Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
John Crispin | 8991 | 66.23% | 28 | 28.28% |
Sean Wang | 2182 | 16.07% | 41 | 41.41% |
Nelson Chang | 2107 | 15.52% | 7 | 7.07% |
Björn Mork | 200 | 1.47% | 1 | 1.01% |
Johan Hovold | 32 | 0.24% | 1 | 1.01% |
Elena Reshetova | 14 | 0.10% | 1 | 1.01% |
Vladimir Zapolskiy | 9 | 0.07% | 1 | 1.01% |
Petr Štetiar | 4 | 0.03% | 1 | 1.01% |
Andrew Lunn | 4 | 0.03% | 2 | 2.02% |
Ryder Lee | 4 | 0.03% | 1 | 1.01% |
Luis R. Rodriguez | 3 | 0.02% | 1 | 1.01% |
Dan Carpenter | 3 | 0.02% | 1 | 1.01% |
Wei Yongjun | 3 | 0.02% | 2 | 2.02% |
Yuval Shaia | 3 | 0.02% | 1 | 1.01% |
Thierry Reding | 3 | 0.02% | 1 | 1.01% |
Mark Brown | 3 | 0.02% | 1 | 1.01% |
Thomas Gleixner | 2 | 0.01% | 1 | 1.01% |
Florian Westphal | 2 | 0.01% | 1 | 1.01% |
Baoyou Xie | 2 | 0.01% | 1 | 1.01% |
Stephen Hemminger | 1 | 0.01% | 1 | 1.01% |
Rob Herring | 1 | 0.01% | 1 | 1.01% |
Arnd Bergmann | 1 | 0.01% | 1 | 1.01% |
Julia Lawall | 1 | 0.01% | 1 | 1.01% |
Tobias Klauser | 1 | 0.01% | 1 | 1.01% |
Total | 13576 | 99 |
// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright (C) 2009-2016 John Crispin <blogic@openwrt.org> * Copyright (C) 2009-2016 Felix Fietkau <nbd@openwrt.org> * Copyright (C) 2013-2016 Michael Lee <igvtee@gmail.com> */ #include <linux/of_device.h> #include <linux/of_mdio.h> #include <linux/of_net.h> #include <linux/mfd/syscon.h> #include <linux/regmap.h> #include <linux/clk.h> #include <linux/pm_runtime.h> #include <linux/if_vlan.h> #include <linux/reset.h> #include <linux/tcp.h> #include <linux/interrupt.h> #include <linux/pinctrl/devinfo.h> #include "mtk_eth_soc.h" static int mtk_msg_level = -1; module_param_named(msg_level, mtk_msg_level, int, 0); MODULE_PARM_DESC(msg_level, "Message level (-1=defaults,0=none,...,16=all)"); #define MTK_ETHTOOL_STAT(x) { #x, \ offsetof(struct mtk_hw_stats, x) / sizeof(u64) } /* strings used by ethtool */ static const struct mtk_ethtool_stats { char str[ETH_GSTRING_LEN]; u32 offset; } mtk_ethtool_stats[] = { MTK_ETHTOOL_STAT(tx_bytes), MTK_ETHTOOL_STAT(tx_packets), MTK_ETHTOOL_STAT(tx_skip), MTK_ETHTOOL_STAT(tx_collisions), MTK_ETHTOOL_STAT(rx_bytes), MTK_ETHTOOL_STAT(rx_packets), MTK_ETHTOOL_STAT(rx_overflow), MTK_ETHTOOL_STAT(rx_fcs_errors), MTK_ETHTOOL_STAT(rx_short_errors), MTK_ETHTOOL_STAT(rx_long_errors), MTK_ETHTOOL_STAT(rx_checksum_errors), MTK_ETHTOOL_STAT(rx_flow_control_packets), }; static const char * const mtk_clks_source_name[] = { "ethif", "esw", "gp0", "gp1", "gp2", "trgpll", "sgmii_tx250m", "sgmii_rx250m", "sgmii_cdr_ref", "sgmii_cdr_fb", "sgmii_ck", "eth2pll" }; void mtk_w32(struct mtk_eth *eth, u32 val, unsigned reg) { __raw_writel(val, eth->base + reg); } u32 mtk_r32(struct mtk_eth *eth, unsigned reg) { return __raw_readl(eth->base + reg); } static int mtk_mdio_busy_wait(struct mtk_eth *eth) { unsigned long t_start = jiffies; while (1) { if (!(mtk_r32(eth, MTK_PHY_IAC) & PHY_IAC_ACCESS)) return 0; if (time_after(jiffies, t_start + PHY_IAC_TIMEOUT)) break; usleep_range(10, 20); } dev_err(eth->dev, "mdio: MDIO timeout\n"); return -1; } static u32 _mtk_mdio_write(struct mtk_eth *eth, u32 phy_addr, u32 phy_register, u32 write_data) { if (mtk_mdio_busy_wait(eth)) return -1; write_data &= 0xffff; mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START | PHY_IAC_WRITE | (phy_register << PHY_IAC_REG_SHIFT) | (phy_addr << PHY_IAC_ADDR_SHIFT) | write_data, MTK_PHY_IAC); if (mtk_mdio_busy_wait(eth)) return -1; return 0; } static u32 _mtk_mdio_read(struct mtk_eth *eth, int phy_addr, int phy_reg) { u32 d; if (mtk_mdio_busy_wait(eth)) return 0xffff; mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START | PHY_IAC_READ | (phy_reg << PHY_IAC_REG_SHIFT) | (phy_addr << PHY_IAC_ADDR_SHIFT), MTK_PHY_IAC); if (mtk_mdio_busy_wait(eth)) return 0xffff; d = mtk_r32(eth, MTK_PHY_IAC) & 0xffff; return d; } static int mtk_mdio_write(struct mii_bus *bus, int phy_addr, int phy_reg, u16 val) { struct mtk_eth *eth = bus->priv; return _mtk_mdio_write(eth, phy_addr, phy_reg, val); } static int mtk_mdio_read(struct mii_bus *bus, int phy_addr, int phy_reg) { struct mtk_eth *eth = bus->priv; return _mtk_mdio_read(eth, phy_addr, phy_reg); } static void mtk_gmac0_rgmii_adjust(struct mtk_eth *eth, int speed) { u32 val; int ret; val = (speed == SPEED_1000) ? INTF_MODE_RGMII_1000 : INTF_MODE_RGMII_10_100; mtk_w32(eth, val, INTF_MODE); regmap_update_bits(eth->ethsys, ETHSYS_CLKCFG0, ETHSYS_TRGMII_CLK_SEL362_5, ETHSYS_TRGMII_CLK_SEL362_5); val = (speed == SPEED_1000) ? 250000000 : 500000000; ret = clk_set_rate(eth->clks[MTK_CLK_TRGPLL], val); if (ret) dev_err(eth->dev, "Failed to set trgmii pll: %d\n", ret); val = (speed == SPEED_1000) ? RCK_CTRL_RGMII_1000 : RCK_CTRL_RGMII_10_100; mtk_w32(eth, val, TRGMII_RCK_CTRL); val = (speed == SPEED_1000) ? TCK_CTRL_RGMII_1000 : TCK_CTRL_RGMII_10_100; mtk_w32(eth, val, TRGMII_TCK_CTRL); } static void mtk_gmac_sgmii_hw_setup(struct mtk_eth *eth, int mac_id) { u32 val; /* Setup the link timer and QPHY power up inside SGMIISYS */ regmap_write(eth->sgmiisys, SGMSYS_PCS_LINK_TIMER, SGMII_LINK_TIMER_DEFAULT); regmap_read(eth->sgmiisys, SGMSYS_SGMII_MODE, &val); val |= SGMII_REMOTE_FAULT_DIS; regmap_write(eth->sgmiisys, SGMSYS_SGMII_MODE, val); regmap_read(eth->sgmiisys, SGMSYS_PCS_CONTROL_1, &val); val |= SGMII_AN_RESTART; regmap_write(eth->sgmiisys, SGMSYS_PCS_CONTROL_1, val); regmap_read(eth->sgmiisys, SGMSYS_QPHY_PWR_STATE_CTRL, &val); val &= ~SGMII_PHYA_PWD; regmap_write(eth->sgmiisys, SGMSYS_QPHY_PWR_STATE_CTRL, val); /* Determine MUX for which GMAC uses the SGMII interface */ if (MTK_HAS_CAPS(eth->soc->caps, MTK_DUAL_GMAC_SHARED_SGMII)) { regmap_read(eth->ethsys, ETHSYS_SYSCFG0, &val); val &= ~SYSCFG0_SGMII_MASK; val |= !mac_id ? SYSCFG0_SGMII_GMAC1 : SYSCFG0_SGMII_GMAC2; regmap_write(eth->ethsys, ETHSYS_SYSCFG0, val); dev_info(eth->dev, "setup shared sgmii for gmac=%d\n", mac_id); } /* Setup the GMAC1 going through SGMII path when SoC also support * ESW on GMAC1 */ if (MTK_HAS_CAPS(eth->soc->caps, MTK_GMAC1_ESW | MTK_GMAC1_SGMII) && !mac_id) { mtk_w32(eth, 0, MTK_MAC_MISC); dev_info(eth->dev, "setup gmac1 going through sgmii"); } } static void mtk_phy_link_adjust(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); u16 lcl_adv = 0, rmt_adv = 0; u8 flowctrl; u32 mcr = MAC_MCR_MAX_RX_1536 | MAC_MCR_IPG_CFG | MAC_MCR_FORCE_MODE | MAC_MCR_TX_EN | MAC_MCR_RX_EN | MAC_MCR_BACKOFF_EN | MAC_MCR_BACKPR_EN; if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state))) return; switch (dev->phydev->speed) { case SPEED_1000: mcr |= MAC_MCR_SPEED_1000; break; case SPEED_100: mcr |= MAC_MCR_SPEED_100; break; } if (MTK_HAS_CAPS(mac->hw->soc->caps, MTK_GMAC1_TRGMII) && !mac->id && !mac->trgmii) mtk_gmac0_rgmii_adjust(mac->hw, dev->phydev->speed); if (dev->phydev->link) mcr |= MAC_MCR_FORCE_LINK; if (dev->phydev->duplex) { mcr |= MAC_MCR_FORCE_DPX; if (dev->phydev->pause) rmt_adv = LPA_PAUSE_CAP; if (dev->phydev->asym_pause) rmt_adv |= LPA_PAUSE_ASYM; lcl_adv = linkmode_adv_to_lcl_adv_t(dev->phydev->advertising); flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); if (flowctrl & FLOW_CTRL_TX) mcr |= MAC_MCR_FORCE_TX_FC; if (flowctrl & FLOW_CTRL_RX) mcr |= MAC_MCR_FORCE_RX_FC; netif_dbg(mac->hw, link, dev, "rx pause %s, tx pause %s\n", flowctrl & FLOW_CTRL_RX ? "enabled" : "disabled", flowctrl & FLOW_CTRL_TX ? "enabled" : "disabled"); } mtk_w32(mac->hw, mcr, MTK_MAC_MCR(mac->id)); if (!of_phy_is_fixed_link(mac->of_node)) phy_print_status(dev->phydev); } static int mtk_phy_connect_node(struct mtk_eth *eth, struct mtk_mac *mac, struct device_node *phy_node) { struct