Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jonas Jensen | 2788 | 93.12% | 6 | 27.27% |
Arnd Bergmann | 75 | 2.51% | 1 | 4.55% |
Wei Yongjun | 59 | 1.97% | 2 | 9.09% |
Christoph Hellwig | 26 | 0.87% | 1 | 4.55% |
Dan Carpenter | 11 | 0.37% | 1 | 4.55% |
Tobias Klauser | 10 | 0.33% | 1 | 4.55% |
Luis de Bethencourt | 7 | 0.23% | 1 | 4.55% |
SZ Lin | 5 | 0.17% | 3 | 13.64% |
Kees Cook | 4 | 0.13% | 1 | 4.55% |
Florian Westphal | 3 | 0.10% | 1 | 4.55% |
Eric Dumazet | 3 | 0.10% | 1 | 4.55% |
Bhumika Goyal | 1 | 0.03% | 1 | 4.55% |
Bartlomiej Zolnierkiewicz | 1 | 0.03% | 1 | 4.55% |
Wei Yang | 1 | 0.03% | 1 | 4.55% |
Total | 2994 | 22 |
/* MOXA ART Ethernet (RTL8201CP) driver. * * Copyright (C) 2013 Jonas Jensen * * Jonas Jensen <jonas.jensen@gmail.com> * * Based on code from * Moxa Technology Co., Ltd. <www.moxa.com> * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any * warranty of any kind, whether express or implied. */ #include <linux/module.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/dma-mapping.h> #include <linux/ethtool.h> #include <linux/platform_device.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/crc32.h> #include <linux/crc32c.h> #include <linux/circ_buf.h> #include "moxart_ether.h" static inline void moxart_desc_write(u32 data, u32 *desc) { *desc = cpu_to_le32(data); } static inline u32 moxart_desc_read(u32 *desc) { return le32_to_cpu(*desc); } static inline void moxart_emac_write(struct net_device *ndev, unsigned int reg, unsigned long value) { struct moxart_mac_priv_t *priv = netdev_priv(ndev); writel(value, priv->base + reg); } static void moxart_update_mac_address(struct net_device *ndev) { moxart_emac_write(ndev, REG_MAC_MS_ADDRESS, ((ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]))); moxart_emac_write(ndev, REG_MAC_MS_ADDRESS + 4, ((ndev->dev_addr[2] << 24) | (ndev->dev_addr[3] << 16) | (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]))); } static int moxart_set_mac_address(struct net_device *ndev, void *addr) { struct sockaddr *address = addr; if (!is_valid_ether_addr(address->sa_data)) return -EADDRNOTAVAIL; memcpy(ndev->dev_addr, address->sa_data, ndev->addr_len); moxart_update_mac_address(ndev); return 0; } static void moxart_mac_free_memory(struct net_device *ndev) { struct moxart_mac_priv_t *priv = netdev_priv(ndev); int i; for (i = 0; i < RX_DESC_NUM; i++) dma_unmap_single(&ndev->dev, priv->rx_mapping[i], priv->rx_buf_size, DMA_FROM_DEVICE); if (priv->tx_desc_base) dma_free_coherent(&priv->pdev->dev, TX_REG_DESC_SIZE * TX_DESC_NUM, priv->tx_desc_base, priv->tx_base); if (priv->rx_desc_base) dma_free_coherent(&priv->pdev->dev, RX_REG_DESC_SIZE * RX_DESC_NUM, priv->rx_desc_base, priv->rx_base); kfree(priv->tx_buf_base); kfree(priv->rx_buf_base); } static void moxart_mac_reset(struct net_device *ndev) { struct moxart_mac_priv_t *priv = netdev_priv(ndev); writel(SW_RST, priv->base + REG_MAC_CTRL); while (readl(priv->base + REG_MAC_CTRL) & SW_RST) mdelay(10); writel(0, priv->base + REG_INTERRUPT_MASK); priv->reg_maccr = RX_BROADPKT | FULLDUP | CRC_APD | RX_FTL; } static void moxart_mac_enable(struct net_device *ndev) { struct moxart_mac_priv_t *priv = netdev_priv(ndev); writel(0x00001010, priv->base + REG_INT_TIMER_CTRL); writel(0x00000001, priv->base + REG_APOLL_TIMER_CTRL); writel(0x00000390, priv->base + REG_DMA_BLEN_CTRL); priv->reg_imr |= (RPKT_FINISH_M | XPKT_FINISH_M); writel(priv->reg_imr, priv->base + REG_INTERRUPT_MASK); priv->reg_maccr |= (RCV_EN | XMT_EN | RDMA_EN | XDMA_EN); writel(priv->reg_maccr, priv->base + REG_MAC_CTRL); } static void moxart_mac_setup_desc_ring(struct net_device *ndev) { struct moxart_mac_priv_t *priv = netdev_priv(ndev); void *desc; int i; for (i = 0; i < TX_DESC_NUM; i++) { desc = priv->tx_desc_base + i * TX_REG_DESC_SIZE; memset(desc, 0, TX_REG_DESC_SIZE); priv->tx_buf[i] = priv->tx_buf_base + priv->tx_buf_size * i; } moxart_desc_write(TX_DESC1_END, desc + TX_REG_OFFSET_DESC1); priv->tx_head = 0; priv->tx_tail = 0; for (i = 0; i < RX_DESC_NUM; i++) { desc = priv->rx_desc_base + i * RX_REG_DESC_SIZE; memset(desc, 0, RX_REG_DESC_SIZE); moxart_desc_write(RX_DESC0_DMA_OWN, desc + RX_REG_OFFSET_DESC0); moxart_desc_write(RX_BUF_SIZE & RX_DESC1_BUF_SIZE_MASK, desc + RX_REG_OFFSET_DESC1); priv->rx_buf[i] = priv->rx_buf_base + priv->rx_buf_size * i; priv->rx_mapping[i] = dma_map_single(&ndev->dev, priv->rx_buf[i], priv->rx_buf_size, DMA_FROM_DEVICE); if (dma_mapping_error(&ndev->dev, priv->rx_mapping[i])) netdev_err(ndev, "DMA mapping error\n"); moxart_desc_write(priv->rx_mapping[i], desc + RX_REG_OFFSET_DESC2 + RX_DESC2_ADDRESS_PHYS); moxart_desc_write((uintptr_t)priv->rx_buf[i], desc + RX_REG_OFFSET_DESC2 + RX_DESC2_ADDRESS_VIRT); } moxart_desc_write(RX_DESC1_END, desc + RX_REG_OFFSET_DESC1); priv->rx_head = 0; /* reset the MAC controller TX/RX descriptor base address */ writel(priv->tx_base, priv->base + REG_TXR_BASE_ADDRESS); writel(priv->rx_base, priv->base + REG_RXR_BASE_ADDRESS); } static int moxart_mac_open(struct net_device *ndev) { struct moxart_mac_priv_t *priv = netdev_priv(ndev); if (!is_valid_ether_addr(ndev->dev_addr)) return -EADDRNOTAVAIL; napi_enable(&priv->napi); moxart_mac_reset(ndev); moxart_update_mac_address(ndev); moxart_mac_setup_desc_ring(ndev); moxart_mac_enable(ndev); netif_start_queue(ndev); netdev_dbg(ndev, "%s: IMR=0x%x, MACCR=0x%x\n", __func__, readl(priv->base + REG_INTERRUPT_MASK), readl(priv->base + REG_MAC_CTRL)); return 0; } static int moxart_mac_stop(struct net_device *ndev) { struct moxart_mac_priv_t *priv = netdev_priv(ndev); napi_disable(&priv->napi); netif_stop_queue(ndev); /* disable all interrupts */ writel(0, priv->base + REG_INTERRUPT_MASK); /* disable all functions */ writel(0, priv->base + REG_MAC_CTRL); return 0; } static int moxart_rx_poll(struct napi_struct *napi, int budget) { struct moxart_mac_priv_t *priv = container_of(napi, struct moxart_mac_priv_t, napi); struct net_device *ndev = priv->ndev; struct sk_buff *skb; void *desc; unsigned int desc0, len; int rx_head = priv->rx_head; int rx = 0; while (rx < budget) { desc = priv->rx_desc_base + (RX_REG_DESC_SIZE * rx_head); desc0 = moxart_desc_read(desc + RX_REG_OFFSET_DESC0); rmb(); /* ensure desc0 is up to date */ if (desc0 & RX_DESC0_DMA_OWN) break; if (desc0 & (RX_DESC0_ERR | RX_DESC0_CRC_ERR | RX_DESC0_FTL | RX_DESC0_RUNT | RX_DESC0_ODD_NB)) { net_dbg_ratelimited("packet error\n"); ndev->stats.rx_dropped++; ndev->stats.rx_errors++; goto rx_next; } len = desc0 & RX_DESC0_FRAME_LEN_MASK; if (len > RX_BUF_SIZE) len = RX_BUF_SIZE; dma_sync_single_for_cpu(&ndev->dev, priv->rx_mapping[rx_head], priv->rx_buf_size, DMA_FROM_DEVICE); skb = netdev_alloc_skb_ip_align(ndev, len); if (unlikely(!skb)) { net_dbg_ratelimited("netdev_alloc_skb_ip_align failed\n"); ndev->stats.rx_dropped++; ndev->stats.rx_errors++; goto rx_next; } memcpy(skb->data, priv->rx_buf[rx_head], len); skb_put(skb, len); skb->protocol = eth_type_trans(skb, ndev); napi_gro_receive(&priv->napi, skb); rx++; ndev->stats.rx_packets++; ndev->stats.rx_bytes += len; if (desc0 & RX_DESC0_MULTICAST) ndev->stats.multicast++; rx_next: wmb(); /* prevent setting ownership back too early */ moxart_desc_write(RX_DESC0_DMA_OWN, desc + RX_REG_OFFSET_DESC0); rx_head = RX_NEXT(rx_head); priv->rx_head = rx_head; } if (rx < budget) napi_complete_done(napi, rx); priv->reg_imr |= RPKT_FINISH_M; writel(priv->reg_imr, priv->base + REG_INTERRUPT_MASK); return rx; } static int moxart_tx_queue_space(struct net_device *ndev) { struct moxart_mac_priv_t *priv = netdev_priv(ndev); return CIRC_SPACE(priv->tx_head, priv->tx_tail, TX_DESC_NUM); } static void moxart_tx_finished(struct net_device *ndev) { struct moxart_mac_priv_t *priv = netdev_priv(ndev); unsigned int tx_head = priv->tx_head; unsigned int tx_tail = priv->tx_tail; while (tx_tail != tx_head) { dma_unmap_single(&ndev->dev, priv->tx_mapping[tx_tail], priv->tx_len[tx_tail], DMA_TO_DEVICE); ndev->stats.tx_packets++; ndev->stats.tx_bytes += priv->tx_skb[tx_tail]->len; dev_consume_skb_irq(priv->tx_skb[tx_tail]); priv->tx_skb[tx_tail] = NULL; tx_tail = TX_NEXT(tx_tail); } priv->tx_tail = tx_tail; if (netif_queue_stopped(ndev) && moxart_tx_queue_space(ndev) >= TX_WAKE_THRESHOLD) netif_wake_queue(ndev); } static irqreturn_t moxart_mac_interrupt(int irq, void *dev_id) { struct net_device *ndev = (struct net_device *)dev_id; struct moxart_mac_priv_t *priv = netdev_priv(ndev); unsigned int ists = readl(priv->base + REG_INTERRUPT_STATUS); if (ists & XPKT_OK_INT_STS) moxart_tx_finished(ndev); if (ists & RPKT_FINISH) { if (napi_schedule_prep(&priv->napi)) { priv->reg_imr &= ~RPKT_FINISH_M; writel(priv->reg_imr, priv->base + REG_INTERRUPT_MASK); __napi_schedule(&priv->napi); } } return IRQ_HANDLED; } static int moxart_mac_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct moxart_mac_priv_t *priv = netdev_priv(ndev); void *desc; unsigned int len; unsigned int tx_head; u32 txdes1; int ret = NETDEV_TX_BUSY; spin_lock_irq(&priv->txlock); tx_head = priv->tx_head; desc = priv->tx_desc_base + (TX_REG_DESC_SIZE * tx_head); if (moxart_tx_queue_space(ndev) == 1) netif_stop_queue(ndev); if (moxart_desc_read(desc + TX_REG_OFFSET_DESC0) & TX_DESC0_DMA_OWN) { net_dbg_ratelimited("no TX space for packet\n"); ndev->stats.tx_dropped++; goto out_unlock; } rmb(); /* ensure data is only read that had TX_DESC0_DMA_OWN cleared */ len = skb->len > TX_BUF_SIZE ? TX_BUF_SIZE : skb->len; priv->tx_mapping[tx_head] = dma_map_single(&ndev->dev, skb->data, len, DMA_TO_DEVICE); if (dma_mapping_error(&ndev->dev, priv->tx_mapping[tx_head])) { netdev_err(ndev, "DMA mapping error\n"); goto out_unlock; } priv->tx_len[tx_head] = len; priv->tx_skb[tx_head] = skb; moxart_desc_write(priv->tx_mapping[tx_head], desc + TX_REG_OFFSET_DESC2 + TX_DESC2_ADDRESS_PHYS); moxart_desc_write((uintptr_t)skb->data, desc + TX_REG_OFFSET_DESC2 + TX_DESC2_ADDRESS_VIRT); if (skb->len < ETH_ZLEN) { memset(&skb->data[skb->len], 0, ETH_ZLEN - skb->len); len = ETH_ZLEN; } dma_sync_single_for_device(&ndev->dev, priv->tx_mapping[tx_head], priv->tx_buf_size, DMA_TO_DEVICE); txdes1 = TX_DESC1_LTS | TX_DESC1_FTS | (len & TX_DESC1_BUF_SIZE_MASK); if (tx_head == TX_DESC_NUM_MASK) txdes1 |= TX_DESC1_END; moxart_desc_write(txdes1, desc + TX_REG_OFFSET_DESC1); wmb(); /* flush descriptor before transferring ownership */ moxart_desc_write(TX_DESC0_DMA_OWN, desc + TX_REG_OFFSET_DESC0); /* start to send packet */ writel(0xffffffff, priv->base + REG_TX_POLL_DEMAND); priv->tx_head = TX_NEXT(tx_head); netif_trans_update(ndev); ret = NETDEV_TX_OK; out_unlock: spin_unlock_irq(&priv->txlock); return ret; } static void moxart_mac_setmulticast(struct net_device *ndev) { struct moxart_mac_priv_t *priv = netdev_priv(ndev); struct netdev_hw_addr *ha; int crc_val; netdev_for_each_mc_addr(ha, ndev) { crc_val = crc32_le(~0, ha->addr, ETH_ALEN); crc_val = (crc_val >> 26) & 0x3f; if (crc_val >= 32) { writel(readl(priv->base + REG_MCAST_HASH_TABLE1) | (1UL << (crc_val - 32)), priv->base + REG_MCAST_HASH_TABLE1); } else { writel(readl(priv->base + REG_MCAST_HASH_TABLE0) | (1UL << crc_val), priv->base + REG_MCAST_HASH_TABLE0); } } } static void moxart_mac_set_rx_mode(struct net_device *ndev) { struct moxart_mac_priv_t *priv = netdev_priv(ndev); spin_lock_irq(&priv->txlock); (ndev->flags & IFF_PROMISC) ? (priv->reg_maccr |= RCV_ALL) : (priv->reg_maccr &= ~RCV_ALL); (ndev->flags & IFF_ALLMULTI) ? (priv->reg_maccr |= RX_MULTIPKT) : (priv->reg_maccr &= ~RX_MULTIPKT); if ((ndev->flags & IFF_MULTICAST) && netdev_mc_count(ndev)) { priv->reg_maccr |= HT_MULTI_EN; moxart_mac_setmulticast(ndev); } else { priv->reg_maccr &= ~HT_MULTI_EN; } writel(priv->reg_maccr, priv->base + REG_MAC_CTRL); spin_unlock_irq(&priv->txlock); } static const struct net_device_ops moxart_netdev_ops = { .ndo_open = moxart_mac_open, .ndo_stop = moxart_mac_stop, .ndo_start_xmit = moxart_mac_start_xmit, .ndo_set_rx_mode = moxart_mac_set_rx_mode, .ndo_set_mac_address = moxart_set_mac_address, .ndo_validate_addr = eth_validate_addr, }; static int moxart_mac_probe(struct platform_device *pdev) { struct device *p_dev = &pdev->dev; struct device_node *node = p_dev->of_node; struct net_device *ndev; struct moxart_mac_priv_t *priv; struct resource *res; unsigned int irq; int ret; ndev = alloc_etherdev(sizeof(struct moxart_mac_priv_t)); if (!ndev) return -ENOMEM; irq = irq_of_parse_and_map(node, 0); if (irq <= 0) { netdev_err(ndev, "irq_of_parse_and_map failed\n"); ret = -EINVAL; goto irq_map_fail; } priv = netdev_priv(ndev); priv->ndev = ndev; priv->pdev = pdev; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ndev->base_addr = res->start; priv->base = devm_ioremap_resource(p_dev, res); if (IS_ERR(priv->base)) { dev_err(p_dev, "devm_ioremap_resource failed\n"); ret = PTR_ERR(priv->base); goto init_fail; } spin_lock_init(&priv->txlock); priv->tx_buf_size = TX_BUF_SIZE; priv->rx_buf_size = RX_BUF_SIZE; priv->tx_desc_base = dma_alloc_coherent(&pdev->dev, TX_REG_DESC_SIZE * TX_DESC_NUM, &priv->tx_base, GFP_DMA | GFP_KERNEL); if (!priv->tx_desc_base) { ret = -ENOMEM; goto init_fail; } priv->rx_desc_base = dma_alloc_coherent(&pdev->dev, RX_REG_DESC_SIZE * RX_DESC_NUM, &priv->rx_base, GFP_DMA | GFP_KERNEL); if (!priv->rx_desc_base) { ret = -ENOMEM; goto init_fail; } priv->tx_buf_base = kmalloc_array(priv->tx_buf_size, TX_DESC_NUM, GFP_ATOMIC); if (!priv->tx_buf_base) { ret = -ENOMEM; goto init_fail; } priv->rx_buf_base = kmalloc_array(priv->rx_buf_size, RX_DESC_NUM, GFP_ATOMIC); if (!priv->rx_buf_base) { ret = -ENOMEM; goto init_fail; } platform_set_drvdata(pdev, ndev); ret = devm_request_irq(p_dev, irq, moxart_mac_interrupt, 0, pdev->name, ndev); if (ret) { netdev_err(ndev, "devm_request_irq failed\n"); goto init_fail; } ndev->netdev_ops = &moxart_netdev_ops; netif_napi_add(ndev, &priv->napi, moxart_rx_poll, RX_DESC_NUM); ndev->priv_flags |= IFF_UNICAST_FLT; ndev->irq = irq; SET_NETDEV_DEV(ndev, &pdev->dev); ret = register_netdev(ndev); if (ret) { free_netdev(ndev); goto init_fail; } netdev_dbg(ndev, "%s: IRQ=%d address=%pM\n", __func__, ndev->irq, ndev->dev_addr); return 0; init_fail: netdev_err(ndev, "init failed\n"); moxart_mac_free_memory(ndev); irq_map_fail: free_netdev(ndev); return ret; } static int moxart_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); unregister_netdev(ndev); free_irq(ndev->irq, ndev); moxart_mac_free_memory(ndev); free_netdev(ndev); return 0; } static const struct of_device_id moxart_mac_match[] = { { .compatible = "moxa,moxart-mac" }, { } }; MODULE_DEVICE_TABLE(of, moxart_mac_match); static struct platform_driver moxart_mac_driver = { .probe = moxart_mac_probe, .remove = moxart_remove, .driver = { .name = "moxart-ethernet", .of_match_table = moxart_mac_match, }, }; module_platform_driver(moxart_mac_driver); MODULE_DESCRIPTION("MOXART RTL8201CP Ethernet driver"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Jonas Jensen <jonas.jensen@gmail.com>");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1