Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds | 4765 | 46.24% | 7 | 6.86% |
Benjamin LaHaise | 2882 | 27.97% | 5 | 4.90% |
Jeff Garzik | 1359 | 13.19% | 10 | 9.80% |
Al Viro | 536 | 5.20% | 7 | 6.86% |
Neil Horman | 185 | 1.80% | 1 | 0.98% |
Stephen Hemminger | 87 | 0.84% | 7 | 6.86% |
Denis Kirjanov | 76 | 0.74% | 3 | 2.94% |
Ingo Molnar | 70 | 0.68% | 2 | 1.96% |
Philippe Reynes | 59 | 0.57% | 1 | 0.98% |
Vasiliy Kulikov | 30 | 0.29% | 1 | 0.98% |
Rick Jones | 24 | 0.23% | 1 | 0.98% |
David Howells | 23 | 0.22% | 1 | 0.98% |
Randy Dunlap | 22 | 0.21% | 2 | 1.96% |
Kees Cook | 20 | 0.19% | 1 | 0.98% |
Eric Dumazet | 13 | 0.13% | 3 | 2.94% |
Patrick McHardy | 10 | 0.10% | 4 | 3.92% |
Jiri Pirko | 10 | 0.10% | 4 | 3.92% |
Rusty Russell | 9 | 0.09% | 1 | 0.98% |
Arnaldo Carvalho de Melo | 9 | 0.09% | 2 | 1.96% |
Marcelo Feitoza Parisi | 9 | 0.09% | 1 | 0.98% |
Jesper Juhl | 8 | 0.08% | 1 | 0.98% |
David S. Miller | 8 | 0.08% | 3 | 2.94% |
Yang Hongyang | 8 | 0.08% | 2 | 1.96% |
Adrian Bunk | 7 | 0.07% | 2 | 1.96% |
Jarod Wilson | 6 | 0.06% | 1 | 0.98% |
Ian Campbell | 6 | 0.06% | 2 | 1.96% |
Alexey Dobriyan | 6 | 0.06% | 2 | 1.96% |
Benoit Taine | 6 | 0.06% | 1 | 0.98% |
Bradley A. Bosch | 6 | 0.06% | 1 | 0.98% |
Domen Puncer | 5 | 0.05% | 2 | 1.96% |
Herbert Xu | 5 | 0.05% | 1 | 0.98% |
Allen Pais | 4 | 0.04% | 1 | 0.98% |
Mao Wenan | 4 | 0.04% | 1 | 0.98% |
Andrew Morton | 3 | 0.03% | 1 | 0.98% |
Thomas Gleixner | 3 | 0.03% | 2 | 1.96% |
Tejun Heo | 3 | 0.03% | 1 | 0.98% |
Wilfried Klaebe | 3 | 0.03% | 1 | 0.98% |
Lucas De Marchi | 2 | 0.02% | 1 | 0.98% |
Hideaki Yoshifuji / 吉藤英明 | 2 | 0.02% | 1 | 0.98% |
Wei Yongjun | 1 | 0.01% | 1 | 0.98% |
Hannes Eder | 1 | 0.01% | 1 | 0.98% |
Wei Yang | 1 | 0.01% | 1 | 0.98% |
Nishanth Aravamudan | 1 | 0.01% | 1 | 0.98% |
Eric Sesterhenn / Snakebyte | 1 | 0.01% | 1 | 0.98% |
Johannes Berg | 1 | 0.01% | 1 | 0.98% |
Javier Martinez Canillas | 1 | 0.01% | 1 | 0.98% |
David Decotigny | 1 | 0.01% | 1 | 0.98% |
Arjan van de Ven | 1 | 0.01% | 1 | 0.98% |
Dan Carpenter | 1 | 0.01% | 1 | 0.98% |
François Romieu | 1 | 0.01% | 1 | 0.98% |
Total | 10304 | 102 |
// SPDX-License-Identifier: GPL-2.0-or-later #define VERSION "0.23" /* ns83820.c by Benjamin LaHaise with contributions. * * Questions/comments/discussion to linux-ns83820@kvack.org. * * $Revision: 1.34.2.23 $ * * Copyright 2001 Benjamin LaHaise. * Copyright 2001, 2002 Red Hat. * * Mmmm, chocolate vanilla mocha... * * ChangeLog * ========= * 20010414 0.1 - created * 20010622 0.2 - basic rx and tx. * 20010711 0.3 - added duplex and link state detection support. * 20010713 0.4 - zero copy, no hangs. * 0.5 - 64 bit dma support (davem will hate me for this) * - disable jumbo frames to avoid tx hangs * - work around tx deadlocks on my 1.02 card via * fiddling with TXCFG * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64 * 20010816 0.7 - misc cleanups * 20010826 0.8 - fix critical zero copy bugs * 0.9 - internal experiment * 20010827 0.10 - fix ia64 unaligned access. * 20010906 0.11 - accept all packets with checksum errors as * otherwise fragments get lost * - fix >> 32 bugs * 0.12 - add statistics counters * - add allmulti/promisc support * 20011009 0.13 - hotplug support, other smaller pci api cleanups * 20011204 0.13a - optical transceiver support added * by Michael Clark <michael@metaparadigm.com> * 20011205 0.13b - call register_netdev earlier in initialization * suppress duplicate link status messages * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik * 20011204 0.15 get ppc (big endian) working * 20011218 0.16 various cleanups * 20020310 0.17 speedups * 20020610 0.18 - actually use the pci dma api for highmem * - remove pci latency register fiddling * 0.19 - better bist support * - add ihr and reset_phy parameters * - gmii bus probing * - fix missed txok introduced during performance * tuning * 0.20 - fix stupid RFEN thinko. i am such a smurf. * 20040828 0.21 - add hardware vlan accleration * by Neil Horman <nhorman@redhat.com> * 20050406 0.22 - improved DAC ifdefs from Andi Kleen * - removal of dead code from Adrian Bunk * - fix half duplex collision behaviour * Driver Overview * =============== * * This driver was originally written for the National Semiconductor * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully * this code will turn out to be a) clean, b) correct, and c) fast. * With that in mind, I'm aiming to split the code up as much as * reasonably possible. At present there are X major sections that * break down into a) packet receive, b) packet transmit, c) link * management, d) initialization and configuration. Where possible, * these code paths are designed to run in parallel. * * This driver has been tested and found to work with the following * cards (in no particular order): * * Cameo SOHO-GA2000T SOHO-GA2500T * D-Link DGE-500T * PureData PDP8023Z-TG * SMC SMC9452TX SMC9462TX * Netgear GA621 * * Special thanks to SMC for providing hardware to test this driver on. * * Reports of success or failure would be greatly appreciated. */ //#define dprintk printk #define dprintk(x...) do { } while (0) #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/types.h> #include <linux/pci.h> #include <linux/dma-mapping.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/delay.h> #include <linux/workqueue.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/ip.h> /* for iph */ #include <linux/in.h> /* for IPPROTO_... */ #include <linux/compiler.h> #include <linux/prefetch.h> #include <linux/ethtool.h> #include <linux/sched.h> #include <linux/timer.h> #include <linux/if_vlan.h> #include <linux/rtnetlink.h> #include <linux/jiffies.h> #include <linux/slab.h> #include <asm/io.h> #include <linux/uaccess.h> #define DRV_NAME "ns83820" /* Global parameters. See module_param near the bottom. */ static int ihr = 2; static int reset_phy = 0; static int lnksts = 0; /* CFG_LNKSTS bit polarity */ /* Dprintk is used for more interesting debug events */ #undef Dprintk #define Dprintk dprintk /* tunables */ #define RX_BUF_SIZE 1500 /* 8192 */ #if IS_ENABLED(CONFIG_VLAN_8021Q) #define NS83820_VLAN_ACCEL_SUPPORT #endif /* Must not exceed ~65000. */ #define NR_RX_DESC 64 #define NR_TX_DESC 128 /* not tunable */ #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */ #define MIN_TX_DESC_FREE 8 /* register defines */ #define CFGCS 0x04 #define CR_TXE 0x00000001 #define CR_TXD 0x00000002 /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE * The Receive engine skips one descriptor and moves * onto the next one!! */ #define CR_RXE 0x00000004 #define CR_RXD 0x00000008 #define CR_TXR 0x00000010 #define CR_RXR 0x00000020 #define CR_SWI 0x00000080 #define CR_RST 0x00000100 #define PTSCR_EEBIST_FAIL 0x00000001 #define PTSCR_EEBIST_EN 0x00000002 #define PTSCR_EELOAD_EN 0x00000004 #define PTSCR_RBIST_FAIL 0x000001b8 #define PTSCR_RBIST_DONE 0x00000200 #define PTSCR_RBIST_EN 0x00000400 #define PTSCR_RBIST_RST 0x00002000 #define MEAR_EEDI 0x00000001 #define MEAR_EEDO 0x00000002 #define MEAR_EECLK 0x00000004 #define MEAR_EESEL 0x00000008 #define MEAR_MDIO 0x00000010 #define MEAR_MDDIR 0x00000020 #define MEAR_MDC 0x00000040 #define ISR_TXDESC3 0x40000000 #define ISR_TXDESC2 0x20000000 #define ISR_TXDESC1 0x10000000 #define ISR_TXDESC0 0x08000000 #define ISR_RXDESC3 0x04000000 #define ISR_RXDESC2 0x02000000 #define ISR_RXDESC1 0x01000000 #define ISR_RXDESC0 0x00800000 #define ISR_TXRCMP 0x00400000 #define ISR_RXRCMP 0x00200000 #define ISR_DPERR 0x00100000 #define ISR_SSERR 0x00080000 #define ISR_RMABT 0x00040000 #define ISR_RTABT 0x00020000 #define ISR_RXSOVR 0x00010000 #define ISR_HIBINT 0x00008000 #define ISR_PHY 0x00004000 #define ISR_PME 0x00002000 #define ISR_SWI 0x00001000 #define ISR_MIB 0x00000800 #define ISR_TXURN 0x00000400 #define ISR_TXIDLE 0x00000200 #define ISR_TXERR 0x00000100 #define ISR_TXDESC 0x00000080 #define ISR_TXOK 0x00000040 #define ISR_RXORN 0x00000020 #define ISR_RXIDLE 0x00000010 #define ISR_RXEARLY 0x00000008 #define ISR_RXERR 0x00000004 #define ISR_RXDESC 0x00000002 #define ISR_RXOK 0x00000001 #define TXCFG_CSI 0x80000000 #define TXCFG_HBI 0x40000000 #define TXCFG_MLB 0x20000000 #define TXCFG_ATP 0x10000000 #define TXCFG_ECRETRY 0x00800000 #define TXCFG_BRST_DIS 0x00080000 #define TXCFG_MXDMA1024 0x00000000 #define TXCFG_MXDMA512 0x00700000 #define TXCFG_MXDMA256 0x00600000 #define TXCFG_MXDMA128 0x00500000 #define TXCFG_MXDMA64 0x00400000 #define TXCFG_MXDMA32 0x00300000 #define TXCFG_MXDMA16 0x00200000 #define TXCFG_MXDMA8 0x00100000 #define CFG_LNKSTS 0x80000000 #define CFG_SPDSTS 0x60000000 #define CFG_SPDSTS1 0x40000000 #define CFG_SPDSTS0 0x20000000 #define CFG_DUPSTS 0x10000000 #define CFG_TBI_EN 0x01000000 #define CFG_MODE_1000 0x00400000 /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy. * Read the Phy response and then configure the MAC accordingly */ #define CFG_AUTO_1000 0x00200000 #define CFG_PINT_CTL 0x001c0000 #define CFG_PINT_DUPSTS 0x00100000 #define CFG_PINT_LNKSTS 0x00080000 #define CFG_PINT_SPDSTS 0x00040000 #define CFG_TMRTEST 0x00020000 #define CFG_MRM_DIS 0x00010000 #define CFG_MWI_DIS 0x00008000 #define CFG_T64ADDR 0x00004000 #define CFG_PCI64_DET 0x00002000 #define CFG_DATA64_EN 0x00001000 #define CFG_M64ADDR 0x00000800 #define CFG_PHY_RST 0x00000400 #define CFG_PHY_DIS 0x00000200 #define CFG_EXTSTS_EN 0x00000100 #define CFG_REQALG 0x00000080 #define CFG_SB 0x00000040 #define CFG_POW 0x00000020 #define CFG_EXD 0x00000010 #define CFG_PESEL 0x00000008 #define CFG_BROM_DIS 0x00000004 #define CFG_EXT_125 0x00000002 #define CFG_BEM 0x00000001 #define EXTSTS_UDPPKT 0x00200000 #define EXTSTS_TCPPKT 0x00080000 #define EXTSTS_IPPKT 0x00020000 #define EXTSTS_VPKT 0x00010000 #define EXTSTS_VTG_MASK 0x0000ffff #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0)) #define MIBC_MIBS 0x00000008 #define MIBC_ACLR 0x00000004 #define MIBC_FRZ 0x00000002 #define MIBC_WRN 0x00000001 #define PCR_PSEN (1 << 31) #define PCR_PS_MCAST (1 << 30) #define PCR_PS_DA (1 << 29) #define PCR_STHI_8 (3 << 23) #define PCR_STLO_4 (1 << 23) #define PCR_FFHI_8K (3 << 21) #define PCR_FFLO_4K (1 << 21) #define PCR_PAUSE_CNT 0xFFFE #define RXCFG_AEP 0x80000000 #define RXCFG_ARP 0x40000000 #define RXCFG_STRIPCRC 0x20000000 #define RXCFG_RX_FD 0x10000000 #define RXCFG_ALP 0x08000000 #define RXCFG_AIRL 0x04000000 #define RXCFG_MXDMA512 0x00700000 #define RXCFG_DRTH 0x0000003e #define RXCFG_DRTH0 0x00000002 #define RFCR_RFEN 0x80000000 #define RFCR_AAB 0x40000000 #define RFCR_AAM 0x20000000 #define RFCR_AAU 0x10000000 #define RFCR_APM 0x08000000 #define RFCR_APAT 0x07800000 #define RFCR_APAT3 0x04000000 #define RFCR_APAT2 0x02000000 #define RFCR_APAT1 0x01000000 #define RFCR_APAT0 0x00800000 #define RFCR_AARP 0x00400000 #define RFCR_MHEN 0x00200000 #define RFCR_UHEN 0x00100000 #define RFCR_ULM 0x00080000 #define VRCR_RUDPE 0x00000080 #define VRCR_RTCPE 0x00000040 #define VRCR_RIPE 0x00000020 #define VRCR_IPEN 0x00000010 #define VRCR_DUTF 0x00000008 #define VRCR_DVTF 0x00000004 #define VRCR_VTREN 0x00000002 #define VRCR_VTDEN 0x00000001 #define VTCR_PPCHK 0x00000008 #define VTCR_GCHK 0x00000004 #define VTCR_VPPTI 0x00000002 #define VTCR_VGTI 0x00000001 #define CR 0x00 #define CFG 0x04 #define MEAR 0x08 #define PTSCR 0x0c #define ISR 0x10 #define IMR 0x14 #define IER 0x18 #define IHR 0x1c #define TXDP 0x20 #define TXDP_HI 0x24 #define TXCFG 0x28 #define GPIOR 0x2c #define RXDP 0x30 #define RXDP_HI 0x34 #define RXCFG 0x38 #define PQCR 0x3c #define WCSR 0x40 #define PCR 0x44 #define RFCR 0x48 #define RFDR 0x4c #define SRR 0x58 #define VRCR 0xbc #define VTCR 0xc0 #define VDR 0xc4 #define CCSR 0xcc #define TBICR 0xe0 #define TBISR 0xe4 #define TANAR 0xe8 #define TANLPAR 0xec #define TANER 0xf0 #define TESR 0xf4 #define TBICR_MR_AN_ENABLE 0x00001000 #define TBICR_MR_RESTART_AN 0x00000200 #define TBISR_MR_LINK_STATUS 0x00000020 #define TBISR_MR_AN_COMPLETE 0x00000004 #define TANAR_PS2 0x00000100 #define TANAR_PS1 0x00000080 #define TANAR_HALF_DUP 0x00000040 #define TANAR_FULL_DUP 0x00000020 #define GPIOR_GP5_OE 0x00000200 #define GPIOR_GP4_OE 0x00000100 #define GPIOR_GP3_OE 0x00000080 #define GPIOR_GP2_OE 0x00000040 #define GPIOR_GP1_OE 0x00000020 #define GPIOR_GP3_OUT 0x00000004 #define GPIOR_GP1_OUT 0x00000001 #define LINK_AUTONEGOTIATE 0x01 #define LINK_DOWN 0x02 #define