phy_device *phydev; int phy_mode; phy_mode = of_get_phy_mode(phy_node); if (phy_mode < 0) { dev_err(eth->dev, "incorrect phy-mode %d\n", phy_mode); return -EINVAL; } phydev = of_phy_connect(eth->netdev[mac->id], phy_node, mtk_phy_link_adjust, 0, phy_mode); if (!phydev) { dev_err(eth->dev, "could not connect to PHY\n"); return -ENODEV; } dev_info(eth->dev, "connected mac %d to PHY at %s [uid=%08x, driver=%s]\n", mac->id, phydev_name(phydev), phydev->phy_id, phydev->drv->name); return 0; } static int mtk_phy_connect(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth; struct device_node *np; u32 val; eth = mac->hw; np = of_parse_phandle(mac->of_node, "phy-handle", 0); if (!np && of_phy_is_fixed_link(mac->of_node)) if (!of_phy_register_fixed_link(mac->of_node)) np = of_node_get(mac->of_node); if (!np) return -ENODEV; mac->ge_mode = 0; switch (of_get_phy_mode(np)) { case PHY_INTERFACE_MODE_TRGMII: mac->trgmii = true; case PHY_INTERFACE_MODE_RGMII_TXID: case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII: break; case PHY_INTERFACE_MODE_SGMII: if (MTK_HAS_CAPS(eth->soc->caps, MTK_SGMII)) mtk_gmac_sgmii_hw_setup(eth, mac->id); break; case PHY_INTERFACE_MODE_MII: mac->ge_mode = 1; break; case PHY_INTERFACE_MODE_REVMII: mac->ge_mode = 2; break; case PHY_INTERFACE_MODE_RMII: if (!mac->id) goto err_phy; mac->ge_mode = 3; break; default: goto err_phy; } /* put the gmac into the right mode */ regmap_read(eth->ethsys, ETHSYS_SYSCFG0, &val); val &= ~SYSCFG0_GE_MODE(SYSCFG0_GE_MASK, mac->id); val |= SYSCFG0_GE_MODE(mac->ge_mode, mac->id); regmap_write(eth->ethsys, ETHSYS_SYSCFG0, val); /* couple phydev to net_device */ if (mtk_phy_connect_node(eth, mac, np)) goto err_phy; of_node_put(np); return 0; err_phy: if (of_phy_is_fixed_link(mac->of_node)) of_phy_deregister_fixed_link(mac->of_node); of_node_put(np); dev_err(eth->dev, "%s: invalid phy\n", __func__); return -EINVAL; } static int mtk_mdio_init(struct mtk_eth *eth) { struct device_node *mii_np; int ret; mii_np = of_get_child_by_name(eth->dev->of_node, "mdio-bus"); if (!mii_np) { dev_err(eth->dev, "no %s child node found", "mdio-bus"); return -ENODEV; } if (!of_device_is_available(mii_np)) { ret = -ENODEV; goto err_put_node; } eth->mii_bus = devm_mdiobus_alloc(eth->dev); if (!eth->mii_bus) { ret = -ENOMEM; goto err_put_node; } eth->mii_bus->name = "mdio"; eth->mii_bus->read = mtk_mdio_read; eth->mii_bus->write = mtk_mdio_write; eth->mii_bus->priv = eth; eth->mii_bus->parent = eth->dev; snprintf(eth->mii_bus->id, MII_BUS_ID_SIZE, "%pOFn", mii_np); ret = of_mdiobus_register(eth->mii_bus, mii_np); err_put_node: of_node_put(mii_np); return ret; } static void mtk_mdio_cleanup(struct mtk_eth *eth) { if (!eth->mii_bus) return; mdiobus_unregister(eth->mii_bus); } static inline void mtk_tx_irq_disable(struct mtk_eth *eth, u32 mask) { unsigned long flags; u32 val; spin_lock_irqsave(ð->tx_irq_lock, flags); val = mtk_r32(eth, MTK_QDMA_INT_MASK); mtk_w32(eth, val & ~mask, MTK_QDMA_INT_MASK); spin_unlock_irqrestore(ð->tx_irq_lock, flags); } static inline void mtk_tx_irq_enable(struct mtk_eth *eth, u32 mask) { unsigned long flags; u32 val; spin_lock_irqsave(ð->tx_irq_lock, flags); val = mtk_r32(eth, MTK_QDMA_INT_MASK); mtk_w32(eth, val | mask, MTK_QDMA_INT_MASK); spin_unlock_irqrestore(ð->tx_irq_lock, flags); } static inline void mtk_rx_irq_disable(struct mtk_eth *eth, u32 mask) { unsigned long flags; u32 val; spin_lock_irqsave(ð->rx_irq_lock, flags); val = mtk_r32(eth, MTK_PDMA_INT_MASK); mtk_w32(eth, val & ~mask, MTK_PDMA_INT_MASK); spin_unlock_irqrestore(ð->rx_irq_lock, flags); } static inline void mtk_rx_irq_enable(struct mtk_eth *eth, u32 mask) { unsigned long flags; u32 val; spin_lock_irqsave(ð->rx_irq_lock, flags); val = mtk_r32(eth, MTK_PDMA_INT_MASK); mtk_w32(eth, val | mask, MTK_PDMA_INT_MASK); spin_unlock_irqrestore(ð->rx_irq_lock, flags); } static int mtk_set_mac_address(struct net_device *dev, void *p) { int ret = eth_mac_addr(dev, p); struct mtk_mac *mac = netdev_priv(dev); const char *macaddr = dev->dev_addr; if (ret) return ret; if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state))) return -EBUSY; spin_lock_bh(&mac->hw->page_lock); mtk_w32(mac->hw, (macaddr[0] << 8) | macaddr[1], MTK_GDMA_MAC_ADRH(mac->id)); mtk_w32(mac->hw, (macaddr[2] << 24) | (macaddr[3] << 16) | (macaddr[4] << 8) | macaddr[5], MTK_GDMA_MAC_ADRL(mac->id)); spin_unlock_bh(&mac->hw->page_lock); return 0; } void mtk_stats_update_mac(struct mtk_mac *mac) { struct mtk_hw_stats *hw_stats = mac->hw_stats; unsigned int base = MTK_GDM1_TX_GBCNT; u64 stats; base += hw_stats->reg_offset; u64_stats_update_begin(&hw_stats->syncp); hw_stats->rx_bytes += mtk_r32(mac->hw, base); stats = mtk_r32(mac->hw, base + 0x04); if (stats) hw_stats->rx_bytes += (stats << 32); hw_stats->rx_packets += mtk_r32(mac->hw, base + 0x08); hw_stats->rx_overflow += mtk_r32(mac->hw, base + 0x10); hw_stats->rx_fcs_errors += mtk_r32(mac->hw, base + 0x14); hw_stats->rx_short_errors += mtk_r32(mac->hw, base + 0x18); hw_stats->rx_long_errors += mtk_r32(mac->hw, base + 0x1c); hw_stats->rx_checksum_errors += mtk_r32(mac->hw, base + 0x20); hw_stats->rx_flow_control_packets += mtk_r32(mac->hw, base + 0x24); hw_stats->tx_skip += mtk_r32(mac->hw, base + 0x28); hw_stats->tx_collisions += mtk_r32(mac->hw, base + 0x2c); hw_stats->tx_bytes += mtk_r32(mac->hw, base + 0x30); stats = mtk_r32(mac->hw, base + 0x34); if (stats) hw_stats->tx_bytes += (stats << 32); hw_stats->tx_packets += mtk_r32(mac->hw, base + 0x38); u64_stats_update_end(&hw_stats->syncp); } static void mtk_stats_update(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->mac[i] || !eth->mac[i]->hw_stats) continue; if (spin_trylock(ð->mac[i]->hw_stats->stats_lock)) { mtk_stats_update_mac(eth->mac[i]); spin_unlock(ð->mac[i]->hw_stats->stats_lock); } } } static void mtk_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_hw_stats *hw_stats = mac->hw_stats; unsigned int start; if (netif_running(dev) && netif_device_present(dev)) { if (spin_trylock_bh(&hw_stats->stats_lock)) { mtk_stats_update_mac(mac); spin_unlock_bh(&hw_stats->stats_lock); } } do { start = u64_stats_fetch_begin_irq(&hw_stats->syncp); storage->rx_packets = hw_stats->rx_packets; storage->tx_packets = hw_stats->tx_packets; storage->rx_bytes = hw_stats->rx_bytes; storage->tx_bytes = hw_stats->tx_bytes; storage->collisions = hw_stats->tx_collisions; storage->rx_length_errors = hw_stats->rx_short_errors + hw_stats->rx_long_errors; storage->rx_over_errors = hw_stats->rx_overflow; storage->rx_crc_errors = hw_stats->rx_fcs_errors; storage->rx_errors = hw_stats->rx_checksum_errors; storage->tx_aborted_errors = hw_stats->tx_skip; } while (u64_stats_fetch_retry_irq(&hw_stats->syncp, start)); storage->tx_errors = dev->stats.tx_errors; storage->rx_dropped = dev->stats.rx_dropped; storage->tx_dropped = dev->stats.tx_dropped; } static inline int mtk_max_frag_size(int mtu) { /* make sure buf_size will be at least MTK_MAX_RX_LENGTH */ if (mtu + MTK_RX_ETH_HLEN < MTK_MAX_RX_LENGTH) mtu = MTK_MAX_RX_LENGTH - MTK_RX_ETH_HLEN; return SKB_DATA_ALIGN(MTK_RX_HLEN + mtu) + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); } static inline int mtk_max_buf_size(int frag_size) { int buf_size = frag_size - NET_SKB_PAD - NET_IP_ALIGN - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); WARN_ON(buf_size < MTK_MAX_RX_LENGTH); return buf_size; } static inline void mtk_rx_get_desc(struct mtk_rx_dma *rxd, struct mtk_rx_dma *dma_rxd) { rxd->rxd1 = READ_ONCE(dma_rxd->rxd1); rxd->rxd2 = READ_ONCE(dma_rxd->rxd2); rxd->rxd3 = READ_ONCE(dma_rxd->rxd3); rxd->rxd4 = READ_ONCE(dma_rxd->rxd4); } /* the qdma core needs scratch memory to be setup */ static int mtk_init_fq_dma(struct mtk_eth *eth) { dma_addr_t phy_ring_tail; int cnt = MTK_DMA_SIZE; dma_addr_t dma_addr; int i; eth->scratch_ring = dma_alloc_coherent(eth->dev, cnt * sizeof(struct mtk_tx_dma), ð->phy_scratch_ring, GFP_ATOMIC); if (unlikely(!eth->scratch_ring)) return -ENOMEM; eth->scratch_head = kcalloc(cnt, MTK_QDMA_PAGE_SIZE, GFP_KERNEL); if (unlikely(!eth->scratch_head)) return -ENOMEM; dma_addr = dma_map_single(eth->dev, eth->scratch_head, cnt * MTK_QDMA_PAGE_SIZE, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(eth->dev, dma_addr))) return -ENOMEM; phy_ring_tail = eth->phy_scratch_ring + (sizeof(struct mtk_tx_dma) * (cnt - 1)); for (i = 0; i < cnt; i++) { eth->scratch_ring[i].txd1 = (dma_addr + (i * MTK_QDMA_PAGE_SIZE)); if (i < cnt - 1) eth->scratch_ring[i].txd2 = (eth->phy_scratch_ring + ((i + 1) * sizeof(struct mtk_tx_dma))); eth->scratch_ring[i].txd3 = TX_DMA_SDL(MTK_QDMA_PAGE_SIZE); } mtk_w32(eth, eth->phy_scratch_ring, MTK_QDMA_FQ_HEAD); mtk_w32(eth, phy_ring_tail, MTK_QDMA_FQ_TAIL); mtk_w32(eth, (cnt << 16) | cnt, MTK_QDMA_FQ_CNT); mtk_w32(eth, MTK_QDMA_PAGE_SIZE << 16, MTK_QDMA_FQ_BLEN); return 0; } static inline void *mtk_qdma_phys_to_virt(struct mtk_tx_ring *ring, u32 desc) { void *ret = ring->dma; return ret + (desc - ring->phys); } static inline struct mtk_tx_buf *mtk_desc_to_tx_buf(struct mtk_tx_ring *ring, struct mtk_tx_dma *txd) { int idx = txd - ring->dma; return &ring->buf[idx]; } static void mtk_tx_unmap(struct mtk_eth *eth, struct mtk_tx_buf *tx_buf) { if (tx_buf->flags & MTK_TX_FLAGS_SINGLE0) { dma_unmap_single(eth->dev, dma_unmap_addr(tx_buf, dma_addr0), dma_unmap_len(tx_buf, dma_len0), DMA_TO_DEVICE); } else if (tx_buf->flags & MTK_TX_FLAGS_PAGE0) { dma_unmap_page(eth->dev, dma_unmap_addr(tx_buf, dma_addr0), dma_unmap_len(tx_buf, dma_len0), DMA_TO_DEVICE); } tx_buf->flags = 0; if (tx_buf->skb && (tx_buf->skb != (struct sk_buff *)MTK_DMA_DUMMY_DESC)) dev_kfree_skb_any(tx_buf->skb); tx_buf->skb = NULL; } static int mtk_tx_map(struct sk_buff *skb, struct net_device *dev, int tx_num, struct mtk_tx_ring *ring, bool gso) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; struct mtk_tx_dma *itxd, *txd; struct mtk_tx_buf *itx_buf, *tx_buf; dma_addr_t mapped_addr; unsigned int nr_frags; int i, n_desc = 1; u32 txd4 = 0, fport; itxd = ring->next_free; if (itxd == ring->last_free) return -ENOMEM; /* set the forward port */ fport = (mac->id + 1) << TX_DMA_FPORT_SHIFT; txd4 |= fport; itx_buf = mtk_desc_to_tx_buf(ring, itxd); memset(itx_buf, 0, sizeof(*itx_buf)); if (gso) txd4 |= TX_DMA_TSO; /* TX Checksum offload */ if (skb->ip_summed == CHECKSUM_PARTIAL) txd4 |= TX_DMA_CHKSUM; /* VLAN header offload */ if (skb_vlan_tag_present(skb)) txd4 |= TX_DMA_INS_VLAN | skb_vlan_tag_get(skb); mapped_addr = dma_map_single(eth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(eth->dev, mapped_addr))) return -ENOMEM; WRITE_ONCE(itxd->txd1, mapped_addr); itx_buf->flags |= MTK_TX_FLAGS_SINGLE0; itx_buf->flags |= (!mac->id) ? MTK_TX_FLAGS_FPORT0 : MTK_TX_FLAGS_FPORT1; dma_unmap_addr_set(itx_buf, dma_addr0, mapped_addr); dma_unmap_len_set(itx_buf, dma_len0, skb_headlen(skb)); /* TX SG offload */ txd = itxd; nr_frags = skb_shinfo(skb)->nr_frags; for (i = 0; i < nr_frags; i++) { struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i]; unsigned int offset = 0; int frag_size = skb_frag_size(frag); while (frag_size) { bool last_frag = false; unsigned int frag_map_size; txd = mtk_qdma_phys_to_virt(ring, txd->txd2); if (txd == ring->last_free) goto err_dma; n_desc++; frag_map_size = min(frag_size, MTK_TX_DMA_BUF_LEN); mapped_addr = skb_frag_dma_map(eth->dev, frag, offset, frag_map_size, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(eth->dev, mapped_addr))) goto err_dma; if (i == nr_frags - 1 && (frag_size - frag_map_size) == 0) last_frag = true; WRITE_ONCE(txd->txd1, mapped_addr); WRITE_ONCE(txd->txd3, (TX_DMA_SWC | TX_DMA_PLEN0(frag_map_size) | last_frag * TX_DMA_LS0)); WRITE_ONCE(txd->txd4, fport); tx_buf = mtk_desc_to_tx_buf(ring, txd); memset(tx_buf, 0, sizeof(*tx_buf)); tx_buf->skb = (struct sk_buff *)MTK_DMA_DUMMY_DESC; tx_buf->flags |= MTK_TX_FLAGS_PAGE0; tx_buf->flags |= (!mac->id) ? MTK_TX_FLAGS_FPORT0 : MTK_TX_FLAGS_FPORT1; dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr); dma_unmap_len_set(tx_buf, dma_len0, frag_map_size); frag_size -= frag_map_size; offset += frag_map_size; } } /* store skb to cleanup */ itx_buf->skb = skb; WRITE_ONCE(itxd->txd4, txd4); WRITE_ONCE(itxd->txd3, (TX_DMA_SWC | TX_DMA_PLEN0(skb_headlen(skb)) | (!nr_frags * TX_DMA_LS0))); netdev_sent_queue(dev, skb->len); skb_tx_timestamp(skb); ring->next_free = mtk_qdma_phys_to_virt(ring, txd->txd2); atomic_sub(n_desc, &ring->free_count); /* make sure that all changes to the dma ring are flushed before we * continue */ wmb(); if (netif_xmit_stopped(netdev_get_tx_queue(dev, 0)) || !netdev_xmit_more()) mtk_w32(eth, txd->txd2, MTK_QTX_CTX_PTR); return 0; err_dma: do { tx_buf = mtk_desc_to_tx_buf(ring, itxd); /* unmap dma */ mtk_tx_unmap(eth, tx_buf); itxd->txd3 = TX_DMA_LS0 | TX_DMA_OWNER_CPU; itxd = mtk_qdma_phys_to_virt(ring, itxd->txd2); } while (itxd != txd); return -ENOMEM; } static inline int mtk_cal_txd_req(struct sk_buff *skb) { int i, nfrags; struct skb_frag_struct *frag; nfrags = 1; if (skb_is_gso(skb)) { for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { frag = &skb_shinfo(skb)->frags[i]; nfrags += DIV_ROUND_UP(frag->size, MTK_TX_DMA_BUF_LEN); } } else { nfrags += skb_shinfo(skb)->nr_frags; } return nfrags; } static int mtk_queue_stopped(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->netdev[i]) continue; if (netif_queue_stopped(eth->netdev[i])) return 1; } return 0; } static void mtk_wake_queue(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->netdev[i]) continue; netif_wake_queue(eth->netdev[i]); } } static void mtk_stop_queue(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->netdev[i]) continue; netif_stop_queue(eth->netdev[i]); } } static int mtk_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; struct mtk_tx_ring *ring = ð->tx_ring; struct net_device_stats *stats = &dev->stats; bool gso = false; int tx_num; /* normally we can rely on the stack not calling this more than once, * however we have 2 queues running on the same ring so we need to lock * the ring access */ spin_lock(ð->page_lock); if (unlikely(test_bit(MTK_RESETTING, ð->state))) goto drop; tx_num = mtk_cal_txd_req(skb); if (unlikely(atomic_read(&ring->free_count) <= tx_num)) { mtk_stop_queue(eth); netif_err(eth, tx_queued, dev, "Tx Ring full when queue awake!\n"); spin_unlock(ð->page_lock); return NETDEV_TX_BUSY; } /* TSO: fill MSS info in tcp checksum field */ if (skb_is_gso(skb)) { if (skb_cow_head(skb, 0)) { netif_warn(eth, tx_err, dev, "GSO expand head fail.