_size = hdr_len; tx_desc->command = mvneta_skb_tx_csum(pp, skb); tx_desc->command |= MVNETA_TXD_F_DESC; tx_desc->buf_phys_addr = txq->tso_hdrs_phys + txq->txq_put_index * TSO_HEADER_SIZE; mvneta_txq_inc_put(txq); } static inline int mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq, struct sk_buff *skb, char *data, int size, bool last_tcp, bool is_last) { struct mvneta_tx_desc *tx_desc; tx_desc = mvneta_txq_next_desc_get(txq); tx_desc->data_size = size; tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data, size, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev->dev.parent, tx_desc->buf_phys_addr))) { mvneta_txq_desc_put(txq); return -ENOMEM; } tx_desc->command = 0; txq->tx_skb[txq->txq_put_index] = NULL; if (last_tcp) { /* last descriptor in the TCP packet */ tx_desc->command = MVNETA_TXD_L_DESC; /* last descriptor in SKB */ if (is_last) txq->tx_skb[txq->txq_put_index] = skb; } mvneta_txq_inc_put(txq); return 0; } static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev, struct mvneta_tx_queue *txq) { int total_len, data_left; int desc_count = 0; struct mvneta_port *pp = netdev_priv(dev); struct tso_t tso; int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); int i; /* Count needed descriptors */ if ((txq->count + tso_count_descs(skb)) >= txq->size) return 0; if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) { pr_info("*** Is this even possible???!?!?\n"); return 0; } /* Initialize the TSO handler, and prepare the first payload */ tso_start(skb, &tso); total_len = skb->len - hdr_len; while (total_len > 0) { char *hdr; data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len); total_len -= data_left; desc_count++; /* prepare packet headers: MAC + IP + TCP */ hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE; tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0); mvneta_tso_put_hdr(skb, pp, txq); while (data_left > 0) { int size; desc_count++; size = min_t(int, tso.size, data_left); if (mvneta_tso_put_data(dev, txq, skb, tso.data, size, size == data_left, total_len == 0)) goto err_release; data_left -= size; tso_build_data(skb, &tso, size); } } return desc_count; err_release: /* Release all used data descriptors; header descriptors must not * be DMA-unmapped. */ for (i = desc_count - 1; i >= 0; i--) { struct mvneta_tx_desc *tx_desc = txq->descs + i; if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr)) dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr, tx_desc->data_size, DMA_TO_DEVICE); mvneta_txq_desc_put(txq); } return 0; } /* Handle tx fragmentation processing */ static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb, struct mvneta_tx_queue *txq) { struct mvneta_tx_desc *tx_desc; int i, nr_frags = skb_shinfo(skb)->nr_frags; for (i = 0; i < nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; void *addr = page_address(frag->page.p) + frag->page_offset; tx_desc = mvneta_txq_next_desc_get(txq); tx_desc->data_size = frag->size; tx_desc->buf_phys_addr = dma_map_single(pp->dev->dev.parent, addr, tx_desc->data_size, DMA_TO_DEVICE); if (dma_mapping_error(pp->dev->dev.parent, tx_desc->buf_phys_addr)) { mvneta_txq_desc_put(txq); goto error; } if (i == nr_frags - 1) { /* Last descriptor */ tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD; txq->tx_skb[txq->txq_put_index] = skb; } else { /* Descriptor in the middle: Not First, Not Last */ tx_desc->command = 0; txq->tx_skb[txq->txq_put_index] = NULL; } mvneta_txq_inc_put(txq); } return 0; error: /* Release all descriptors that were used to map fragments of * this packet, as well as the corresponding DMA mappings */ for (i = i - 1; i >= 0; i--) { tx_desc = txq->descs + i; dma_unmap_single(pp->dev->dev.parent, tx_desc->buf_phys_addr, tx_desc->data_size, DMA_TO_DEVICE); mvneta_txq_desc_put(txq); } return -ENOMEM; } /* Main tx processing */ static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev) { struct mvneta_port *pp = netdev_priv(dev); u16 txq_id = skb_get_queue_mapping(skb); struct mvneta_tx_queue *txq = &pp->txqs[txq_id]; struct mvneta_tx_desc *tx_desc; int len = skb->len; int frags = 0; u32 tx_cmd; if (!netif_running(dev)) goto out; if (skb_is_gso(skb)) { frags = mvneta_tx_tso(skb, dev, txq); goto out; } frags = skb_shinfo(skb)->nr_frags + 1; /* Get a descriptor for the first part of the packet */ tx_desc = mvneta_txq_next_desc_get(txq); tx_cmd = mvneta_skb_tx_csum(pp, skb); tx_desc->data_size = skb_headlen(skb); tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data, tx_desc->data_size, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev->dev.parent, tx_desc->buf_phys_addr))) { mvneta_txq_desc_put(txq); frags = 0; goto out; } if (frags == 1) { /* First and Last descriptor */ tx_cmd |= MVNETA_TXD_FLZ_DESC; tx_desc->command = tx_cmd; txq->tx_skb[txq->txq_put_index] = skb; mvneta_txq_inc_put(txq); } else { /* First but not Last */ tx_cmd |= MVNETA_TXD_F_DESC; txq->tx_skb[txq->txq_put_index] = NULL; mvneta_txq_inc_put(txq); tx_desc->command = tx_cmd; /* Continue with other skb fragments */ if (mvneta_tx_frag_process(pp, skb, txq)) { dma_unmap_single(dev->dev.parent, tx_desc->buf_phys_addr, tx_desc->data_size, DMA_TO_DEVICE); mvneta_txq_desc_put(txq); frags = 0; goto out; } } out: if (frags > 0) { struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats); struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); netdev_tx_sent_queue(nq, len); txq->count += frags; if (txq->count >= txq->tx_stop_threshold) netif_tx_stop_queue(nq); if (!netdev_xmit_more() || netif_xmit_stopped(nq) || txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK) mvneta_txq_pend_desc_add(pp, txq, frags); else txq->pending += frags; u64_stats_update_begin(&stats->syncp); stats->tx_packets++; stats->tx_bytes += len; u64_stats_update_end(&stats->syncp); } else { dev->stats.tx_dropped++; dev_kfree_skb_any(skb); } return NETDEV_TX_OK; } /* Free tx resources, when resetting a port */ static void mvneta_txq_done_force(struct mvneta_port *pp, struct mvneta_tx_queue *txq) { struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); int tx_done = txq->count; mvneta_txq_bufs_free(pp, txq, tx_done, nq); /* reset txq */ txq->count = 0; txq->txq_put_index = 0; txq->txq_get_index = 0; } /* Handle tx done - called in softirq context. The <cause_tx_done> argument * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL. */ static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done) { struct mvneta_tx_queue *txq; struct netdev_queue *nq; int cpu = smp_processor_id(); while (cause_tx_done) { txq = mvneta_tx_done_policy(pp, cause_tx_done); nq = netdev_get_tx_queue(pp->dev, txq->id); __netif_tx_lock(nq, cpu); if (txq->count) mvneta_txq_done(pp, txq); __netif_tx_unlock(nq); cause_tx_done &= ~((1 << txq->id)); } } /* Compute crc8 of the specified address, using a unique algorithm , * according to hw spec, different than generic crc8 algorithm */ static int mvneta_addr_crc(unsigned char *addr) { int crc = 0; int i; for (i = 0; i < ETH_ALEN; i++) { int j; crc = (crc ^ addr[i]) << 8; for (j = 7; j >= 0; j--) { if (crc & (0x100 << j)) crc ^= 0x107 << j; } } return crc; } /* This method controls the net device special MAC multicast support. * The Special Multicast Table for MAC addresses supports MAC of the form * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). * The MAC DA[7:0] bits are used as a pointer to the Special Multicast * Table entries in the DA-Filter table. This method set the Special * Multicast Table appropriate entry. */ static void mvneta_set_special_mcast_addr(struct mvneta_port *pp, unsigned char last_byte, int queue) { unsigned int smc_table_reg; unsigned int tbl_offset; unsigned int reg_offset; /* Register offset from SMC table base */ tbl_offset = (last_byte / 4); /* Entry offset within the above reg */ reg_offset = last_byte % 4; smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4)); if (queue == -1) smc_table_reg &= ~(0xff << (8 * reg_offset)); else { smc_table_reg &= ~(0xff << (8 * reg_offset)); smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); } mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4, smc_table_reg); } /* This method controls the network device Other MAC multicast