LINK_UP 0x04 #define HW_ADDR_LEN sizeof(dma_addr_t) #define desc_addr_set(desc, addr) \ do { \ ((desc)[0] = cpu_to_le32(addr)); \ if (HW_ADDR_LEN == 8) \ (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \ } while(0) #define desc_addr_get(desc) \ (le32_to_cpu((desc)[0]) | \ (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0)) #define DESC_LINK 0 #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4) #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4) #define DESC_EXTSTS (DESC_CMDSTS + 4/4) #define CMDSTS_OWN 0x80000000 #define CMDSTS_MORE 0x40000000 #define CMDSTS_INTR 0x20000000 #define CMDSTS_ERR 0x10000000 #define CMDSTS_OK 0x08000000 #define CMDSTS_RUNT 0x00200000 #define CMDSTS_LEN_MASK 0x0000ffff #define CMDSTS_DEST_MASK 0x01800000 #define CMDSTS_DEST_SELF 0x00800000 #define CMDSTS_DEST_MULTI 0x01000000 #define DESC_SIZE 8 /* Should be cache line sized */ struct rx_info { spinlock_t lock; int up; unsigned long idle; struct sk_buff *skbs[NR_RX_DESC]; __le32 *next_rx_desc; u16 next_rx, next_empty; __le32 *descs; dma_addr_t phy_descs; }; struct ns83820 { u8 __iomem *base; struct pci_dev *pci_dev; struct net_device *ndev; struct rx_info rx_info; struct tasklet_struct rx_tasklet; unsigned ihr; struct work_struct tq_refill; /* protects everything below. irqsave when using. */ spinlock_t misc_lock; u32 CFG_cache; u32 MEAR_cache; u32 IMR_cache; unsigned linkstate; spinlock_t tx_lock; u16 tx_done_idx; u16 tx_idx; volatile u16 tx_free_idx; /* idx of free desc chain */ u16 tx_intr_idx; atomic_t nr_tx_skbs; struct sk_buff *tx_skbs[NR_TX_DESC]; char pad[16] __attribute__((aligned(16))); __le32 *tx_descs; dma_addr_t tx_phy_descs; struct timer_list tx_watchdog; }; static inline struct ns83820 *PRIV(struct net_device *dev) { return netdev_priv(dev); } #define __kick_rx(dev) writel(CR_RXE, dev->base + CR) static inline void kick_rx(struct net_device *ndev) { struct ns83820 *dev = PRIV(ndev); dprintk("kick_rx: maybe kicking\n"); if (test_and_clear_bit(0, &dev->rx_info.idle)) { dprintk("actually kicking\n"); writel(dev->rx_info.phy_descs + (4 * DESC_SIZE * dev->rx_info.next_rx), dev->base + RXDP); if (dev->rx_info.next_rx == dev->rx_info.next_empty) printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n", ndev->name); __kick_rx(dev); } } //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC #define start_tx_okay(dev) \ (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE) /* Packet Receiver * * The hardware supports linked lists of receive descriptors for * which ownership is transferred back and forth by means of an * ownership bit. While the hardware does support the use of a * ring for receive descriptors, we only make use of a chain in * an attempt to reduce bus traffic under heavy load scenarios. * This will also make bugs a bit more obvious. The current code * only makes use of a single rx chain; I hope to implement * priority based rx for version 1.0. Goal: even under overload * conditions, still route realtime traffic with as low jitter as * possible. */ static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts) { desc_addr_set(desc + DESC_LINK, link); desc_addr_set(desc + DESC_BUFPTR, buf); desc[DESC_EXTSTS] = cpu_to_le32(extsts); mb(); desc[DESC_CMDSTS] = cpu_to_le32(cmdsts); } #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC) static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb) { unsigned next_empty; u32 cmdsts; __le32 *sg; dma_addr_t buf; next_empty = dev->rx_info.next_empty; /* don't overrun last rx marker */ if (unlikely(nr_rx_empty(dev) <= 2)) { kfree_skb(skb); return 1; } #if 0 dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n", dev->rx_info.next_empty, dev->rx_info.nr_used, dev->rx_info.next_rx ); #endif sg = dev->rx_info.descs + (next_empty * DESC_SIZE); BUG_ON(NULL != dev->rx_info.skbs[next_empty]); dev->rx_info.skbs[next_empty] = skb; dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC; cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR; buf = pci_map_single(dev->pci_dev, skb->data, REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); build_rx_desc(dev, sg, 