\n"); goto drop; } if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) { gso = true; tcp_hdr(skb)->check = htons(skb_shinfo(skb)->gso_size); } } if (mtk_tx_map(skb, dev, tx_num, ring, gso) < 0) goto drop; if (unlikely(atomic_read(&ring->free_count) <= ring->thresh)) mtk_stop_queue(eth); spin_unlock(ð->page_lock); return NETDEV_TX_OK; drop: spin_unlock(ð->page_lock); stats->tx_dropped++; dev_kfree_skb_any(skb); return NETDEV_TX_OK; } static struct mtk_rx_ring *mtk_get_rx_ring(struct mtk_eth *eth) { int i; struct mtk_rx_ring *ring; int idx; if (!eth->hwlro) return ð->rx_ring[0]; for (i = 0; i < MTK_MAX_RX_RING_NUM; i++) { ring = ð->rx_ring[i]; idx = NEXT_RX_DESP_IDX(ring->calc_idx, ring->dma_size); if (ring->dma[idx].rxd2 & RX_DMA_DONE) { ring->calc_idx_update = true; return ring; } } return NULL; } static void mtk_update_rx_cpu_idx(struct mtk_eth *eth) { struct mtk_rx_ring *ring; int i; if (!eth->hwlro) { ring = ð->rx_ring[0]; mtk_w32(eth, ring->calc_idx, ring->crx_idx_reg); } else { for (i = 0; i < MTK_MAX_RX_RING_NUM; i++) { ring = ð->rx_ring[i]; if (ring->calc_idx_update) { ring->calc_idx_update = false; mtk_w32(eth, ring->calc_idx, ring->crx_idx_reg); } } } } static int mtk_poll_rx(struct napi_struct *napi, int budget, struct mtk_eth *eth) { struct mtk_rx_ring *ring; int idx; struct sk_buff *skb; u8 *data, *new_data; struct mtk_rx_dma *rxd, trxd; int done = 0; while (done < budget) { struct net_device *netdev; unsigned int pktlen; dma_addr_t dma_addr; int mac = 0; ring = mtk_get_rx_ring(eth); if (unlikely(!ring)) goto rx_done; idx = NEXT_RX_DESP_IDX(ring->calc_idx, ring->dma_size); rxd = &ring->dma[idx]; data = ring->data[idx]; mtk_rx_get_desc(&trxd, rxd); if (!(trxd.rxd2 & RX_DMA_DONE)) break; /* find out which mac the packet come from. values start at 1 */ mac = (trxd.rxd4 >> RX_DMA_FPORT_SHIFT) & RX_DMA_FPORT_MASK; mac--; if (unlikely(mac < 0 || mac >= MTK_MAC_COUNT || !eth->netdev[mac])) goto release_desc; netdev = eth->netdev[mac]; if (unlikely(test_bit(MTK_RESETTING, ð->state))) goto release_desc; /* alloc new buffer */ new_data = napi_alloc_frag(ring->frag_size); if (unlikely(!new_data)) { netdev->stats.rx_dropped++; goto release_desc; } dma_addr = dma_map_single(eth->dev, new_data + NET_SKB_PAD, ring->buf_size, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(eth->dev, dma_addr))) { skb_free_frag(new_data); netdev->stats.rx_dropped++; goto release_desc; } /* receive data */ skb = build_skb(data, ring->frag_size); if (unlikely(!skb)) { skb_free_frag(new_data); netdev->stats.rx_dropped++; goto release_desc; } skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); dma_unmap_single(eth->dev, trxd.rxd1, ring->buf_size, DMA_FROM_DEVICE); pktlen = RX_DMA_GET_PLEN0(trxd.rxd2); skb->dev = netdev; skb_put(skb, pktlen); if (trxd.rxd4 & RX_DMA_L4_VALID) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb_checksum_none_assert(skb); skb->protocol = eth_type_trans(skb, netdev); if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX && RX_DMA_VID(trxd.rxd3)) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), RX_DMA_VID(trxd.rxd3)); skb_record_rx_queue(skb, 0); napi_gro_receive(napi, skb); ring->data[idx] = new_data; rxd->rxd1 = (unsigned int)dma_addr; release_desc: rxd->rxd2 = RX_DMA_PLEN0(ring->buf_size); ring->calc_idx = idx; done++; } rx_done: if (done) { /* make sure that all changes to the dma ring are flushed before * we continue */ wmb(); mtk_update_rx_cpu_idx(eth); } return done; } static int mtk_poll_tx(struct mtk_eth *eth, int budget) { struct mtk_tx_ring *ring = ð->tx_ring; struct mtk_tx_dma *desc; struct sk_buff *skb; struct mtk_tx_buf *tx_buf; unsigned int done[MTK_MAX_DEVS]; unsigned int bytes[MTK_MAX_DEVS]; u32 cpu, dma; int total = 0, i; memset(done, 0, sizeof(done)); memset(bytes, 0, sizeof(bytes)); cpu = mtk_r32(eth, MTK_QTX_CRX_PTR); dma = mtk_r32(eth, MTK_QTX_DRX_PTR); desc = mtk_qdma_phys_to_virt(ring, cpu); while ((cpu != dma) && budget) { u32 next_cpu = desc->txd2; int mac = 0; desc = mtk_qdma_phys_to_virt(ring, desc->txd2); if ((desc->txd3 & TX_DMA_OWNER_CPU) == 0) break; tx_buf = mtk_desc_to_tx_buf(ring, desc); if (tx_buf->flags & MTK_TX_FLAGS_FPORT1) mac = 1; skb = tx_buf->skb; if (!skb) break; if (skb != (struct sk_buff *)MTK_DMA_DUMMY_DESC) { bytes[mac] += skb->len; done[mac]++; budget--; } mtk_tx_unmap(eth, tx_buf); ring->last_free = desc; atomic_inc(&ring->free_count); cpu = next_cpu; } mtk_w32(eth, cpu, MTK_QTX_CRX_PTR); for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->netdev[i] || !done[i]) continue; netdev_completed_queue(eth->netdev[i], done[i], bytes[i]); total += done[i]; } if (mtk_queue_stopped(eth) && (atomic_read(&ring->free_count) > ring->thresh)) mtk_wake_queue(eth); return total; } static void mtk_handle_status_irq(struct mtk_eth *eth) { u32 status2 = mtk_r32(eth, MTK_INT_STATUS2); if (unlikely(status2 & (MTK_GDM1_AF | MTK_GDM2_AF))) { mtk_stats_update(eth); mtk_w32(eth, (MTK_GDM1_AF | MTK_GDM2_AF), MTK_INT_STATUS2); } } static int mtk_napi_tx(struct napi_struct *napi, int budget) { struct mtk_eth *eth = container_of(napi, struct mtk_eth, tx_napi); u32 status, mask; int tx_done = 0; mtk_handle_status_irq(eth); mtk_w32(eth, MTK_TX_DONE_INT, MTK_QMTK_INT_STATUS); tx_done = mtk_poll_tx(eth, budget); if (unlikely(netif_msg_intr(eth))) { status = mtk_r32(eth, MTK_QMTK_INT_STATUS); mask = mtk_r32(eth, MTK_QDMA_INT_MASK); dev_info(eth->dev, "done tx %d, intr 0x%08x/0x%x\n", tx_done, status, mask); } if (tx_done == budget) return budget; status = mtk_r32(eth, MTK_QMTK_INT_STATUS); if (status & MTK_TX_DONE_INT) return budget; napi_complete(napi); mtk_tx_irq_enable(eth, MTK_TX_DONE_INT); return tx_done; } static int mtk_napi_rx(struct napi_struct *napi, int budget) { struct mtk_eth *eth = container_of(napi, struct mtk_eth, rx_napi); u32 status, mask; int rx_done = 0; int remain_budget = budget; mtk_handle_status_irq(eth); poll_again: mtk_w32(eth, MTK_RX_DONE_INT, MTK_PDMA_INT_STATUS); rx_done = mtk_poll_rx(napi, remain_budget, eth); if (unlikely(netif_msg_intr(eth))) { status = mtk_r32(eth, MTK_PDMA_INT_STATUS); mask = mtk_r32(eth, MTK_PDMA_INT_MASK); dev_info(eth->dev, "done rx %d, intr 0x%08x/0x%x\n", rx_done, status, mask); } if (rx_done == remain_budget) return budget; status = mtk_r32(eth, MTK_PDMA_INT_STATUS); if (status & MTK_RX_DONE_INT) { remain_budget -= rx_done; goto poll_again; } napi_complete(napi); mtk_rx_irq_enable(eth, MTK_RX_DONE_INT); return rx_done + budget - remain_budget; } static int mtk_tx_alloc(struct mtk_eth *eth) { struct mtk_tx_ring *ring = ð->tx_ring; int i, sz = sizeof(*ring->dma); ring->buf = kcalloc(MTK_DMA_SIZE, sizeof(*ring->buf), GFP_KERNEL); if (!ring->buf) goto no_tx_mem; ring->dma = dma_alloc_coherent(eth->dev, MTK_DMA_SIZE * sz, &ring->phys, GFP_ATOMIC); if (!ring->dma) goto no_tx_mem; for (i = 0; i < MTK_DMA_SIZE; i++) { int next = (i + 1) % MTK_DMA_SIZE; u32 next_ptr = ring->phys + next * sz; ring->dma[i].txd2 = next_ptr; ring->dma[i].txd3 = TX_DMA_LS0 | TX_DMA_OWNER_CPU; } atomic_set(&ring->free_count, MTK_DMA_SIZE - 2); ring->next_free = &ring->dma[0]; ring->last_free = &ring->dma[MTK_DMA_SIZE - 1]; ring->thresh = MAX_SKB_FRAGS; /* make sure that all changes to the dma ring are flushed before we * continue */ wmb(); mtk_w32(eth, ring->phys, MTK_QTX_CTX_PTR); mtk_w32(eth, ring->phys, MTK_QTX_DTX_PTR); mtk_w32(eth, ring->phys + ((MTK_DMA_SIZE - 1) * sz), MTK_QTX_CRX_PTR); mtk_w32(eth, ring->phys + ((MTK_DMA_SIZE - 1) * sz), MTK_QTX_DRX_PTR); mtk_w32(eth, (QDMA_RES_THRES << 8) | QDMA_RES_THRES, MTK_QTX_CFG(0)); return 0; no_tx_mem: return -ENOMEM; } static void mtk_tx_clean(struct mtk_eth *eth) { struct mtk_tx_ring *ring = ð->tx_ring; int i; if (ring->buf) { for (i = 0; i < MTK_DMA_SIZE; i++) mtk_tx_unmap(eth, &ring->buf[i]); kfree(ring->buf); ring->buf = NULL; } if (ring->dma) { dma_free_coherent(eth->dev, MTK_DMA_SIZE * sizeof(*ring->dma), ring->dma, ring->phys); ring->dma = NULL; } } static int mtk_rx_alloc(struct mtk_eth *eth, int ring_no, int rx_flag) { struct mtk_rx_ring *ring; int rx_data_len, rx_dma_size; int i; u32 offset = 0; if (rx_flag == MTK_RX_FLAGS_QDMA) { if (ring_no) return -EINVAL; ring = ð->rx_ring_qdma; offset = 0x1000; } else { ring = ð->rx_ring[ring_no]; } if (rx_flag == MTK_RX_FLAGS_HWLRO) { rx_data_len = MTK_MAX_LRO_RX_LENGTH; rx_dma_size = MTK_HW_LRO_DMA_SIZE; } else { rx_data_len = ETH_DATA_LEN; rx_dma_size = MTK_DMA_SIZE; } ring->frag_size = mtk_max_frag_size(rx_data_len); ring->buf_size = mtk_max_buf_size(ring->frag_size); ring->data = kcalloc(rx_dma_size, sizeof(*ring->data), GFP_KERNEL); if (!ring->data) return -ENOMEM; for (i = 0; i < rx_dma_size; i++) { ring->data[i] = netdev_alloc_frag(ring->frag_size); if (!ring->data[i]) return -ENOMEM; } ring->dma = dma_alloc_coherent(eth->dev, rx_dma_size * sizeof(*ring->dma), &ring->phys, GFP_ATOMIC); if (!ring->dma) return -ENOMEM; for (i = 0; i < rx_dma_size; i++) { dma_addr_t dma_addr = dma_map_single(eth->dev, ring->data[i] + NET_SKB_PAD, ring->buf_size, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(eth->dev, dma_addr))) return -ENOMEM; ring->dma[i].rxd1 = (unsigned int)dma_addr; ring->dma[i].rxd2 = RX_DMA_PLEN0(ring->buf_size); } ring->dma_size = rx_dma_size; ring->calc_idx_update = false; ring->calc_idx = rx_dma_size - 1; ring->crx_idx_reg = MTK_PRX_CRX_IDX_CFG(ring_no); /* make sure that all changes to the dma ring are flushed before we * continue */ wmb(); mtk_w32(eth, ring->phys, MTK_PRX_BASE_PTR_CFG(ring_no) + offset); mtk_w32(eth, rx_dma_size, MTK_PRX_MAX_CNT_CFG(ring_no) + offset); mtk_w32(eth, ring->calc_idx, ring->crx_idx_reg + offset); mtk_w32(eth, MTK_PST_DRX_IDX_CFG(ring_no), MTK_PDMA_RST_IDX + offset); return 0; } static void mtk_rx_clean(struct mtk_eth *eth, struct mtk_rx_ring *ring) { int i; if (ring->data && ring->dma) { for (i = 0; i < ring->dma_size; i++) { if (!ring->data[i]) continue; if (!ring->dma[i].rxd1) continue; dma_unmap_single(eth->dev, ring->dma[i].rxd1, ring->buf_size, DMA_FROM_DEVICE); skb_free_frag(ring->data[i]); } kfree(ring->data); ring->data = NULL; } if (ring->dma) { dma_free_coherent(eth->dev, ring->dma_size * sizeof(*ring->dma), ring->dma, ring->phys); ring->dma = NULL; } } static int mtk_hwlro_rx_init(struct mtk_eth *eth) { int i; u32 ring_ctrl_dw1 = 0, ring_ctrl_dw2 = 0, ring_ctrl_dw3 = 0; u32 lro_ctrl_dw0 = 0, lro_ctrl_dw3 = 0; /* set LRO rings to auto-learn modes */ ring_ctrl_dw2 |= MTK_RING_AUTO_LERAN_MODE; /* validate LRO ring */ ring_ctrl_dw2 |= MTK_RING_VLD; /* set AGE timer (unit: 20us) */ ring_ctrl_dw2 |= MTK_RING_AGE_TIME_H; ring_ctrl_dw1 |= MTK_RING_AGE_TIME_L; /* set max AGG timer (unit: 20us) */ ring_ctrl_dw2 |= MTK_RING_MAX_AGG_TIME; /* set max LRO AGG count */ ring_ctrl_dw2 |= MTK_RING_MAX_AGG_CNT_L; ring_ctrl_dw3 |= MTK_RING_MAX_AGG_CNT_H; for (i = 1; i < MTK_MAX_RX_RING_NUM; i++) { mtk_w32(eth, ring_ctrl_dw1, MTK_LRO_CTRL_DW1_CFG(i)); mtk_w32(eth, ring_ctrl_dw2, MTK_LRO_CTRL_DW2_CFG(i)); mtk_w32(eth, ring_ctrl_dw3, MTK_LRO_CTRL_DW3_CFG(i)); } /* IPv4 checksum update enable */ lro_ctrl_dw0 |= MTK_L3_CKS_UPD_EN; /* switch priority comparison to packet count mode */ lro_ctrl_dw0 |= MTK_LRO_ALT_PKT_CNT_MODE; /* bandwidth threshold setting */ mtk_w32(eth, MTK_HW_LRO_BW_THRE, MTK_PDMA_LRO_CTRL_DW2); /* auto-learn score delta setting */ mtk_w32(eth, MTK_HW_LRO_REPLACE_DELTA, MTK_PDMA_LRO_ALT_SCORE_DELTA); /* set refresh timer for altering flows to 1 sec. (unit: 20us) */ mtk_w32(eth, (MTK_HW_LRO_TIMER_UNIT << 16) | MTK_HW_LRO_REFRESH_TIME, MTK_PDMA_LRO_ALT_REFRESH_TIMER); /* set HW LRO mode & the max aggregation count for rx packets */ lro_ctrl_dw3 |= MTK_ADMA_MODE | (MTK_HW_LRO_MAX_AGG_CNT & 0xff); /* the minimal remaining room of SDL0 in RXD for lro aggregation */ lro_ctrl_dw3 |= MTK_LRO_MIN_RXD_SDL; /* enable HW LRO */ lro_ctrl_dw0 |= MTK_LRO_EN; mtk_w32(eth, lro_ctrl_dw3, MTK_PDMA_LRO_CTRL_DW3); mtk_w32(eth, lro_ctrl_dw0, MTK_PDMA_LRO_CTRL_DW0); return 0; } static void mtk_hwlro_rx_uninit(struct mtk_eth *eth) { int i; u32 val; /* relinquish lro rings, flush aggregated packets */ mtk_w32(eth, MTK_LRO_RING_RELINQUISH_REQ, MTK_PDMA_LRO_CTRL_DW0); /* wait for relinquishments done */ for (i = 0; i < 10; i++) { val = mtk_r32(eth, MTK_PDMA_LRO_CTRL_DW0); if (val & MTK_LRO_RING_RELINQUISH_DONE) { msleep(20); continue; } break; } /* invalidate lro rings */ for (i = 1; i < MTK_MAX_RX_RING_NUM; i++) mtk_w32(eth, 0, MTK_LRO_CTRL_DW2_CFG(i)); /* disable HW LRO */ mtk_w32(eth, 0, MTK_PDMA_LRO_CTRL_DW0); } static void mtk_hwlro_val_ipaddr(struct mtk_eth *eth, int idx, __be32 ip) { u32 reg_val; reg_val = mtk_r32(eth, MTK_LRO_CTRL_DW2_CFG(idx)); /* invalidate the IP setting */ mtk_w32(eth, (reg_val & ~MTK_RING_MYIP_VLD), MTK_LRO_CTRL_DW2_CFG(idx)); mtk_w32(eth, ip, MTK_LRO_DIP_DW0_CFG(idx)); /* validate the IP setting */ mtk_w32(eth, (reg_val | MTK_RING_MYIP_VLD), MTK_LRO_CTRL_DW2_CFG(idx)); } static void mtk_hwlro_inval_ipaddr(struct mtk_eth *eth, int idx) { u32 reg_val; reg_val = mtk_r32(eth, MTK_LRO_CTRL_DW2_CFG(idx)); /* invalidate the IP setting */ mtk_w32(eth, (reg_val & ~MTK_RING_MYIP_VLD), MTK_LRO_CTRL_DW2_CFG(idx)); mtk_w32(eth, 0, MTK_LRO_DIP_DW0_CFG(idx)); } static int mtk_hwlro_get_ip_cnt(struct mtk_mac *mac) { int cnt = 0; int i; for (i = 0; i < MTK_MAX_LRO_IP_CNT; i++) { if (mac->hwlro_ip[i]) cnt++; } return cnt; } static int mtk_hwlro_add_ipaddr(struct net_device *dev, struct ethtool_rxnfc *cmd) { struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; int hwlro_idx; if ((fsp->flow_type != TCP_V4_FLOW) || (!fsp->h_u.tcp_ip4_spec.ip4dst) || (fsp->location > 1)) return -EINVAL; mac->hwlro_ip[fsp->location] = htonl(fsp->h_u.tcp_ip4_spec.ip4dst); hwlro_idx = (mac->id * MTK_MAX_LRO_IP_CNT) + fsp->location; mac->hwlro_ip_cnt = mtk_hwlro_get_ip_cnt(mac); mtk_hwlro_val_ipaddr(eth, hwlro_idx, mac->hwlro_ip[fsp->location]); return 0; } static int mtk_hwlro_del_ipaddr(struct net_device *dev, struct ethtool_rxnfc *cmd) { struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; int hwlro_idx; if (fsp->location > 1) return -EINVAL; mac->hwlro_ip[fsp->location] = 0; hwlro_idx = (mac->id * MTK_MAX_LRO_IP_CNT) + fsp->location; mac->hwlro_ip_cnt = mtk_hwlro_get_ip_cnt(mac); mtk_hwlro_inval_ipaddr(eth, hwlro_idx); return 0; } static void mtk_hwlro_netdev_disable(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; int i, hwlro_idx; for (i = 0; i < MTK_MAX_LRO_IP_CNT; i++) { mac->hwlro_ip[i] = 0; hwlro_idx = (mac->id * MTK_MAX_LRO_IP_CNT) + i; mtk_hwlro_inval_ipaddr(eth, hwlro_idx); } mac->hwlro_ip_cnt = 0; } static int mtk_hwlro_get_fdir_entry(struct net_device *dev, struct ethtool_rxnfc *cmd) { struct mtk_mac *mac = netdev_priv(dev); struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; /* only tcp dst ipv4 is meaningful, others are meaningless */ fsp->flow_type = TCP_V4_FLOW; fsp->h_u.tcp_ip4_spec.ip4dst = ntohl(mac->hwlro_ip[fsp->location]); fsp->m_u.tcp_ip4_spec.ip4dst = 0; fsp->h_u.tcp_ip4_spec.ip4src = 0; fsp->m_u.tcp_ip4_spec.ip4src = 0xffffffff; fsp->h_u.tcp_ip4_spec.psrc = 0; fsp->m_u.tcp_ip4_spec.psrc = 0xffff; fsp->h_u.tcp_ip4_spec.pdst = 0; fsp->m_u.tcp_ip4_spec.pdst = 0xffff; fsp->h_u.tcp_ip4_spec.tos = 0; fsp->m_u.tcp_ip4_spec.tos = 0xff; return 0; } static int mtk_hwlro_get_fdir_all(struct net_device *dev, struct ethtool_rxnfc *cmd, u32 *rule_locs) { struct mtk_mac *mac = netdev_priv(dev); int cnt = 0; int i; for (i = 0; i < MTK_MAX_LRO_IP_CNT; i++) { if (mac->hwlro_ip[i]) { rule_locs[cnt] = i; cnt++; } } cmd->rule_cnt = cnt; return 0; } static netdev_features_t mtk_fix_features(struct net_device *dev, netdev_features_t features) { if (!(features & NETIF_F_LRO)) { struct mtk_mac *mac = netdev_priv(dev); int ip_cnt = mtk_hwlro_get_ip_cnt(mac); if (ip_cnt) { netdev_info(dev, "RX flow is programmed, LRO should keep on\n"); features |= NETIF_F_LRO; } } return features; } static int mtk_set_features(struct net_device *dev, netdev_features_t features) { int err = 0; if (!