support. * The Other Multicast Table is used for multicast of another type. * A CRC-8 is used as an index to the Other Multicast Table entries * in the DA-Filter table. * The method gets the CRC-8 value from the calling routine and * sets the Other Multicast Table appropriate entry according to the * specified CRC-8 . */ static void mvneta_set_other_mcast_addr(struct mvneta_port *pp, unsigned char crc8, int queue) { unsigned int omc_table_reg; unsigned int tbl_offset; unsigned int reg_offset; tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */ reg_offset = crc8 % 4; /* Entry offset within the above reg */ omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset); if (queue == -1) { /* Clear accepts frame bit at specified Other DA table entry */ omc_table_reg &= ~(0xff << (8 * reg_offset)); } else { omc_table_reg &= ~(0xff << (8 * reg_offset)); omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset)); } mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg); } /* The network device supports multicast using two tables: * 1) Special Multicast Table for MAC addresses of the form * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF). * The MAC DA[7:0] bits are used as a pointer to the Special Multicast * Table entries in the DA-Filter table. * 2) Other Multicast Table for multicast of another type. A CRC-8 value * is used as an index to the Other Multicast Table entries in the * DA-Filter table. */ static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr, int queue) { unsigned char crc_result = 0; if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) { mvneta_set_special_mcast_addr(pp, p_addr[5], queue); return 0; } crc_result = mvneta_addr_crc(p_addr); if (queue == -1) { if (pp->mcast_count[crc_result] == 0) { netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n", crc_result); return -EINVAL; } pp->mcast_count[crc_result]--; if (pp->mcast_count[crc_result] != 0) { netdev_info(pp->dev, "After delete there are %d valid Mcast for crc8=0x%02x\n", pp->mcast_count[crc_result], crc_result); return -EINVAL; } } else pp->mcast_count[crc_result]++; mvneta_set_other_mcast_addr(pp, crc_result, queue); return 0; } /* Configure Fitering mode of Ethernet port */ static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp, int is_promisc) { u32 port_cfg_reg, val; port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG); val = mvreg_read(pp, MVNETA_TYPE_PRIO); /* Set / Clear UPM bit in port configuration register */ if (is_promisc) { /* Accept all Unicast addresses */ port_cfg_reg |= MVNETA_UNI_PROMISC_MODE; val |= MVNETA_FORCE_UNI; mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff); mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff); } else { /* Reject all Unicast addresses */ port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE; val &= ~MVNETA_FORCE_UNI; } mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg); mvreg_write(pp, MVNETA_TYPE_PRIO, val); } /* register unicast and multicast addresses */ static void mvneta_set_rx_mode(struct net_device *dev) { struct mvneta_port *pp = netdev_priv(dev); struct netdev_hw_addr *ha; if (dev->flags & IFF_PROMISC) { /* Accept all: Multicast + Unicast */ mvneta_rx_unicast_promisc_set(pp, 1); mvneta_set_ucast_table(pp, pp->rxq_def); mvneta_set_special_mcast_table(pp, pp->rxq_def); mvneta_set_other_mcast_table(pp, pp->rxq_def); } else { /* Accept single Unicast */ mvneta_rx_unicast_promisc_set(pp, 0); mvneta_set_ucast_table(pp, -1); mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def); if (dev->flags & IFF_ALLMULTI) { /* Accept all multicast */ mvneta_set_special_mcast_table(pp, pp->rxq_def); mvneta_set_other_mcast_table(pp, pp->rxq_def); } else { /* Accept only initialized multicast */ mvneta_set_special_mcast_table(pp, -1); mvneta_set_other_mcast_table(pp, -1); if (!netdev_mc_empty(dev)) { netdev_for_each_mc_addr(ha, dev) { mvneta_mcast_addr_set(pp, ha->addr, pp->rxq_def); } } } } } /* Interrupt handling - the callback for request_irq() */ static irqreturn_t mvneta_isr(int irq, void *dev_id) { struct mvneta_port *pp = (struct mvneta_port *)dev_id; mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0); napi_schedule(&pp->napi); return IRQ_HANDLED; } /* Interrupt handling - the callback for request_percpu_irq() */ static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id) { struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id; disable_percpu_irq(port->pp->dev->irq); napi_schedule(&port->napi); return IRQ_HANDLED; } static void mvneta_link_change(struct mvneta_port *pp) { u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP)); } /* NAPI handler * Bits 0 - 7 of the causeRxTx register indicate that are transmitted * packets on the corresponding TXQ (Bit 0 is for TX queue 1). * Bits 8 -15 of the cause Rx Tx register indicate that are received * packets on the corresponding RXQ (Bit 8 is for RX queue 0). * Each CPU has its own causeRxTx register */ static int mvneta_poll(struct napi_struct *napi, int budget) { int rx_done = 0; u32 cause_rx_tx; int rx_queue; struct mvneta_port *pp = netdev_priv(napi->dev); struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports); if (!netif_running(pp->dev)) { napi_complete(napi); return rx_done; } /* Read cause register */ cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE); if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) { u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE); mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0); if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE | MVNETA_CAUSE_LINK_CHANGE)) mvneta_link_change(pp); } /* Release Tx descriptors */ if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) { mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL)); cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL; } /* For the case where the last mvneta_poll did not process all * RX packets */ rx_queue = fls(((cause_rx_tx >> 8) & 0xff)); cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx : port->cause_rx_tx; if (rx_queue) { rx_queue = rx_queue - 1; if (pp->bm_priv) rx_done = mvneta_rx_hwbm(napi, pp, budget, &pp->rxqs[rx_queue]); else rx_done = mvneta_rx_swbm(napi, pp, budget, &pp->rxqs[rx_queue]); } if (rx_done < budget) { cause_rx_tx = 0; napi_complete_done(napi, rx_done); if (pp->neta_armada3700) { unsigned long flags; local_irq_save(flags); mvreg_write(pp, MVNETA_INTR_NEW_MASK, MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number) | MVNETA_MISCINTR_INTR_MASK); local_irq_restore(flags); } else { enable_percpu_irq(pp->dev->irq, 0); } } if (pp->neta_armada3700) pp->cause_rx_tx = cause_rx_tx; else port->cause_rx_tx = cause_rx_tx; return rx_done; } /* Handle rxq fill: allocates rxq skbs; called when initializing a port */ static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq, int num) { int i; for (i = 0; i < num; i++) { memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc)); if (mvneta_rx_refill(pp, rxq->descs + i, rxq, GFP_KERNEL) != 0) { netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n", __func__, rxq->id, i, num); break; } } /* Add this number of RX descriptors as non occupied (ready to * get packets) */ mvneta_rxq_non_occup_desc_add(pp, rxq, i); return i; } /* Free all packets pending transmit from all TXQs and reset TX port */ static void mvneta_tx_reset(struct mvneta_port *pp) { int queue; /* free the skb's in the tx ring */ for (queue = 0; queue < txq_number; queue++) mvneta_txq_done_force(pp, &pp->txqs[queue]); mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET); mvreg_write(pp, MVNETA_PORT_TX_RESET, 0); } static void mvneta_rx_reset(struct mvneta_port *pp) { mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET); mvreg_write(pp, MVNETA_PORT_RX_RESET, 0); } /* Rx/Tx queue initialization/cleanup methods */ static int mvneta_rxq_sw_init(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) { rxq->size = pp->rx_ring_size; /* Allocate memory for RX descriptors */ rxq->descs = dma_alloc_coherent(pp->dev->dev.parent, rxq->size * MVNETA_DESC_ALIGNED_SIZE, &rxq->descs_phys, GFP_KERNEL); if (!rxq->descs) return -ENOMEM; rxq->last_desc = rxq->size - 1; return 0; } static void