0, buf, cmdsts, 0); /* update link of previous rx */ if (likely(next_empty != dev->rx_info.next_rx)) dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4)); return 0; } static inline int rx_refill(struct net_device *ndev, gfp_t gfp) { struct ns83820 *dev = PRIV(ndev); unsigned i; unsigned long flags = 0; if (unlikely(nr_rx_empty(dev) <= 2)) return 0; dprintk("rx_refill(%p)\n", ndev); if (gfp == GFP_ATOMIC) spin_lock_irqsave(&dev->rx_info.lock, flags); for (i=0; i<NR_RX_DESC; i++) { struct sk_buff *skb; long res; /* extra 16 bytes for alignment */ skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp); if (unlikely(!skb)) break; skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16)); if (gfp != GFP_ATOMIC) spin_lock_irqsave(&dev->rx_info.lock, flags); res = ns83820_add_rx_skb(dev, skb); if (gfp != GFP_ATOMIC) spin_unlock_irqrestore(&dev->rx_info.lock, flags); if (res) { i = 1; break; } } if (gfp == GFP_ATOMIC) spin_unlock_irqrestore(&dev->rx_info.lock, flags); return i ? 0 : -ENOMEM; } static void rx_refill_atomic(struct net_device *ndev) { rx_refill(ndev, GFP_ATOMIC); } /* REFILL */ static inline void queue_refill(struct work_struct *work) { struct ns83820 *dev = container_of(work, struct ns83820, tq_refill); struct net_device *ndev = dev->ndev; rx_refill(ndev, GFP_KERNEL); if (dev->rx_info.up) kick_rx(ndev); } static inline void clear_rx_desc(struct ns83820 *dev, unsigned i) { build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0); } static void phy_intr(struct net_device *ndev) { struct ns83820 *dev = PRIV(ndev); static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" }; u32 cfg, new_cfg; u32 tbisr, tanar, tanlpar; int speed, fullduplex, newlinkstate; cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY; if (dev->CFG_cache & CFG_TBI_EN) { /* we have an optical transceiver */ tbisr = readl(dev->base + TBISR); tanar = readl(dev->base + TANAR); tanlpar = readl(dev->base + TANLPAR); dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n", tbisr, tanar, tanlpar); if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) && (tanar & TANAR_FULL_DUP)) ) { /* both of us are full duplex */ writel(readl(dev->base + TXCFG) | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP, dev->base + TXCFG); writel(readl(dev->base + RXCFG) | RXCFG_RX_FD, dev->base + RXCFG); /* Light up full duplex LED */ writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT, dev->base + GPIOR); } else if (((tanlpar & TANAR_HALF_DUP) && (tanar & TANAR_HALF_DUP)) || ((tanlpar & TANAR_FULL_DUP) && (tanar & TANAR_HALF_DUP)) || ((tanlpar & TANAR_HALF_DUP) && (tanar & TANAR_FULL_DUP))) { /* one or both of us are half duplex */ writel((readl(dev->base + TXCFG) & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP, dev->base + TXCFG); writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD, dev->base + RXCFG); /* Turn off full duplex LED */ writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT, dev->base + GPIOR); } speed = 4; /* 1000F */ } else { /* we have a copper transceiver */ new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS); if (cfg & CFG_SPDSTS1) new_cfg |= CFG_MODE_1000; else new_cfg &= ~CFG_MODE_1000; speed = ((cfg / CFG_SPDSTS0) & 3); fullduplex = (cfg & CFG_DUPSTS); if (fullduplex) { new_cfg |= CFG_SB; writel(readl(dev->base + TXCFG) | TXCFG_CSI | TXCFG_HBI, dev->base + TXCFG); writel(readl(dev->base + RXCFG) | RXCFG_RX_FD, dev->base + RXCFG); } else { writel(readl(dev->base + TXCFG) & ~(TXCFG_CSI | TXCFG_HBI), dev->base + TXCFG); writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD), dev->base + RXCFG); } if ((cfg & CFG_LNKSTS) && ((new_cfg ^ dev->CFG_cache) != 0)) { writel(new_cfg, dev->base + CFG); dev->CFG_cache = new_cfg; } dev->CFG_cache &= ~CFG_SPDSTS; dev->CFG_cache |= cfg & CFG_SPDSTS; } newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN; if (newlinkstate & LINK_UP && dev->linkstate != newlinkstate) { netif_start_queue(ndev); netif_wake_queue(ndev); printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n", ndev->name, speeds[speed], fullduplex ? "full" : "half"); } else if (newlinkstate & LINK_DOWN && dev->linkstate != newlinkstate) { netif_stop_queue(ndev); printk(KERN_INFO "%s: link now down.