((dev->features ^ features) & NETIF_F_LRO)) return 0; if (!(features & NETIF_F_LRO)) mtk_hwlro_netdev_disable(dev); return err; } /* wait for DMA to finish whatever it is doing before we start using it again */ static int mtk_dma_busy_wait(struct mtk_eth *eth) { unsigned long t_start = jiffies; while (1) { if (!(mtk_r32(eth, MTK_QDMA_GLO_CFG) & (MTK_RX_DMA_BUSY | MTK_TX_DMA_BUSY))) return 0; if (time_after(jiffies, t_start + MTK_DMA_BUSY_TIMEOUT)) break; } dev_err(eth->dev, "DMA init timeout\n"); return -1; } static int mtk_dma_init(struct mtk_eth *eth) { int err; u32 i; if (mtk_dma_busy_wait(eth)) return -EBUSY; /* QDMA needs scratch memory for internal reordering of the * descriptors */ err = mtk_init_fq_dma(eth); if (err) return err; err = mtk_tx_alloc(eth); if (err) return err; err = mtk_rx_alloc(eth, 0, MTK_RX_FLAGS_QDMA); if (err) return err; err = mtk_rx_alloc(eth, 0, MTK_RX_FLAGS_NORMAL); if (err) return err; if (eth->hwlro) { for (i = 1; i < MTK_MAX_RX_RING_NUM; i++) { err = mtk_rx_alloc(eth, i, MTK_RX_FLAGS_HWLRO); if (err) return err; } err = mtk_hwlro_rx_init(eth); if (err) return err; } /* Enable random early drop and set drop threshold automatically */ mtk_w32(eth, FC_THRES_DROP_MODE | FC_THRES_DROP_EN | FC_THRES_MIN, MTK_QDMA_FC_THRES); mtk_w32(eth, 0x0, MTK_QDMA_HRED2); return 0; } static void mtk_dma_free(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAC_COUNT; i++) if (eth->netdev[i]) netdev_reset_queue(eth->netdev[i]); if (eth->scratch_ring) { dma_free_coherent(eth->dev, MTK_DMA_SIZE * sizeof(struct mtk_tx_dma), eth->scratch_ring, eth->phy_scratch_ring); eth->scratch_ring = NULL; eth->phy_scratch_ring = 0; } mtk_tx_clean(eth); mtk_rx_clean(eth, ð->rx_ring[0]); mtk_rx_clean(eth, ð->rx_ring_qdma); if (eth->hwlro) { mtk_hwlro_rx_uninit(eth); for (i = 1; i < MTK_MAX_RX_RING_NUM; i++) mtk_rx_clean(eth, ð->rx_ring[i]); } kfree(eth->scratch_head); } static void mtk_tx_timeout(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; eth->netdev[mac->id]->stats.tx_errors++; netif_err(eth, tx_err, dev, "transmit timed out\n"); schedule_work(ð->pending_work); } static irqreturn_t mtk_handle_irq_rx(int irq, void *_eth) { struct mtk_eth *eth = _eth; if (likely(napi_schedule_prep(ð->rx_napi))) { __napi_schedule(ð->rx_napi); mtk_rx_irq_disable(eth, MTK_RX_DONE_INT); } return IRQ_HANDLED; } static irqreturn_t mtk_handle_irq_tx(int irq, void *_eth) { struct mtk_eth *eth = _eth; if (likely(napi_schedule_prep(ð->tx_napi))) { __napi_schedule(ð->tx_napi); mtk_tx_irq_disable(eth, MTK_TX_DONE_INT); } return IRQ_HANDLED; } static irqreturn_t mtk_handle_irq(int irq, void *_eth) { struct mtk_eth *eth = _eth; if (mtk_r32(eth, MTK_PDMA_INT_MASK) & MTK_RX_DONE_INT) { if (mtk_r32(eth, MTK_PDMA_INT_STATUS) & MTK_RX_DONE_INT) mtk_handle_irq_rx(irq, _eth); } if (mtk_r32(eth, MTK_QDMA_INT_MASK) & MTK_TX_DONE_INT) { if (mtk_r32(eth, MTK_QMTK_INT_STATUS) & MTK_TX_DONE_INT) mtk_handle_irq_tx(irq, _eth); } return IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER static void mtk_poll_controller(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; mtk_tx_irq_disable(eth, MTK_TX_DONE_INT); mtk_rx_irq_disable(eth, MTK_RX_DONE_INT); mtk_handle_irq_rx(eth->irq[2], dev); mtk_tx_irq_enable(eth, MTK_TX_DONE_INT); mtk_rx_irq_enable(eth, MTK_RX_DONE_INT); } #endif static int mtk_start_dma(struct mtk_eth *eth) { u32 rx_2b_offset = (NET_IP_ALIGN == 2) ? MTK_RX_2B_OFFSET : 0; int err; err = mtk_dma_init(eth); if (err) { mtk_dma_free(eth); return err; } mtk_w32(eth, MTK_TX_WB_DDONE | MTK_TX_DMA_EN | MTK_DMA_SIZE_16DWORDS | MTK_NDP_CO_PRO | MTK_RX_DMA_EN | MTK_RX_2B_OFFSET | MTK_RX_BT_32DWORDS, MTK_QDMA_GLO_CFG); mtk_w32(eth, MTK_RX_DMA_EN | rx_2b_offset | MTK_RX_BT_32DWORDS | MTK_MULTI_EN, MTK_PDMA_GLO_CFG); return 0; } static int mtk_open(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; /* we run 2 netdevs on the same dma ring so we only bring it up once */ if (!refcount_read(ð->dma_refcnt)) { int err = mtk_start_dma(eth); if (err) return err; napi_enable(ð->tx_napi); napi_enable(ð->rx_napi); mtk_tx_irq_enable(eth, MTK_TX_DONE_INT); mtk_rx_irq_enable(eth, MTK_RX_DONE_INT); refcount_set(ð->dma_refcnt, 1); } else refcount_inc(ð->dma_refcnt); phy_start(dev->phydev); netif_start_queue(dev); return 0; } static void mtk_stop_dma(struct mtk_eth *eth, u32 glo_cfg) { u32 val; int i; /* stop the dma engine */ spin_lock_bh(ð->page_lock); val = mtk_r32(eth, glo_cfg); mtk_w32(eth, val & ~(MTK_TX_WB_DDONE | MTK_RX_DMA_EN | MTK_TX_DMA_EN), glo_cfg); spin_unlock_bh(ð->page_lock); /* wait for dma stop */ for (i = 0; i < 10; i++) { val = mtk_r32(eth, glo_cfg); if (val & (MTK_TX_DMA_BUSY | MTK_RX_DMA_BUSY)) { msleep(20); continue; } break; } } static int mtk_stop(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; netif_tx_disable(dev); phy_stop(dev->phydev); /* only shutdown DMA if this is the last user */ if (!refcount_dec_and_test(ð->dma_refcnt)) return 0; mtk_tx_irq_disable(eth, MTK_TX_DONE_INT); mtk_rx_irq_disable(eth, MTK_RX_DONE_INT); napi_disable(ð->tx_napi); napi_disable(ð->rx_napi); mtk_stop_dma(eth, MTK_QDMA_GLO_CFG); mtk_stop_dma(eth, MTK_PDMA_GLO_CFG); mtk_dma_free(eth); return 0; } static void ethsys_reset(struct mtk_eth *eth, u32 reset_bits) { regmap_update_bits(eth->ethsys, ETHSYS_RSTCTRL, reset_bits, reset_bits); usleep_range(1000, 1100); regmap_update_bits(eth->ethsys, ETHSYS_RSTCTRL, reset_bits, ~reset_bits); mdelay(10); } static void mtk_clk_disable(struct mtk_eth *eth) { int clk; for (clk = MTK_CLK_MAX - 1; clk >= 0; clk--) clk_disable_unprepare(eth->clks[clk]); } static int mtk_clk_enable(struct mtk_eth *eth) { int clk, ret; for (clk = 0; clk < MTK_CLK_MAX ; clk++) { ret = clk_prepare_enable(eth->clks[clk]); if (ret) goto err_disable_clks; } return 0; err_disable_clks: while (--clk >= 0) clk_disable_unprepare(eth->clks[clk]); return ret; } static int mtk_hw_init(struct mtk_eth *eth) { int i, val, ret; if (test_and_set_bit(MTK_HW_INIT, ð->state)) return 0; pm_runtime_enable(eth->dev); pm_runtime_get_sync(eth->dev); ret = mtk_clk_enable(eth); if (ret) goto err_disable_pm; ethsys_reset(eth, RSTCTRL_FE); ethsys_reset(eth, RSTCTRL_PPE); regmap_read(eth->ethsys, ETHSYS_SYSCFG0, &val); for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->mac[i]) continue; val &= ~SYSCFG0_GE_MODE(SYSCFG0_GE_MASK, eth->mac[i]->id); val |= SYSCFG0_GE_MODE(eth->mac[i]->ge_mode, eth->mac[i]->id); } regmap_write(eth->ethsys, ETHSYS_SYSCFG0, val); if (eth->pctl) { /* Set GE2 driving and slew rate */ regmap_write(eth->pctl, GPIO_DRV_SEL10, 0xa00); /* set GE2 TDSEL */ regmap_write(eth->pctl, GPIO_OD33_CTRL8, 0x5); /* set GE2 TUNE */ regmap_write(eth->pctl, GPIO_BIAS_CTRL, 0x0); } /* Set linkdown as the default for each GMAC. Its own MCR would be set * up with the more appropriate value when mtk_phy_link_adjust call is * being invoked. */ for (i = 0; i < MTK_MAC_COUNT; i++) mtk_w32(eth, 0, MTK_MAC_MCR(i)); /* Indicates CDM to parse the MTK special tag from CPU * which also is working out for untag packets. */ val = mtk_r32(eth, MTK_CDMQ_IG_CTRL); mtk_w32(eth, val | MTK_CDMQ_STAG_EN, MTK_CDMQ_IG_CTRL); /* Enable RX VLan Offloading */ mtk_w32(eth, 1, MTK_CDMP_EG_CTRL); /* enable interrupt delay for RX */ mtk_w32(eth, MTK_PDMA_DELAY_RX_DELAY, MTK_PDMA_DELAY_INT); /* disable delay and normal interrupt */ mtk_w32(eth, 0, MTK_QDMA_DELAY_INT); mtk_tx_irq_disable(eth, ~0); mtk_rx_irq_disable(eth, ~0); mtk_w32(eth, RST_GL_PSE, MTK_RST_GL); mtk_w32(eth, 0, MTK_RST_GL); /* FE int grouping */ mtk_w32(eth, MTK_TX_DONE_INT, MTK_PDMA_INT_GRP1); mtk_w32(eth, MTK_RX_DONE_INT, MTK_PDMA_INT_GRP2); mtk_w32(eth, MTK_TX_DONE_INT, MTK_QDMA_INT_GRP1); mtk_w32(eth, MTK_RX_DONE_INT, MTK_QDMA_INT_GRP2); mtk_w32(eth, 0x21021000, MTK_FE_INT_GRP); for (i = 0; i < 2; i++) { u32 val = mtk_r32(eth, MTK_GDMA_FWD_CFG(i)); /* setup the forward port to send frame to PDMA */ val &= ~0xffff; /* Enable RX checksum */ val |= MTK_GDMA_ICS_EN | MTK_GDMA_TCS_EN | MTK_GDMA_UCS_EN; /* setup the mac dma */ mtk_w32(eth, val, MTK_GDMA_FWD_CFG(i)); } return 0; err_disable_pm: pm_runtime_put_sync(eth->dev); pm_runtime_disable(eth->dev); return ret; } static int mtk_hw_deinit(struct mtk_eth *eth) { if (!test_and_clear_bit(MTK_HW_INIT, ð->state)) return 0; mtk_clk_disable(eth); pm_runtime_put_sync(eth->dev); pm_runtime_disable(eth->dev); return 0; } static int __init mtk_init(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; const char *mac_addr; mac_addr = of_get_mac_address(mac->of_node); if (!IS_ERR(mac_addr)) ether_addr_copy(dev->dev_addr, mac_addr); /* If the mac address is invalid, use random mac address */ if (!is_valid_ether_addr(dev->dev_addr)) { eth_hw_addr_random(dev); dev_err(eth->dev, "generated random MAC address %pM\n", dev->dev_addr); } return mtk_phy_connect(dev); } static void mtk_uninit(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; phy_disconnect(dev->phydev); if (of_phy_is_fixed_link(mac->of_node)) of_phy_deregister_fixed_link(mac->of_node); mtk_tx_irq_disable(eth, ~0); mtk_rx_irq_disable(eth, ~0); } static int mtk_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { switch (cmd) { case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: return phy_mii_ioctl(dev->phydev, ifr, cmd); default: break; } return -EOPNOTSUPP; } static void mtk_pending_work(struct work_struct *work) { struct mtk_eth *eth = container_of(work, struct mtk_eth, pending_work); int err, i; unsigned long restart = 0; rtnl_lock(); dev_dbg(eth->dev, "[%s][%d] reset\n", __func__, __LINE__); while (test_and_set_bit_lock(MTK_RESETTING, ð->state)) cpu_relax(); dev_dbg(eth->dev, "[%s][%d] mtk_stop starts\n", __func__, __LINE__); /* stop all devices to make sure that dma is properly shut down */ for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->netdev[i]) continue; mtk_stop(eth->netdev[i]); __set_bit(i, &restart); } dev_dbg(eth->dev, "[%s][%d] mtk_stop ends\n", __func__, __LINE__); /* restart underlying hardware such as power, clock, pin mux * and the connected phy */ mtk_hw_deinit(eth); if (eth->dev->pins) pinctrl_select_state(eth->dev->pins->p, eth->dev->pins->default_state); mtk_hw_init(eth); for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->mac[i] || of_phy_is_fixed_link(eth->mac[i]->of_node)) continue; err = phy_init_hw(eth->netdev[i]->phydev); if (err) dev_err(eth->dev, "%s: PHY init failed.\n", eth->netdev[i]->name); } /* restart DMA and enable IRQs */ for (i = 0; i < MTK_MAC_COUNT; i++) { if (!test_bit(i, &restart)) continue; err = mtk_open(eth->netdev[i]); if (err) { netif_alert(eth, ifup, eth->netdev[i], "Driver up/down cycle failed, closing device.\n"); dev_close(eth->netdev[i]); } } dev_dbg(eth->dev, "[%s][%d] reset done\n", __func__, __LINE__); clear_bit_unlock(MTK_RESETTING, ð->state); rtnl_unlock(); } static int mtk_free_dev(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->netdev[i]) continue; free_netdev(eth->netdev[i]); } return 0; } static int mtk_unreg_dev(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->netdev[i]) continue; unregister_netdev(eth->netdev[i]); } return 0; } static int mtk_cleanup(struct mtk_eth *eth) { mtk_unreg_dev(eth); mtk_free_dev(eth); cancel_work_sync(ð->pending_work); return 0; } static int mtk_get_link_ksettings(struct net_device *ndev, struct ethtool_link_ksettings *cmd) { struct mtk_mac *mac = netdev_priv(ndev); if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state))) return -EBUSY; phy_ethtool_ksettings_get(ndev->phydev, cmd); return 0; } static int mtk_set_link_ksettings(struct net_device *ndev, const struct ethtool_link_ksettings *cmd) { struct mtk_mac *mac = netdev_priv(ndev); if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state))) return -EBUSY; return phy_ethtool_ksettings_set(ndev->phydev, cmd); } static void mtk_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct mtk_mac *mac = netdev_priv(dev); strlcpy(info->driver, mac->hw->dev->driver->name, sizeof(info->driver)); strlcpy(info->bus_info, dev_name(mac->hw->dev), sizeof(info->bus_info)); info->n_stats = ARRAY_SIZE(mtk_ethtool_stats); } static u32 mtk_get_msglevel(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); return mac->hw->msg_enable; } static void mtk_set_msglevel(struct net_device *dev, u32 value) { struct mtk_mac *mac = netdev_priv(dev); mac->hw->msg_enable = value; } static int mtk_nway_reset(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state))) return -EBUSY; return genphy_restart_aneg(dev->phydev); } static u32 mtk_get_link(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); int err; if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state))) return -EBUSY; err = genphy_update_link(dev->phydev); if (err) return ethtool_op_get_link(dev); return dev->phydev->link; } static void mtk_get_strings(struct net_device *dev, u32 stringset, u8 *data) { int i; switch (stringset) { case ETH_SS_STATS: for (i = 0; i < ARRAY_SIZE(mtk_ethtool_stats); i++) { memcpy(data, mtk_ethtool_stats[i].str, ETH_GSTRING_LEN); data += ETH_GSTRING_LEN; } break; } } static int mtk_get_sset_count(struct net_device *dev, int sset) { switch (sset) { case ETH_SS_STATS: return ARRAY_SIZE(mtk_ethtool_stats); default: return -EOPNOTSUPP; } } static void mtk_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_hw_stats *hwstats = mac->hw_stats; u64 *data_src, *data_dst; unsigned int start; int i; if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state))) return; if (netif_running(dev) && netif_device_present(dev)) { if (spin_trylock_bh(&hwstats->stats_lock)) { mtk_stats_update_mac(mac); spin_unlock_bh(&hwstats->stats_lock); } } data_src = (u64 *)hwstats; do { data_dst = data; start = u64_stats_fetch_begin_irq(&hwstats->syncp); for (i = 0; i < ARRAY_SIZE(mtk_ethtool_stats); i++) *data_dst++ = *(data_src + mtk_ethtool_stats[i].offset); } while (u64_stats_fetch_retry_irq(&hwstats->syncp, start)); } static int mtk_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd, u32 *rule_locs) { int ret = -EOPNOTSUPP; switch (cmd->cmd) { case ETHTOOL_GRXRINGS: if (dev->hw_features & NETIF_F_LRO) { cmd->data = MTK_MAX_RX_RING_NUM; ret = 0; } break; case ETHTOOL_GRXCLSRLCNT: if (dev->hw_features & NETIF_F_LRO) { struct mtk_mac *mac = netdev_priv(dev); cmd->rule_cnt = mac->hwlro_ip_cnt; ret = 0; } break; case ETHTOOL_GRXCLSRULE: if (dev->hw_features & NETIF_F_LRO) ret = mtk_hwlro_get_fdir_entry(dev, cmd); break; case ETHTOOL_GRXCLSRLALL: if (dev->hw_features & NETIF_F_LRO) ret = mtk_hwlro_get_fdir_all(dev, cmd, rule_locs); break; default: break; } return ret; } static int mtk_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd) { int ret = -EOPNOTSUPP; switch (cmd->cmd) { case ETHTOOL_SRXCLSRLINS: if (dev->hw_features & NETIF_F_LRO) ret = mtk_hwlro_add_ipaddr(dev, cmd); break; case ETHTOOL_SRXCLSRLDEL: if (dev->hw_features & NETIF_F_LRO) ret = mtk_hwlro_del_ipaddr(dev, cmd); break; default: break; } return ret; } static const struct ethtool_ops mtk_ethtool_ops = { .get_link_ksettings = mtk_get_link_ksettings, .set_link_ksettings = mtk_set_link_ksettings, .get_drvinfo = mtk_get_drvinfo, .get_msglevel = mtk_get_msglevel, .set_msglevel = mtk_set_msglevel, .nway_reset = mtk_nway_reset, .get_link = mtk_get_link, .get_strings = mtk_get_strings, .get_sset_count = mtk_get_sset_count, .get_ethtool_stats = mtk_get_ethtool_stats, .get_rxnfc = mtk_get_rxnfc, .set_rxnfc = mtk_set_rxnfc, }; static const struct net_device_ops mtk_netdev_ops = { .ndo_init = mtk_init, .ndo_uninit = mtk_uninit, .ndo_open = mtk_open, .ndo_stop = mtk_stop, .ndo_start_xmit = mtk_start_xmit, .ndo_set_mac_address = mtk_set_mac_address, .ndo_validate_addr = eth_validate_addr, .ndo_do_ioctl = mtk_do_ioctl, .ndo_tx_timeout = mtk_tx_timeout, .ndo_get_stats64 = mtk_get_stats64, .ndo_fix_features = mtk_fix_features, .ndo_set_features = mtk_set_features, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = mtk_poll_controller, #endif }; static int mtk_add_mac(struct mtk_eth *eth, struct device_node *np) { struct mtk_mac *mac; const __be32 *_id = of_get_property(np, "reg", NULL); int id, err; if (!