mvneta_rxq_hw_init(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) { /* Set Rx descriptors queue starting address */ mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys); mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size); /* Set coalescing pkts and time */ mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); if (!pp->bm_priv) { /* Set Offset */ mvneta_rxq_offset_set(pp, rxq, 0); mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ? PAGE_SIZE : MVNETA_RX_BUF_SIZE(pp->pkt_size)); mvneta_rxq_bm_disable(pp, rxq); mvneta_rxq_fill(pp, rxq, rxq->size); } else { /* Set Offset */ mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD - pp->rx_offset_correction); mvneta_rxq_bm_enable(pp, rxq); /* Fill RXQ with buffers from RX pool */ mvneta_rxq_long_pool_set(pp, rxq); mvneta_rxq_short_pool_set(pp, rxq); mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size); } } /* Create a specified RX queue */ static int mvneta_rxq_init(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) { int ret; ret = mvneta_rxq_sw_init(pp, rxq); if (ret < 0) return ret; mvneta_rxq_hw_init(pp, rxq); return 0; } /* Cleanup Rx queue */ static void mvneta_rxq_deinit(struct mvneta_port *pp, struct mvneta_rx_queue *rxq) { mvneta_rxq_drop_pkts(pp, rxq); if (rxq->skb) dev_kfree_skb_any(rxq->skb); if (rxq->descs) dma_free_coherent(pp->dev->dev.parent, rxq->size * MVNETA_DESC_ALIGNED_SIZE, rxq->descs, rxq->descs_phys); rxq->descs = NULL; rxq->last_desc = 0; rxq->next_desc_to_proc = 0; rxq->descs_phys = 0; rxq->first_to_refill = 0; rxq->refill_num = 0; rxq->skb = NULL; rxq->left_size = 0; } static int mvneta_txq_sw_init(struct mvneta_port *pp, struct mvneta_tx_queue *txq) { int cpu; txq->size = pp->tx_ring_size; /* A queue must always have room for at least one skb. * Therefore, stop the queue when the free entries reaches * the maximum number of descriptors per skb. */ txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS; txq->tx_wake_threshold = txq->tx_stop_threshold / 2; /* Allocate memory for TX descriptors */ txq->descs = dma_alloc_coherent(pp->dev->dev.parent, txq->size * MVNETA_DESC_ALIGNED_SIZE, &txq->descs_phys, GFP_KERNEL); if (!txq->descs) return -ENOMEM; txq->last_desc = txq->size - 1; txq->tx_skb = kmalloc_array(txq->size, sizeof(*txq->tx_skb), GFP_KERNEL); if (!txq->tx_skb) { dma_free_coherent(pp->dev->dev.parent, txq->size * MVNETA_DESC_ALIGNED_SIZE, txq->descs, txq->descs_phys); return -ENOMEM; } /* Allocate DMA buffers for TSO MAC/IP/TCP headers */ txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent, txq->size * TSO_HEADER_SIZE, &txq->tso_hdrs_phys, GFP_KERNEL); if (!txq->tso_hdrs) { kfree(txq->tx_skb); dma_free_coherent(pp->dev->dev.parent, txq->size * MVNETA_DESC_ALIGNED_SIZE, txq->descs, txq->descs_phys); return -ENOMEM; } /* Setup XPS mapping */ if (txq_number > 1) cpu = txq->id % num_present_cpus(); else cpu = pp->rxq_def % num_present_cpus(); cpumask_set_cpu(cpu, &txq->affinity_mask); netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id); return 0; } static void mvneta_txq_hw_init(struct mvneta_port *pp, struct mvneta_tx_queue *txq) { /* Set maximum bandwidth for enabled TXQs */ mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff); mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff); /* Set Tx descriptors queue starting address */ mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys); mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size); mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); } /* Create and initialize a tx queue */ static int mvneta_txq_init(struct mvneta_port *pp, struct mvneta_tx_queue *txq) { int ret; ret = mvneta_txq_sw_init(pp, txq); if (ret < 0) return ret; mvneta_txq_hw_init(pp, txq); return 0; } /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/ static void mvneta_txq_sw_deinit(struct mvneta_port *pp, struct mvneta_tx_queue *txq) { struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id); kfree(txq->tx_skb); if (txq->tso_hdrs) dma_free_coherent(pp->dev->dev.parent, txq->size * TSO_HEADER_SIZE, txq->tso_hdrs, txq->tso_hdrs_phys); if (txq->descs) dma_free_coherent(pp->dev->dev.parent, txq->size * MVNETA_DESC_ALIGNED_SIZE, txq->descs, txq->descs_phys); netdev_tx_reset_queue(nq); txq->descs = NULL; txq->last_desc = 0; txq->next_desc_to_proc = 0; txq->descs_phys = 0; } static void mvneta_txq_hw_deinit(struct mvneta_port *pp, struct mvneta_tx_queue *txq) { /* Set minimum bandwidth for disabled TXQs */ mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0); mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0); /* Set Tx descriptors queue starting address and size */ mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0); mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0); } static void mvneta_txq_deinit(struct mvneta_port *pp, struct mvneta_tx_queue *txq) { mvneta_txq_sw_deinit(pp, txq); mvneta_txq_hw_deinit(pp, txq); } /* Cleanup all Tx queues */ static void mvneta_cleanup_txqs(struct mvneta_port *pp) { int queue; for (queue = 0; queue < txq_number; queue++) mvneta_txq_deinit(pp, &pp->txqs[queue]); } /* Cleanup all Rx queues */ static void mvneta_cleanup_rxqs(struct mvneta_port *pp) { int queue; for (queue = 0; queue < rxq_number; queue++) mvneta_rxq_deinit(pp, &pp->rxqs[queue]); } /* Init all Rx queues */ static int mvneta_setup_rxqs(struct mvneta_port *pp) { int queue; for (queue = 0; queue < rxq_number; queue++) { int err = mvneta_rxq_init(pp, &pp->rxqs[queue]); if (err) { netdev_err(pp->dev, "%s: can't create rxq=%d\n", __func__, queue); mvneta_cleanup_rxqs(pp); return err; } } return 0; } /* Init all tx queues */ static int mvneta_setup_txqs(struct mvneta_port *pp) { int queue; for (queue = 0; queue < txq_number; queue++) { int err = mvneta_txq_init(pp, &pp->txqs[queue]); if (err) { netdev_err(pp->dev, "%s: can't create txq=%d\n", __func__, queue); mvneta_cleanup_txqs(pp); return err; } } return 0; } static int mvneta_comphy_init(struct mvneta_port *pp) { int ret; if (!pp->comphy) return 0; ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, pp->phy_interface); if (ret) return ret; return phy_power_on(pp->comphy); } static void mvneta_start_dev(struct mvneta_port *pp) { int cpu; WARN_ON(mvneta_comphy_init(pp)); mvneta_max_rx_size_set(pp, pp->pkt_size); mvneta_txq_max_tx_size_set(pp, pp->pkt_size); /* start the Rx/Tx activity */ mvneta_port_enable(pp); if (!pp->neta_armada3700) { /* Enable polling on the port */ for_each_online_cpu(cpu) { struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); napi_enable(&port->napi); } } else { napi_enable(&pp->napi); } /* Unmask interrupts. It has to be done from each CPU */ on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); mvreg_write(pp, MVNETA_INTR_MISC_MASK, MVNETA_CAUSE_PHY_STATUS_CHANGE | MVNETA_CAUSE_LINK_CHANGE); phylink_start(pp->phylink); netif_tx_start_all_queues(pp->dev); } static void mvneta_stop_dev(struct mvneta_port *pp) { unsigned int cpu; phylink_stop(pp->phylink); if (!pp->neta_armada3700) { for_each_online_cpu(cpu) { struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); napi_disable(&port->napi); } } else { napi_disable(&pp->napi); } netif_carrier_off(pp->dev); mvneta_port_down(pp); netif_tx_stop_all_queues(pp->dev); /* Stop the port activity */ mvneta_port_disable(pp); /* Clear all ethernet port interrupts */ on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true); /* Mask all ethernet port interrupts */ on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); mvneta_tx_reset(pp); mvneta_rx_reset(pp); WARN_ON(phy_power_off(pp->comphy)); } static void mvneta_percpu_enable(void *arg) { struct mvneta_port *pp = arg; enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE); } static void mvneta_percpu_disable(void *arg) { struct mvneta_port *pp = arg; disable_percpu_irq(pp->dev->irq); } /* Change the device mtu */ static int mvneta_change_mtu(struct net_device *dev, int mtu) { struct mvneta_port *pp = netdev_priv(dev); int ret; if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) { netdev_info(dev, "Illegal MTU value %d, rounding to %d\n", mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8)); mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8); } dev->mtu = mtu; if (!netif_running(dev)) { if (pp->bm_priv) mvneta_bm_update_mtu(pp, mtu); netdev_update_features(dev); return 0; } /* The interface is running, so we have to force a * reallocation of the queues */ mvneta_stop_dev(pp); on_each_cpu(mvneta_percpu_disable, pp, true); mvneta_cleanup_txqs(pp); mvneta_cleanup_rxqs(pp); if (pp->bm_priv) mvneta_bm_update_mtu(pp, mtu); pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu); ret = mvneta_setup_rxqs(pp); if (ret) { netdev_err(dev, "unable to setup rxqs after MTU change\n"); return ret; } ret = mvneta_setup_txqs(pp); if (ret) { netdev_err(dev, "unable to setup txqs after MTU change\n"); return ret; } on_each_cpu(mvneta_percpu_enable, pp, true); mvneta_start_dev(pp); netdev_update_features(dev); return 0; } static netdev_features_t mvneta_fix_features(struct net_device *dev, netdev_features_t features) { struct mvneta_port *pp = netdev_priv(dev); if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) { features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO); netdev_info(dev, "Disable IP checksum for MTU greater than %dB\n", pp->tx_csum_limit); } return features; } /* Get mac address */ static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr) { u32 mac_addr_l, mac_addr_h; mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW); mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH); addr[0] = (mac_addr_h >> 24) & 0xFF; addr[1] = (mac_addr_h >> 16) & 0xFF; addr[2] = (mac_addr_h >> 8) & 0xFF; addr[3] = mac_addr_h & 0xFF; addr[4] = (mac_addr_l >> 8) & 0xFF; addr[5] = mac_addr_l & 0xFF; } /* Handle setting mac address */ static int mvneta_set_mac_addr(struct net_device *dev, void *addr) { struct mvneta_port *pp = netdev_priv(dev); struct sockaddr *sockaddr = addr; int ret; ret = eth_prepare_mac_addr_change(dev, addr); if (ret < 0) return ret; /* Remove previous address table entry */ mvneta_mac_addr_set(pp, dev->dev_addr, -1); /* Set new addr in hw */ mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def); eth_commit_mac_addr_change(dev, addr); return 0; } static void mvneta_validate(struct net_device *ndev, unsigned long *supported, struct phylink_link_state *state) { struct mvneta_port *pp = netdev_priv(ndev); __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; /* We only support QSGMII, SGMII, 802.3z and RGMII modes */ if (state->interface != PHY_INTERFACE_MODE_NA && state->interface != PHY_INTERFACE_MODE_QSGMII && state->interface != PHY_INTERFACE_MODE_SGMII && !phy_interface_mode_is_8023z(state->interface) && !phy_interface_mode_is_rgmii(state->interface)) { bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS); return; } /* Allow all the expected bits */ phylink_set(mask, Autoneg); phylink_set_port_modes(mask); /* Asymmetric pause is unsupported */ phylink_set(mask, Pause); /* Half-duplex at speeds higher than 100Mbit is unsupported */ if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) { phylink_set(mask, 1000baseT_Full); phylink_set(mask, 1000baseX_Full); } if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) { phylink_set(mask, 2500baseT_Full); phylink_set(mask, 2500baseX_Full); } if (!phy_interface_mode_is_8023z(state->interface)) { /* 10M and 100M are only supported in non-802.3z mode */ phylink_set(mask, 10baseT_Half); phylink_set(mask, 10baseT_Full); phylink_set(mask, 100baseT_Half); phylink_set(mask, 100baseT_Full); } bitmap_and(supported, supported, mask, __ETHTOOL_LINK_MODE_MASK_NBITS); bitmap_and(state->advertising, state->advertising, mask, __ETHTOOL_LINK_MODE_MASK_NBITS); /* We can only operate at 2500BaseX or 1000BaseX. If requested * to advertise both, only report advertising at 2500BaseX. */ phylink_helper_basex_speed(state); } static int mvneta_mac_link_state(struct net_device *ndev, struct phylink_link_state *state) { struct mvneta_port *pp = netdev_priv(ndev); u32 gmac_stat; gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS); if (gmac_stat & MVNETA_GMAC_SPEED_1000) state->speed = state->interface == PHY_INTERFACE_MODE_2500BASEX ? SPEED_2500 : SPEED_1000; else if (gmac_stat & MVNETA_GMAC_SPEED_100) state->speed = SPEED_100; else state->speed = SPEED_10; state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE); state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP); state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX); state->pause = 0; if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE) state->pause |= MLO_PAUSE_RX; if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE) state->pause |= MLO_PAUSE_TX; return 1; } static void mvneta_mac_an_restart(struct net_device *ndev) { struct mvneta_port *pp = netdev_priv(ndev); u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, gmac_an | MVNETA_GMAC_INBAND_RESTART_AN); mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN); } static void mvneta_mac_config(struct net_device *ndev, unsigned int mode, const struct phylink_link_state *state) { struct mvneta_port *pp = netdev_priv(ndev); u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0); u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2); u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4); u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER); u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X; new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE | MVNETA_GMAC2_PORT_RESET); new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE); new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE; new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE | MVNETA_GMAC_INBAND_RESTART_AN | MVNETA_GMAC_CONFIG_MII_SPEED | MVNETA_GMAC_CONFIG_GMII_SPEED | MVNETA_GMAC_AN_SPEED_EN | MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL | MVNETA_GMAC_CONFIG_FLOW_CTRL | MVNETA_GMAC_AN_FLOW_CTRL_EN | MVNETA_GMAC_CONFIG_FULL_DUPLEX | MVNETA_GMAC_AN_DUPLEX_EN); /* Even though it might look weird, when we're configured in * SGMII or QSGMII mode, the RGMII bit needs to be set. */ new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII; if (state->interface == PHY_INTERFACE_MODE_QSGMII || state->interface == PHY_INTERFACE_MODE_SGMII || phy_interface_mode_is_8023z(state->interface)) new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE; if (phylink_test(state->advertising, Pause)) new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL; if (state->pause & MLO_PAUSE_TXRX_MASK) new_an |= MVNETA_GMAC_CONFIG_FLOW_CTRL; if (!phylink_autoneg_inband(mode)) { /* Phy or fixed speed */ if (state->duplex) new_an |= MVNETA_GMAC_CONFIG_FULL_DUPLEX; if (state->speed == SPEED_1000 || state->speed == SPEED_2500) new_an |= MVNETA_GMAC_CONFIG_GMII_SPEED; else if (state->speed == SPEED_100) new_an |= MVNETA_GMAC_CONFIG_MII_SPEED; } else if (state->interface == PHY_INTERFACE_MODE_SGMII) { /* SGMII mode receives the state from the PHY */ new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE; new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | MVNETA_GMAC_FORCE_LINK_PASS)) | MVNETA_GMAC_INBAND_AN_ENABLE | MVNETA_GMAC_AN_SPEED_EN | MVNETA_GMAC_AN_DUPLEX_EN; } else { /* 802.3z negotiation - only 1000base-X */ new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X; new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE; new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN | MVNETA_GMAC_FORCE_LINK_PASS)) | MVNETA_GMAC_INBAND_AN_ENABLE | MVNETA_GMAC_CONFIG_GMII_SPEED | /* The MAC only supports FD mode */ MVNETA_GMAC_CONFIG_FULL_DUPLEX; if (state->pause & MLO_PAUSE_AN && state->an_enabled) new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN; } /* Armada 370 documentation says we can only change the port mode * and in-band enable when the link is down, so force it down * while making these changes. We also do this for GMAC_CTRL2 */ if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X || (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE || (new_an ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) { mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) | MVNETA_GMAC_FORCE_LINK_DOWN); } /* When at 2.5G, the link partner can send frames with shortened * preambles. */ if (state->speed == SPEED_2500) new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE; if (pp->comphy && pp->phy_interface != state->interface && (state->interface == PHY_INTERFACE_MODE_SGMII || state->interface == PHY_INTERFACE_MODE_1000BASEX || state->interface == PHY_INTERFACE_MODE_2500BASEX)) { pp->phy_interface = state->interface; WARN_ON(phy_power_off(pp->comphy)); WARN_ON(mvneta_comphy_init(pp)); } if (new_ctrl0 != gmac_ctrl0) mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0); if (new_ctrl2 != gmac_ctrl2) mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2); if (new_ctrl4 != gmac_ctrl4) mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4); if (new_clk != gmac_clk) mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk); if (new_an != gmac_an) mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an); if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) { while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) & MVNETA_GMAC2_PORT_RESET) != 0) continue; } } static void mvneta_set_eee(struct mvneta_port *pp, bool enable) { u32 lpi_ctl1; lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1); if (enable) lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE; else lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE; mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1); } static void mvneta_mac_link_down(struct net_device *ndev, unsigned int mode, phy_interface_t interface) { struct mvneta_port *pp = netdev_priv(ndev); u32 val; mvneta_port_down(pp); if (!phylink_autoneg_inband(mode)) { val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); val &= ~MVNETA_GMAC_FORCE_LINK_PASS; val |= MVNETA_GMAC_FORCE_LINK_DOWN; mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); } pp->eee_active = false; mvneta_set_eee(pp, false); } static void mvneta_mac_link_up(struct net_device *ndev, unsigned int mode, phy_interface_t interface, struct phy_device *phy) { struct mvneta_port *pp = netdev_priv(ndev); u32 val; if (!phylink_autoneg_inband(mode)) { val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG); val &= ~MVNETA_GMAC_FORCE_LINK_DOWN; val |= MVNETA_GMAC_FORCE_LINK_PASS; mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val); } mvneta_port_up(pp); if (phy && pp->eee_enabled) { pp->eee_active = phy_init_eee(phy, 0) >= 0; mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled); } } static const struct phylink_mac_ops mvneta_phylink_ops = { .validate = mvneta_validate, .mac_link_state = mvneta_mac_link_state, .mac_an_restart = mvneta_mac_an_restart, .mac_config = mvneta_mac_config, .mac_link_down = mvneta_mac_link_down, .mac_link_up = mvneta_mac_link_up, }; static int mvneta_mdio_probe(struct mvneta_port *pp) { struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0); if (err) netdev_err(pp->dev, "could not attach PHY: %d\n", err); phylink_ethtool_get_wol(pp->phylink, &wol); device_set_wakeup_capable(&pp->dev->dev, !!wol.supported); return err; } static void mvneta_mdio_remove(struct mvneta_port *pp) { phylink_disconnect_phy(pp->phylink); } /* Electing a CPU must be done in an atomic way: it should be done * after or before the removal/insertion of a CPU and this function is * not reentrant. */ static void mvneta_percpu_elect(struct mvneta_port *pp) { int elected_cpu = 0, max_cpu, cpu, i = 0; /* Use the cpu associated to the rxq when it is online, in all * the other cases, use the cpu 0 which can't be offline. */ if (cpu_online(pp->rxq_def)) elected_cpu = pp->rxq_def; max_cpu = num_present_cpus(); for_each_online_cpu(cpu) { int rxq_map = 0, txq_map = 0; int rxq; for (rxq = 0; rxq < rxq_number; rxq++) if ((rxq % max_cpu) == cpu) rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq); if (cpu == elected_cpu) /* Map the default receive queue queue to the * elected CPU */ rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def); /* We update the TX queue map only if we have one * queue. In this case we associate the TX queue to * the CPU bound to the default RX queue */ if (txq_number == 1) txq_map = (cpu == elected_cpu) ? MVNETA_CPU_TXQ_ACCESS(1) : 0; else txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) & MVNETA_CPU_TXQ_ACCESS_ALL_MASK; mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map); /* Update the interrupt mask on each CPU according the * new mapping */ smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt, pp, true); i++; } }; static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node) { int other_cpu; struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, node_online); struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); spin_lock(&pp->lock); /* * Configuring the driver for a new CPU while the driver is * stopping is racy, so just avoid it. */ if (pp->is_stopped) { spin_unlock(&pp->lock); return 0; } netif_tx_stop_all_queues(pp->dev); /* * We have to synchronise on tha napi of each CPU except the one * just being woken up */ for_each_online_cpu(other_cpu) { if (other_cpu != cpu) { struct mvneta_pcpu_port *other_port = per_cpu_ptr(pp->ports, other_cpu); napi_synchronize(&other_port->napi); } } /* Mask all ethernet port interrupts */ on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); napi_enable(&port->napi); /* * Enable per-CPU interrupts on the CPU that is * brought up. */ mvneta_percpu_enable(pp); /* * Enable per-CPU interrupt on the one CPU we care * about. */ mvneta_percpu_elect(pp); /* Unmask all ethernet port interrupts */ on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); mvreg_write(pp, MVNETA_INTR_MISC_MASK, MVNETA_CAUSE_PHY_STATUS_CHANGE | MVNETA_CAUSE_LINK_CHANGE); netif_tx_start_all_queues(pp->dev); spin_unlock(&pp->lock); return 0; } static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node) { struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, node_online); struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); /* * Thanks to this lock we are sure that any pending cpu election is * done. */ spin_lock(&pp->lock); /* Mask all ethernet port interrupts */ on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); spin_unlock(&pp->lock); napi_synchronize(&port->napi); napi_disable(&port->napi); /* Disable per-CPU interrupts on the CPU that is brought down. */ mvneta_percpu_disable(pp); return 0; } static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node) { struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port, node_dead); /* Check if a new CPU must be elected now this on is down */ spin_lock(&pp->lock); mvneta_percpu_elect(pp); spin_unlock(&pp->lock); /* Unmask all ethernet port interrupts */ on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true); mvreg_write(pp, MVNETA_INTR_MISC_MASK, MVNETA_CAUSE_PHY_STATUS_CHANGE | MVNETA_CAUSE_LINK_CHANGE); netif_tx_start_all_queues(pp->dev); return 0; } static int mvneta_open(struct net_device *dev) { struct mvneta_port *pp = netdev_priv(dev); int ret; pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu); ret = mvneta_setup_rxqs(pp); if (ret) return ret; ret = mvneta_setup_txqs(pp); if (ret) goto err_cleanup_rxqs; /* Connect to port interrupt line */ if (pp->neta_armada3700) ret = request_irq(pp->dev->irq, mvneta_isr, 0, dev->name, pp); else ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr, dev->name, pp->ports); if (ret) { netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq); goto err_cleanup_txqs; } if (!pp->neta_armada3700) { /* Enable per-CPU interrupt on all the CPU to handle our RX * queue interrupts */ on_each_cpu(mvneta_percpu_enable, pp, true); pp->is_stopped = false; /* Register a CPU notifier to handle the case where our CPU * might be taken offline. */ ret = cpuhp_state_add_instance_nocalls(online_hpstate, &pp->node_online); if (ret) goto err_free_irq; ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, &pp->node_dead); if (ret) goto err_free_online_hp; } ret = mvneta_mdio_probe(pp); if (ret < 0) { netdev_err(dev, "cannot probe MDIO bus\n"); goto err_free_dead_hp; } mvneta_start_dev(pp); return 0; err_free_dead_hp: if (!pp->neta_armada3700) cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, &pp->node_dead); err_free_online_hp: if (!pp->neta_armada3700) cpuhp_state_remove_instance_nocalls(online_hpstate, &pp->node_online); err_free_irq: if (pp->neta_armada3700) { free_irq(pp->dev->irq, pp); } else { on_each_cpu(mvneta_percpu_disable, pp, true); free_percpu_irq(pp->dev->irq, pp->ports); } err_cleanup_txqs: mvneta_cleanup_txqs(pp); err_cleanup_rxqs: mvneta_cleanup_rxqs(pp); return ret; } /* Stop the port, free port interrupt line */ static int mvneta_stop(struct net_device *dev) { struct mvneta_port *pp = netdev_priv(dev); if (!pp->neta_armada3700) { /* Inform that we are stopping so we don't want to setup the * driver for new CPUs in the notifiers. The code of the * notifier for CPU online is protected by the same spinlock, * so when we get the lock, the notifer work is done. */ spin_lock(&pp->lock); pp->is_stopped = true; spin_unlock(&pp->lock); mvneta_stop_dev(pp); mvneta_mdio_remove(pp); cpuhp_state_remove_instance_nocalls(online_hpstate, &pp->node_online); cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, &pp->node_dead); on_each_cpu(mvneta_percpu_disable, pp, true); free_percpu_irq(dev->irq, pp->ports); } else { mvneta_stop_dev(pp); mvneta_mdio_remove(pp); free_irq(dev->irq, pp); } mvneta_cleanup_rxqs(pp); mvneta_cleanup_txqs(pp); return 0; } static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct mvneta_port *pp = netdev_priv(dev); return phylink_mii_ioctl(pp->phylink, ifr, cmd); } /* Ethtool methods */ /* Set link ksettings (phy address, speed) for ethtools */ static int mvneta_ethtool_set_link_ksettings(struct net_device *ndev, const struct ethtool_link_ksettings *cmd) { struct mvneta_port *pp = netdev_priv(ndev); return phylink_ethtool_ksettings_set(pp->phylink, cmd); } /* Get link ksettings for ethtools */ static int mvneta_ethtool_get_link_ksettings(struct net_device *ndev, struct ethtool_link_ksettings *cmd) { struct mvneta_port *pp = netdev_priv(ndev); return phylink_ethtool_ksettings_get(pp->phylink, cmd); } static int mvneta_ethtool_nway_reset(struct net_device *dev) { struct mvneta_port *pp = netdev_priv(dev); return phylink_ethtool_nway_reset(pp->phylink); } /* Set interrupt coalescing for ethtools */ static int mvneta_ethtool_set_coalesce(struct net_device *dev, struct ethtool_coalesce *c) { struct mvneta_port *pp = netdev_priv(dev); int queue; for (queue = 0; queue < rxq_number; queue++) { struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; rxq->time_coal = c->rx_coalesce_usecs; rxq->pkts_coal = c->rx_max_coalesced_frames; mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal); mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal); } for (queue = 0; queue < txq_number; queue++) { struct mvneta_tx_queue *txq = &pp->txqs[queue]; txq->done_pkts_coal = c->tx_max_coalesced_frames; mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal); } return 0; } /* get coalescing for ethtools */ static int mvneta_ethtool_get_coalesce(struct net_device *dev, struct ethtool_coalesce *c) { struct mvneta_port *pp = netdev_priv(dev); c->rx_coalesce_usecs = pp->rxqs[0].time_coal; c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal; c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal; return 0; } static void mvneta_ethtool_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *drvinfo) { strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME, sizeof(drvinfo->driver)); strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION, sizeof(drvinfo->version)); strlcpy(drvinfo->bus_info, dev_name(&dev->dev), sizeof(drvinfo->bus_info)); } static void mvneta_ethtool_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring) { struct mvneta_port *pp = netdev_priv(netdev); ring->rx_max_pending = MVNETA_MAX_RXD; ring->tx_max_pending = MVNETA_MAX_TXD; ring->rx_pending = pp->rx_ring_size; ring->tx_pending = pp->tx_ring_size; } static int mvneta_ethtool_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ring) { struct mvneta_port *pp = netdev_priv(dev); if ((ring->rx_pending == 0) || (ring->tx_pending == 0)) return -EINVAL; pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ? ring->rx_pending : MVNETA_MAX_RXD; pp->tx_ring_size = clamp_t(u16, ring->tx_pending, MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD); if (pp->tx_ring_size != ring->tx_pending) netdev_warn(dev, "TX queue size set to %u (requested %u)\n", pp->tx_ring_size, ring->tx_pending); if (netif_running(dev)) { mvneta_stop(dev); if (mvneta_open(dev)) { netdev_err(dev, "error on opening device after ring param change\n"); return -ENOMEM; } } return 0; } static void mvneta_ethtool_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *pause) { struct mvneta_port *pp = netdev_priv(dev); phylink_ethtool_get_pauseparam(pp->phylink, pause); } static int mvneta_ethtool_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *pause) { struct mvneta_port *pp = netdev_priv(dev); return phylink_ethtool_set_pauseparam(pp->phylink, pause); } static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset, u8 *data) { if (sset == ETH_SS_STATS) { int i; for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) memcpy(data + i * ETH_GSTRING_LEN, mvneta_statistics[i].name, ETH_GSTRING_LEN); } } static void mvneta_ethtool_update_stats(struct mvneta_port *pp) { const struct mvneta_statistic *s; void __iomem *base = pp->base; u32 high, low; u64 val; int i; for (i = 0, s = mvneta_statistics; s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics); s++, i++) { val = 0; switch (s->type) { case T_REG_32: val = readl_relaxed(base + s->offset); break; case T_REG_64: /* Docs say to read low 32-bit then high */ low = readl_relaxed(base + s->offset); high = readl_relaxed(base + s->offset + 4); val = (u64)high << 32 | low; break; case T_SW: switch (s->offset) { case ETHTOOL_STAT_EEE_WAKEUP: val = phylink_get_eee_err(pp->phylink); break; case ETHTOOL_STAT_SKB_ALLOC_ERR: val = pp->rxqs[0].skb_alloc_err; break; case ETHTOOL_STAT_REFILL_ERR: val = pp->rxqs[0].refill_err; break; } break; } pp->ethtool_stats[i] += val; } } static void mvneta_ethtool_get_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct mvneta_port *pp = netdev_priv(dev); int i; mvneta_ethtool_update_stats(pp); for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++) *data++ = pp->ethtool_stats[i]; } static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset) { if (sset == ETH_SS_STATS) return ARRAY_SIZE(mvneta_statistics); return -EOPNOTSUPP; } static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev) { return MVNETA_RSS_LU_TABLE_SIZE; } static int mvneta_ethtool_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, u32 *rules __always_unused) { switch (info->cmd) { case ETHTOOL_GRXRINGS: info->data = rxq_number; return 0; case ETHTOOL_GRXFH: return -EOPNOTSUPP; default: return -EOPNOTSUPP; } } static int mvneta_config_rss(struct mvneta_port *pp) { int cpu; u32 val; netif_tx_stop_all_queues(pp->dev); on_each_cpu(mvneta_percpu_mask_interrupt, pp, true); if (!pp->neta_armada3700) { /* We have to synchronise on the napi of each CPU */ for_each_online_cpu(cpu) { struct mvneta_pcpu_port *pcpu_port = per_cpu_ptr(pp->ports, cpu); napi_synchronize(&pcpu_port->napi); napi_disable(&pcpu_port->napi); } } else { napi_synchronize(&pp->napi); napi_disable(&pp->napi); } pp->rxq_def = pp->indir[0]; /* Update unicast mapping */ mvneta_set_rx_mode(pp->dev); /* Update val of portCfg register accordingly with all RxQueue types */ val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def); mvreg_write(pp, MVNETA_PORT_CONFIG, val); /* Update the elected CPU matching the new rxq_def */ spin_lock(&pp->lock); mvneta_percpu_elect(pp); spin_unlock(&pp->lock); if (!pp->neta_armada3700) { /* We have to synchronise on the napi of each CPU */ for_each_online_cpu(cpu) { struct mvneta_pcpu_port *pcpu_port = per_cpu_ptr(pp->ports, cpu); napi_enable(&pcpu_port->napi); } } else { napi_enable(&pp->napi); } netif_tx_start_all_queues(pp->dev); return 0; } static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir, const u8 *key, const u8 hfunc) { struct mvneta_port *pp = netdev_priv(dev); /* Current code for Armada 3700 doesn't support RSS features yet */ if (pp->neta_armada3700) return -EOPNOTSUPP; /* We require at least one supported parameter to be changed * and no change in any of the unsupported parameters */ if (key || (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)) return -EOPNOTSUPP; if (!indir) return 0; memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE); return mvneta_config_rss(pp); } static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, u8 *hfunc) { struct mvneta_port *pp = netdev_priv(dev); /* Current code for Armada 3700 doesn't support RSS features yet */ if (pp->neta_armada3700) return -EOPNOTSUPP; if (hfunc) *hfunc = ETH_RSS_HASH_TOP; if (!indir) return 0; memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE); return 0; } static void mvneta_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct mvneta_port *pp = netdev_priv(dev); phylink_ethtool_get_wol(pp->phylink, wol); } static int mvneta_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct mvneta_port *pp = netdev_priv(dev); int ret; ret = phylink_ethtool_set_wol(pp->phylink, wol); if (!ret) device_set_wakeup_enable(&dev->dev, !!wol->wolopts); return ret; } static int mvneta_ethtool_get_eee(struct net_device *dev, struct ethtool_eee *eee) { struct mvneta_port *pp = netdev_priv(dev); u32 lpi_ctl0; lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); eee->eee_enabled = pp->eee_enabled; eee->eee_active = pp->eee_active; eee->tx_lpi_enabled = pp->tx_lpi_enabled; eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale; return phylink_ethtool_get_eee(pp->phylink, eee); } static int mvneta_ethtool_set_eee(struct net_device *dev, struct ethtool_eee *eee) { struct mvneta_port *pp = netdev_priv(dev); u32 lpi_ctl0; /* The Armada 37x documents do not give limits for this other than * it being an 8-bit register. */ if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255) return -EINVAL; lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0); lpi_ctl0 &= ~(0xff << 8); lpi_ctl0 |= eee->tx_lpi_timer << 8; mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0); pp->eee_enabled = eee->eee_enabled; pp->tx_lpi_enabled = eee->tx_lpi_enabled; mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled); return phylink_ethtool_set_eee(pp->phylink, eee); } static const struct net_device_ops mvneta_netdev_ops = { .ndo_open = mvneta_open, .ndo_stop = mvneta_stop, .ndo_start_xmit = mvneta_tx, .ndo_set_rx_mode = mvneta_set_rx_mode, .ndo_set_mac_address = mvneta_set_mac_addr, .ndo_change_mtu = mvneta_change_mtu, .ndo_fix_features = mvneta_fix_features, .ndo_get_stats64 = mvneta_get_stats64, .ndo_do_ioctl = mvneta_ioctl, }; static const struct ethtool_ops mvneta_eth_tool_ops = { .nway_reset = mvneta_ethtool_nway_reset, .get_link = ethtool_op_get_link, .set_coalesce = mvneta_ethtool_set_coalesce, .get_coalesce = mvneta_ethtool_get_coalesce, .get_drvinfo = mvneta_ethtool_get_drvinfo, .get_ringparam = mvneta_ethtool_get_ringparam, .set_ringparam = mvneta_ethtool_set_ringparam, .get_pauseparam = mvneta_ethtool_get_pauseparam, .set_pauseparam = mvneta_ethtool_set_pauseparam, .get_strings = mvneta_ethtool_get_strings, .get_ethtool_stats = mvneta_ethtool_get_stats, .get_sset_count = mvneta_ethtool_get_sset_count, .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size, .get_rxnfc = mvneta_ethtool_get_rxnfc, .get_rxfh = mvneta_ethtool_get_rxfh, .set_rxfh = mvneta_ethtool_set_rxfh, .get_link_ksettings = mvneta_ethtool_get_link_ksettings, .set_link_ksettings = mvneta_ethtool_set_link_ksettings, .get_wol = mvneta_ethtool_get_wol, .set_wol = mvneta_ethtool_set_wol, .get_eee = mvneta_ethtool_get_eee, .set_eee = mvneta_ethtool_set_eee, }; /* Initialize hw */ static int mvneta_init(struct device *dev, struct mvneta_port *pp) { int queue; /* Disable port */ mvneta_port_disable(pp); /* Set port default values */ mvneta_defaults_set(pp); pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL); if (!pp->txqs) return -ENOMEM; /* Initialize TX descriptor rings */ for (queue = 0; queue < txq_number; queue++) { struct mvneta_tx_queue *txq = &pp->txqs[queue]; txq->id = queue; txq->size = pp->tx_ring_size; txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS; } pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL); if (!pp->rxqs) return -ENOMEM; /* Create Rx descriptor rings */ for (queue = 0; queue < rxq_number; queue++) { struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; rxq->id = queue; rxq->size = pp->rx_ring_size; rxq->pkts_coal = MVNETA_RX_COAL_PKTS; rxq->time_coal = MVNETA_RX_COAL_USEC; rxq->buf_virt_addr = devm_kmalloc_array(pp->dev->dev.parent, rxq->size, sizeof(*rxq->buf_virt_addr), GFP_KERNEL); if (!rxq->buf_virt_addr) return -ENOMEM; } return 0; } /* platform glue : initialize decoding windows */ static void mvneta_conf_mbus_windows(struct mvneta_port *pp, const struct mbus_dram_target_info *dram) { u32 win_enable; u32 win_protect; int i; for (i = 0; i < 6; i++) { mvreg_write(pp, MVNETA_WIN_BASE(i), 0); mvreg_write(pp, MVNETA_WIN_SIZE(i), 0); if (i < 4) mvreg_write(pp, MVNETA_WIN_REMAP(i), 0); } win_enable = 0x3f; win_protect = 0; if (dram) { for (i = 0; i < dram->num_cs; i++) { const struct mbus_dram_window *cs = dram->cs + i; mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) | (cs->mbus_attr << 8) | dram->mbus_dram_target_id); mvreg_write(pp, MVNETA_WIN_SIZE(i), (cs->size - 1) & 0xffff0000); win_enable &= ~(1 << i); win_protect |= 3 << (2 * i); } } else { /* For Armada3700 open default 4GB Mbus window, leaving * arbitration of target/attribute to a different layer * of configuration. */ mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000); win_enable &= ~BIT(0); win_protect = 3; } mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable); mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect); } /* Power up the port */ static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode) { /* MAC Cause register should be cleared */ mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0); if (phy_mode == PHY_INTERFACE_MODE_QSGMII) mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO); else if (phy_mode == PHY_INTERFACE_MODE_SGMII || phy_interface_mode_is_8023z(phy_mode)) mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO); else if (!phy_interface_mode_is_rgmii(phy_mode)) return -EINVAL; return 0; } /* Device initialization routine */ static int mvneta_probe(struct platform_device *pdev) { struct resource *res; struct device_node *dn = pdev->dev.of_node; struct device_node *bm_node; struct mvneta_port *pp; struct net_device *dev; struct phylink *phylink; struct phy *comphy; const char *dt_mac_addr; char hw_mac_addr[ETH_ALEN]; const char *mac_from; int tx_csum_limit; int phy_mode; int err; int cpu; dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port), txq_number, rxq_number); if (!dev) return -ENOMEM; dev->irq = irq_of_parse_and_map(dn, 0); if (dev->irq == 0) return -EINVAL; phy_mode = of_get_phy_mode(dn); if (phy_mode < 0) { dev_err(&pdev->dev, "incorrect phy-mode\n"); err = -EINVAL; goto err_free_irq; } comphy = devm_of_phy_get(&pdev->dev, dn, NULL); if (comphy == ERR_PTR(-EPROBE_DEFER)) { err = -EPROBE_DEFER; goto err_free_irq; } else if (IS_ERR(comphy)) { comphy = NULL; } phylink = phylink_create(dev, pdev->dev.fwnode, phy_mode, &mvneta_phylink_ops); if (IS_ERR(phylink)) { err = PTR_ERR(phylink); goto err_free_irq; } dev->tx_queue_len = MVNETA_MAX_TXD; dev->watchdog_timeo = 5 * HZ; dev->netdev_ops = &mvneta_netdev_ops; dev->ethtool_ops = &mvneta_eth_tool_ops; pp = netdev_priv(dev); spin_lock_init(&pp->lock); pp->phylink = phylink; pp->comphy = comphy; pp->phy_interface = phy_mode; pp->dn = dn; pp->rxq_def = rxq_def; pp->indir[0] = rxq_def; /* Get special SoC configurations */ if (of_device_is_compatible(dn, "marvell,armada-3700-neta")) pp->neta_armada3700 = true; pp->clk = devm_clk_get(&pdev->dev, "core"); if (IS_ERR(pp->clk)) pp->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(pp->clk)) { err = PTR_ERR(pp->clk); goto err_free_phylink; } clk_prepare_enable(pp->clk); pp->clk_bus = devm_clk_get(&pdev->dev, "bus"); if (!IS_ERR(pp->clk_bus)) clk_prepare_enable(pp->clk_bus); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); pp->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(pp->base)) { err = PTR_ERR(pp->base); goto err_clk; } /* Alloc per-cpu port structure */ pp->ports = alloc_percpu(struct mvneta_pcpu_port); if (!pp->ports) { err = -ENOMEM; goto err_clk; } /* Alloc per-cpu stats */ pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats); if (!pp->stats) { err = -ENOMEM; goto err_free_ports; } dt_mac_addr = of_get_mac_address(dn); if (!IS_ERR(dt_mac_addr)) { mac_from = "device tree"; ether_addr_copy(dev->dev_addr, dt_mac_addr); } else { mvneta_get_mac_addr(pp, hw_mac_addr); if (is_valid_ether_addr(hw_mac_addr)) { mac_from = "hardware"; memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN); } else { mac_from = "random"; eth_hw_addr_random(dev); } } if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) { if (tx_csum_limit < 0 || tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) { tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; dev_info(&pdev->dev, "Wrong TX csum limit in DT, set to %dB\n", MVNETA_TX_CSUM_DEF_SIZE); } } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) { tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE; } else { tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE; } pp->tx_csum_limit = tx_csum_limit; pp->dram_target_info = mv_mbus_dram_info(); /* Armada3700 requires setting default configuration of Mbus * windows, however without using filled mbus_dram_target_info * structure. */ if (pp->dram_target_info || pp->neta_armada3700) mvneta_conf_mbus_windows(pp, pp->dram_target_info); pp->tx_ring_size = MVNETA_MAX_TXD; pp->rx_ring_size = MVNETA_MAX_RXD; pp->dev = dev; SET_NETDEV_DEV(dev, &pdev->dev); pp->id = global_port_id++; pp->rx_offset_correction = 0; /* not relevant for SW BM */ /* Obtain access to BM resources if enabled and already initialized */ bm_node = of_parse_phandle(dn, "buffer-manager", 0); if (bm_node) { pp->bm_priv = mvneta_bm_get(bm_node); if (pp->bm_priv) { err = mvneta_bm_port_init(pdev, pp); if (err < 0) { dev_info(&pdev->dev, "use SW buffer management\n"); mvneta_bm_put(pp->bm_priv); pp->bm_priv = NULL; } } /* Set RX packet offset correction for platforms, whose * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit * platforms and 0B for 32-bit ones. */ pp->rx_offset_correction = max(0, NET_SKB_PAD - MVNETA_RX_PKT_OFFSET_CORRECTION); } of_node_put(bm_node); err = mvneta_init(&pdev->dev, pp); if (err < 0) goto err_netdev; err = mvneta_port_power_up(pp, phy_mode); if (err < 0) { dev_err(&pdev->dev, "can't power up port\n"); goto err_netdev; } /* Armada3700 network controller does not support per-cpu * operation, so only single NAPI should be initialized. */ if (pp->neta_armada3700) { netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT); } else { for_each_present_cpu(cpu) { struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu); netif_napi_add(dev, &port->napi, mvneta_poll, NAPI_POLL_WEIGHT); port->pp = pp; } } dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_TSO | NETIF_F_RXCSUM; dev->hw_features |= dev->features; dev->vlan_features |= dev->features; dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; dev->gso_max_segs = MVNETA_MAX_TSO_SEGS; /* MTU range: 68 - 9676 */ dev->min_mtu = ETH_MIN_MTU; /* 9676 == 9700 - 20 and rounding to 8 */ dev->max_mtu = 9676; err = register_netdev(dev); if (err < 0) { dev_err(&pdev->dev, "failed to register\n"); goto err_netdev; } netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr); platform_set_drvdata(pdev, pp->dev); return 0; err_netdev: if (pp->bm_priv) { mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); mvneta_bm_put(pp->bm_priv); } free_percpu(pp->stats); err_free_ports: free_percpu(pp->ports); err_clk: clk_disable_unprepare(pp->clk_bus); clk_disable_unprepare(pp->clk); err_free_phylink: if (pp->phylink) phylink_destroy(pp->phylink); err_free_irq: irq_dispose_mapping(dev->irq); return err; } /* Device removal routine */ static int mvneta_remove(struct platform_device *pdev) { struct net_device *dev = platform_get_drvdata(pdev); struct mvneta_port *pp = netdev_priv(dev); unregister_netdev(dev); clk_disable_unprepare(pp->clk_bus); clk_disable_unprepare(pp->clk); free_percpu(pp->ports); free_percpu(pp->stats); irq_dispose_mapping(dev->irq); phylink_destroy(pp->phylink); if (pp->bm_priv) { mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id); mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id); mvneta_bm_put(pp->bm_priv); } return 0; } #ifdef CONFIG_PM_SLEEP static int mvneta_suspend(struct device *device) { int queue; struct net_device *dev = dev_get_drvdata(device); struct mvneta_port *pp = netdev_priv(dev); if (!netif_running(dev)) goto clean_exit; if (!pp->neta_armada3700) { spin_lock(&pp->lock); pp->is_stopped = true; spin_unlock(&pp->lock); cpuhp_state_remove_instance_nocalls(online_hpstate, &pp->node_online); cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD, &pp->node_dead); } rtnl_lock(); mvneta_stop_dev(pp); rtnl_unlock(); for (queue = 0; queue < rxq_number; queue++) { struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; mvneta_rxq_drop_pkts(pp, rxq); } for (queue = 0; queue < txq_number; queue++) { struct mvneta_tx_queue *txq = &pp->txqs[queue]; mvneta_txq_hw_deinit(pp, txq); } clean_exit: netif_device_detach(dev); clk_disable_unprepare(pp->clk_bus); clk_disable_unprepare(pp->clk); return 0; } static int mvneta_resume(struct device *device) { struct platform_device *pdev = to_platform_device(device); struct net_device *dev = dev_get_drvdata(device); struct mvneta_port *pp = netdev_priv(dev); int err, queue; clk_prepare_enable(pp->clk); if (!IS_ERR(pp->clk_bus)) clk_prepare_enable(pp->clk_bus); if (pp->dram_target_info || pp->neta_armada3700) mvneta_conf_mbus_windows(pp, pp->dram_target_info); if (pp->bm_priv) { err = mvneta_bm_port_init(pdev, pp); if (err < 0) { dev_info(&pdev->dev, "use SW buffer management\n"); pp->bm_priv = NULL; } } mvneta_defaults_set(pp); err = mvneta_port_power_up(pp, pp->phy_interface); if (err < 0) { dev_err(device, "can't power up port\n"); return err; } netif_device_attach(dev); if (!netif_running(dev)) return 0; for (queue = 0; queue < rxq_number; queue++) { struct mvneta_rx_queue *rxq = &pp->rxqs[queue]; rxq->next_desc_to_proc = 0; mvneta_rxq_hw_init(pp, rxq); } for (queue = 0; queue < txq_number; queue++) { struct mvneta_tx_queue *txq = &pp->txqs[queue]; txq->next_desc_to_proc = 0; mvneta_txq_hw_init(pp, txq); } if (!pp->neta_armada3700) { spin_lock(&pp->lock); pp->is_stopped = false; spin_unlock(&pp->lock); cpuhp_state_add_instance_nocalls(online_hpstate, &pp->node_online); cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD, &pp->node_dead); } rtnl_lock(); mvneta_start_dev(pp); rtnl_unlock(); mvneta_set_rx_mode(dev); return 0; } #endif static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume); static const struct of_device_id mvneta_match[] = { { .compatible = "marvell,armada-370-neta" }, { .compatible = "marvell,armada-xp-neta" }, { .compatible = "marvell,armada-3700-neta" }, { } }; MODULE_DEVICE_TABLE(of, mvneta_match); static struct platform_driver mvneta_driver = { .probe = mvneta_probe, .remove = mvneta_remove, .driver = { .name = MVNETA_DRIVER_NAME, .of_match_table = mvneta_match, .pm = &mvneta_pm_ops, }, }; static int __init mvneta_driver_init(void) { int ret; ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online", mvneta_cpu_online, mvneta_cpu_down_prepare); if (ret < 0) goto out; online_hpstate = ret; ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead", NULL, mvneta_cpu_dead); if (ret) goto err_dead; ret = platform_driver_register(&mvneta_driver); if (ret) goto err; return 0; err: cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); err_dead: cpuhp_remove_multi_state(online_hpstate); out: return ret; } module_init(mvneta_driver_init); static void __exit mvneta_driver_exit(void) { platform_driver_unregister(&mvneta_driver); cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD); cpuhp_remove_multi_state(online_hpstate); } module_exit(mvneta_driver_exit); MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com"); MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>"); MODULE_LICENSE("GPL"); module_param(rxq_number, int, 0444); module_param(txq_number, int, 0444); module_param(rxq_def, int, 0444); module_param(rx_copybreak, int, 0644);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1