\n", ndev->name); } dev->linkstate = newlinkstate; } static int ns83820_setup_rx(struct net_device *ndev) { struct ns83820 *dev = PRIV(ndev); unsigned i; int ret; dprintk("ns83820_setup_rx(%p)\n", ndev); dev->rx_info.idle = 1; dev->rx_info.next_rx = 0; dev->rx_info.next_rx_desc = dev->rx_info.descs; dev->rx_info.next_empty = 0; for (i=0; i<NR_RX_DESC; i++) clear_rx_desc(dev, i); writel(0, dev->base + RXDP_HI); writel(dev->rx_info.phy_descs, dev->base + RXDP); ret = rx_refill(ndev, GFP_KERNEL); if (!ret) { dprintk("starting receiver\n"); /* prevent the interrupt handler from stomping on us */ spin_lock_irq(&dev->rx_info.lock); writel(0x0001, dev->base + CCSR); writel(0, dev->base + RFCR); writel(0x7fc00000, dev->base + RFCR); writel(0xffc00000, dev->base + RFCR); dev->rx_info.up = 1; phy_intr(ndev); /* Okay, let it rip */ spin_lock(&dev->misc_lock); dev->IMR_cache |= ISR_PHY; dev->IMR_cache |= ISR_RXRCMP; //dev->IMR_cache |= ISR_RXERR; //dev->IMR_cache |= ISR_RXOK; dev->IMR_cache |= ISR_RXORN; dev->IMR_cache |= ISR_RXSOVR; dev->IMR_cache |= ISR_RXDESC; dev->IMR_cache |= ISR_RXIDLE; dev->IMR_cache |= ISR_TXDESC; dev->IMR_cache |= ISR_TXIDLE; writel(dev->IMR_cache, dev->base + IMR); writel(1, dev->base + IER); spin_unlock(&dev->misc_lock); kick_rx(ndev); spin_unlock_irq(&dev->rx_info.lock); } return ret; } static void ns83820_cleanup_rx(struct ns83820 *dev) { unsigned i; unsigned long flags; dprintk("ns83820_cleanup_rx(%p)\n", dev); /* disable receive interrupts */ spin_lock_irqsave(&dev->misc_lock, flags); dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE); writel(dev->IMR_cache, dev->base + IMR); spin_unlock_irqrestore(&dev->misc_lock, flags); /* synchronize with the interrupt handler and kill it */ dev->rx_info.up = 0; synchronize_irq(dev->pci_dev->irq); /* touch the pci bus... */ readl(dev->base + IMR); /* assumes the transmitter is already disabled and reset */ writel(0, dev->base + RXDP_HI); writel(0, dev->base + RXDP); for (i=0; i<NR_RX_DESC; i++) { struct sk_buff *skb = dev->rx_info.skbs[i]; dev->rx_info.skbs[i] = NULL; clear_rx_desc(dev, i); kfree_skb(skb); } } static void ns83820_rx_kick(struct net_device *ndev) { struct ns83820 *dev = PRIV(ndev); /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ { if (dev->rx_info.up) { rx_refill_atomic(ndev); kick_rx(ndev); } } if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4) schedule_work(&dev->tq_refill); else kick_rx(ndev); if (dev->rx_info.idle) printk(KERN_DEBUG "%s: BAD\n", ndev->name); } /* rx_irq * */ static void rx_irq(struct net_device *ndev) { struct ns83820 *dev = PRIV(ndev); struct rx_info *info = &dev->rx_info; unsigned next_rx; int rx_rc, len; u32 cmdsts; __le32 *desc; unsigned long flags; int nr = 0; dprintk("rx_irq(%p)\n", ndev); dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n", readl(dev->base + RXDP), (long)(dev->rx_info.phy_descs), (int)dev->rx_info.next_rx, (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)), (int)dev->rx_info.next_empty, (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty)) ); spin_lock_irqsave(&info->lock, flags); if (!info->up) goto out; dprintk("walking descs\n"); next_rx = info->next_rx; desc = info->next_rx_desc; while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) && (cmdsts != CMDSTS_OWN)) { struct sk_buff *skb; u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]); dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR); dprintk("cmdsts: %08x\n", cmdsts); dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK])); dprintk("extsts: %08x\n", extsts); skb = info->skbs[next_rx]; info->skbs[next_rx] = NULL; info->next_rx = (next_rx + 1) % NR_RX_DESC; mb(); clear_rx_desc(dev, next_rx); pci_unmap_single(dev->pci_dev, bufptr, RX_BUF_SIZE, PCI_DMA_FROMDEVICE); len = cmdsts & CMDSTS_LEN_MASK; #ifdef NS83820_VLAN_ACCEL_SUPPORT /* NH: As was mentioned below, this chip is kinda * brain dead about vlan tag stripping. Frames * that are 64 bytes with a vlan header appended * like arp frames, or