_id) { dev_err(eth->dev, "missing mac id\n"); return -EINVAL; } id = be32_to_cpup(_id); if (id >= MTK_MAC_COUNT) { dev_err(eth->dev, "%d is not a valid mac id\n", id); return -EINVAL; } if (eth->netdev[id]) { dev_err(eth->dev, "duplicate mac id found: %d\n", id); return -EINVAL; } eth->netdev[id] = alloc_etherdev(sizeof(*mac)); if (!eth->netdev[id]) { dev_err(eth->dev, "alloc_etherdev failed\n"); return -ENOMEM; } mac = netdev_priv(eth->netdev[id]); eth->mac[id] = mac; mac->id = id; mac->hw = eth; mac->of_node = np; memset(mac->hwlro_ip, 0, sizeof(mac->hwlro_ip)); mac->hwlro_ip_cnt = 0; mac->hw_stats = devm_kzalloc(eth->dev, sizeof(*mac->hw_stats), GFP_KERNEL); if (!mac->hw_stats) { dev_err(eth->dev, "failed to allocate counter memory\n"); err = -ENOMEM; goto free_netdev; } spin_lock_init(&mac->hw_stats->stats_lock); u64_stats_init(&mac->hw_stats->syncp); mac->hw_stats->reg_offset = id * MTK_STAT_OFFSET; SET_NETDEV_DEV(eth->netdev[id], eth->dev); eth->netdev[id]->watchdog_timeo = 5 * HZ; eth->netdev[id]->netdev_ops = &mtk_netdev_ops; eth->netdev[id]->base_addr = (unsigned long)eth->base; eth->netdev[id]->hw_features = MTK_HW_FEATURES; if (eth->hwlro) eth->netdev[id]->hw_features |= NETIF_F_LRO; eth->netdev[id]->vlan_features = MTK_HW_FEATURES & ~(NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX); eth->netdev[id]->features |= MTK_HW_FEATURES; eth->netdev[id]->ethtool_ops = &mtk_ethtool_ops; eth->netdev[id]->irq = eth->irq[0]; eth->netdev[id]->dev.of_node = np; return 0; free_netdev: free_netdev(eth->netdev[id]); return err; } static int mtk_probe(struct platform_device *pdev) { struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); struct device_node *mac_np; struct mtk_eth *eth; int err; int i; eth = devm_kzalloc(&pdev->dev, sizeof(*eth), GFP_KERNEL); if (!eth) return -ENOMEM; eth->soc = of_device_get_match_data(&pdev->dev); eth->dev = &pdev->dev; eth->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(eth->base)) return PTR_ERR(eth->base); spin_lock_init(ð->page_lock); spin_lock_init(ð->tx_irq_lock); spin_lock_init(ð->rx_irq_lock); eth->ethsys = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "mediatek,ethsys"); if (IS_ERR(eth->ethsys)) { dev_err(&pdev->dev, "no ethsys regmap found\n"); return PTR_ERR(eth->ethsys); } if (MTK_HAS_CAPS(eth->soc->caps, MTK_SGMII)) { eth->sgmiisys = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "mediatek,sgmiisys"); if (IS_ERR(eth->sgmiisys)) { dev_err(&pdev->dev, "no sgmiisys regmap found\n"); return PTR_ERR(eth->sgmiisys); } } if (eth->soc->required_pctl) { eth->pctl = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "mediatek,pctl"); if (IS_ERR(eth->pctl)) { dev_err(&pdev->dev, "no pctl regmap found\n"); return PTR_ERR(eth->pctl); } } for (i = 0; i < 3; i++) { if (MTK_HAS_CAPS(eth->soc->caps, MTK_SHARED_INT) && i > 0) eth->irq[i] = eth->irq[0]; else eth->irq[i] = platform_get_irq(pdev, i); if (eth->irq[i] < 0) { dev_err(&pdev->dev, "no IRQ%d resource found\n", i); return -ENXIO; } } for (i = 0; i < ARRAY_SIZE(eth->clks); i++) { eth->clks[i] = devm_clk_get(eth->dev, mtk_clks_source_name[i]); if (IS_ERR(eth->clks[i])) { if (PTR_ERR(eth->clks[i]) == -EPROBE_DEFER) return -EPROBE_DEFER; if (eth->soc->required_clks & BIT(i)) { dev_err(&pdev->dev, "clock %s not found\n", mtk_clks_source_name[i]); return -EINVAL; } eth->clks[i] = NULL; } } eth->msg_enable = netif_msg_init(mtk_msg_level, MTK_DEFAULT_MSG_ENABLE); INIT_WORK(ð->pending_work, mtk_pending_work); err = mtk_hw_init(eth); if (err) return err; eth->hwlro = MTK_HAS_CAPS(eth->soc->caps, MTK_HWLRO); for_each_child_of_node(pdev->dev.of_node, mac_np) { if (!of_device_is_compatible(mac_np, "mediatek,eth-mac")) continue; if (!of_device_is_available(mac_np)) continue; err = mtk_add_mac(eth, mac_np); if (err) goto err_deinit_hw; } if (MTK_HAS_CAPS(eth->soc->caps, MTK_SHARED_INT)) { err = devm_request_irq(eth->dev, eth->irq[0], mtk_handle_irq, 0, dev_name(eth->dev), eth); } else { err = devm_request_irq(eth->dev, eth->irq[1], mtk_handle_irq_tx, 0, dev_name(eth->dev), eth); if (err) goto err_free_dev; err = devm_request_irq(eth->dev, eth->irq[2], mtk_handle_irq_rx, 0, dev_name(eth->dev), eth); } if (err) goto err_free_dev; err = mtk_mdio_init(eth); if (err) goto err_free_dev; for (i = 0; i < MTK_MAX_DEVS; i++) { if (!eth->netdev[i]) continue; err = register_netdev(eth->netdev[i]); if (err) { dev_err(eth->dev, "error bringing up device\n"); goto err_deinit_mdio; } else netif_info(eth, probe, eth->netdev[i], "mediatek frame engine at 0x%08lx, irq %d\n", eth->netdev[i]->base_addr, eth->irq[0]); } /* we run 2 devices on the same DMA ring so we need a dummy device * for NAPI to work */ init_dummy_netdev(ð->dummy_dev); netif_napi_add(ð->dummy_dev, ð->tx_napi, mtk_napi_tx, MTK_NAPI_WEIGHT); netif_napi_add(ð->dummy_dev, ð->rx_napi, mtk_napi_rx, MTK_NAPI_WEIGHT); platform_set_drvdata(pdev, eth); return 0; err_deinit_mdio: mtk_mdio_cleanup(eth); err_free_dev: mtk_free_dev(eth); err_deinit_hw: mtk_hw_deinit(eth); return err; } static int mtk_remove(struct platform_device *pdev) { struct mtk_eth *eth = platform_get_drvdata(pdev); int i; /* stop all devices to make sure that dma is properly shut down */ for (i = 0; i < MTK_MAC_COUNT; i++) { if (!eth->netdev[i]) continue; mtk_stop(eth->netdev[i]); } mtk_hw_deinit(eth); netif_napi_del(ð->tx_napi); netif_napi_del(ð->rx_napi); mtk_cleanup(eth); mtk_mdio_cleanup(eth); return 0; } static const struct mtk_soc_data mt2701_data = { .caps = MTK_GMAC1_TRGMII | MTK_HWLRO, .required_clks = MT7623_CLKS_BITMAP, .required_pctl = true, }; static const struct mtk_soc_data mt7621_data = { .caps = MTK_SHARED_INT, .required_clks = MT7621_CLKS_BITMAP, .required_pctl = false, }; static const struct mtk_soc_data mt7622_data = { .caps = MTK_DUAL_GMAC_SHARED_SGMII | MTK_GMAC1_ESW | MTK_HWLRO, .required_clks = MT7622_CLKS_BITMAP, .required_pctl = false, }; static const struct mtk_soc_data mt7623_data = { .caps = MTK_GMAC1_TRGMII | MTK_HWLRO, .required_clks = MT7623_CLKS_BITMAP, .required_pctl = true, }; const struct of_device_id of_mtk_match[] = { { .compatible = "mediatek,mt2701-eth", .data = &mt2701_data}, { .compatible = "mediatek,mt7621-eth", .data = &mt7621_data}, { .compatible = "mediatek,mt7622-eth", .data = &mt7622_data}, { .compatible = "mediatek,mt7623-eth", .data = &mt7623_data}, {}, }; MODULE_DEVICE_TABLE(of, of_mtk_match); static struct platform_driver mtk_driver = { .probe = mtk_probe, .remove = mtk_remove, .driver = { .name = "mtk_soc_eth", .of_match_table = of_mtk_match, }, }; module_platform_driver(mtk_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("John Crispin <blogic@openwrt.org>"); MODULE_DESCRIPTION("Ethernet driver for MediaTek SoC");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1