pings, are flagged as Runts * when the tag is stripped and hardware. This * also means that the OK bit in the descriptor * is cleared when the frame comes in so we have * to do a specific length check here to make sure * the frame would have been ok, had we not stripped * the tag. */ if (likely((CMDSTS_OK & cmdsts) || ((cmdsts & CMDSTS_RUNT) && len >= 56))) { #else if (likely(CMDSTS_OK & cmdsts)) { #endif skb_put(skb, len); if (unlikely(!skb)) goto netdev_mangle_me_harder_failed; if (cmdsts & CMDSTS_DEST_MULTI) ndev->stats.multicast++; ndev->stats.rx_packets++; ndev->stats.rx_bytes += len; if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) { skb->ip_summed = CHECKSUM_UNNECESSARY; } else { skb_checksum_none_assert(skb); } skb->protocol = eth_type_trans(skb, ndev); #ifdef NS83820_VLAN_ACCEL_SUPPORT if(extsts & EXTSTS_VPKT) { unsigned short tag; tag = ntohs(extsts & EXTSTS_VTG_MASK); __vlan_hwaccel_put_tag(skb, htons(ETH_P_IPV6), tag); } #endif rx_rc = netif_rx(skb); if (NET_RX_DROP == rx_rc) { netdev_mangle_me_harder_failed: ndev->stats.rx_dropped++; } } else { dev_kfree_skb_irq(skb); } nr++; next_rx = info->next_rx; desc = info->descs + (DESC_SIZE * next_rx); } info->next_rx = next_rx; info->next_rx_desc = info->descs + (DESC_SIZE * next_rx); out: if (0 && !nr) { Dprintk("dazed: cmdsts_f: %08x\n", cmdsts); } spin_unlock_irqrestore(&info->lock, flags); } static void rx_action(unsigned long _dev) { struct net_device *ndev = (void *)_dev; struct ns83820 *dev = PRIV(ndev); rx_irq(ndev); writel(ihr, dev->base + IHR); spin_lock_irq(&dev->misc_lock); dev->IMR_cache |= ISR_RXDESC; writel(dev->IMR_cache, dev->base + IMR); spin_unlock_irq(&dev->misc_lock); rx_irq(ndev); ns83820_rx_kick(ndev); } /* Packet Transmit code */ static inline void kick_tx(struct ns83820 *dev) { dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n", dev, dev->tx_idx, dev->tx_free_idx); writel(CR_TXE, dev->base + CR); } /* No spinlock needed on the transmit irq path as the interrupt handler is * serialized. */ static void do_tx_done(struct net_device *ndev) { struct ns83820 *dev = PRIV(ndev); u32 cmdsts, tx_done_idx; __le32 *desc; dprintk("do_tx_done(%p)\n", ndev); tx_done_idx = dev->tx_done_idx; desc = dev->tx_descs + (tx_done_idx * DESC_SIZE); dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n", tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS])); while ((tx_done_idx != dev->tx_free_idx) && !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) { struct sk_buff *skb; unsigned len; dma_addr_t addr; if (cmdsts & CMDSTS_ERR) ndev->stats.tx_errors++; if (cmdsts & CMDSTS_OK) ndev->stats.tx_packets++; if (cmdsts & CMDSTS_OK) ndev->stats.tx_bytes += cmdsts & 0xffff; dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n", tx_done_idx, dev->tx_free_idx, cmdsts); skb = dev->tx_skbs[tx_done_idx]; dev->tx_skbs[tx_done_idx] = NULL; dprintk("done(%p)\n", skb); len = cmdsts & CMDSTS_LEN_MASK; addr = desc_addr_get(desc + DESC_BUFPTR); if (skb) { pci_unmap_single(dev->pci_dev, addr, len, PCI_DMA_TODEVICE); dev_consume_skb_irq(skb); atomic_dec(&dev->nr_tx_skbs); } else pci_unmap_page(dev->pci_dev, addr, len, PCI_DMA_TODEVICE); tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC; dev->tx_done_idx = tx_done_idx; desc[DESC_CMDSTS] = cpu_to_le32(0); mb(); desc = dev->tx_descs + (tx_done_idx * DESC_SIZE); } /* Allow network stack to resume queueing packets after we've * finished transmitting at least 1/4 of the packets in the queue. */ if (netif_queue_stopped(ndev) && start_tx_okay(dev)) { dprintk("start_queue(%p)\n", ndev); netif_start_queue(ndev); netif_wake_queue(ndev); } } static void ns83820_cleanup_tx(struct ns83820 *dev) { unsigned i; for (i=0; i<NR_TX_DESC; i++) { struct sk_buff *skb = dev->tx_skbs[i]; dev->tx_skbs[i] = NULL; if (skb) { __le32 *desc = dev->tx_descs + (i * DESC_SIZE); pci_unmap_single(dev->pci_dev, desc_addr_get(desc + DESC_BUFPTR), le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK, PCI_DMA_TODEVICE); dev_kfree_skb_irq(skb); atomic_dec(&dev->nr_tx_skbs); } } memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4); } /* transmit routine. This code relies on the network layer serializing * its calls in, but will run happily in parallel with the interrupt * handler. This code currently has provisions for fragmenting tx buffers * while trying to track down a bug in either the zero copy code or * the tx fifo (hence the MAX_FRAG_LEN). */ static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct ns83820 *dev = PRIV(ndev); u32 free_idx, cmdsts, extsts; int nr_free, nr_frags; unsigned tx_done_idx, last_idx; dma_addr_t buf; unsigned len; skb_frag_t *frag; int stopped = 0; int do_intr = 0; volatile __le32 *first_desc; dprintk("ns83820_hard_start_xmit\n"); nr_frags = skb_shinfo(skb)->nr_frags; again: if (unlikely(dev->CFG_cache & CFG_LNKSTS)) { netif_stop_queue(ndev); if (unlikely(dev->CFG_cache & CFG_LNKSTS)) return NETDEV_TX_BUSY; netif_start_queue(ndev); } last_idx = free_idx = dev->tx_free_idx; tx_done_idx = dev->tx_done_idx; nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC; nr_free -= 1; if (nr_free <= nr_frags) { dprintk("stop_queue - not enough(%p)\n", ndev); netif_stop_queue(ndev); /* Check again: we may have raced with a tx done irq */ if (dev->tx_done_idx != tx_done_idx) { dprintk("restart queue(%p)\n", ndev); netif_start_queue(ndev); goto again; } return NETDEV_TX_BUSY; } if (free_idx == dev->tx_intr_idx) { do_intr = 1; dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC; } nr_free -= nr_frags; if (nr_free < MIN_TX_DESC_FREE) { dprintk("stop_queue - last entry(%p)\n", ndev); netif_stop_queue(ndev); stopped = 1; } frag = skb_shinfo(skb)->frags; if (!nr_frags) frag = NULL; extsts = 0; if (skb->ip_summed == CHECKSUM_PARTIAL) { extsts |= EXTSTS_IPPKT; if (IPPROTO_TCP == ip_hdr(skb)->protocol) extsts |= EXTSTS_TCPPKT; else if (IPPROTO_UDP == ip_hdr(skb)->protocol) extsts |= EXTSTS_UDPPKT; } #ifdef NS83820_VLAN_ACCEL_SUPPORT if (skb_vlan_tag_present(skb)) { /* fetch the vlan tag info out of the * ancillary data if the vlan code * is using hw vlan acceleration */ short tag = skb_vlan_tag_get(skb); extsts |= (EXTSTS_VPKT | htons(tag)); } #endif len = skb->len; if (nr_frags) len -= skb->data_len; buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE); first_desc = dev->tx_descs + (free_idx * DESC_SIZE); for (;;) { volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE); dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len, (unsigned long long)buf); last_idx = free_idx; free_idx = (free_idx + 1) % NR_TX_DESC; desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4)); desc_addr_set(desc + DESC_BUFPTR, buf); desc[DESC_EXTSTS] = cpu_to_le32(extsts); cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0); cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN; cmdsts |= len; desc[DESC_CMDSTS] = cpu_to_le32(cmdsts); if (!nr_frags) break; buf = skb_frag_dma_map(&dev->pci_dev->dev, frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n", (long long)buf, (long) page_to_pfn(frag->page), frag->page_offset); len = skb_frag_size(frag); frag++; nr_frags--; } dprintk("done pkt\n"); spin_lock_irq(&dev->tx_lock); dev->tx_skbs[last_idx] = skb; first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN); dev->tx_free_idx = free_idx; atomic_inc(&dev->nr_tx_skbs); spin_unlock_irq(&dev->tx_lock); kick_tx(dev); /* Check again: we may have raced with a tx done irq */ if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev)) netif_start_queue(ndev); return NETDEV_TX_OK; } static void ns83820_update_stats(struct ns83820 *dev) { struct net_device *ndev = dev->ndev; u8 __iomem *base = dev->base; /* the DP83820 will freeze counters, so we need to read all of them */ ndev->stats.rx_errors += readl(base + 0x60) & 0xffff; ndev->stats.rx_crc_errors += readl(base + 0x64) & 0xffff; ndev->stats.rx_missed_errors += readl(base + 0x68) & 0xffff; ndev->stats.rx_frame_errors += readl(base + 0x6c) & 0xffff; /*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70); ndev->stats.rx_length_errors += readl(base + 0x74) & 0xffff; ndev->stats.rx_length_errors += readl(base + 0x78) & 0xffff; /*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c); /*ndev->stats.rx_pause_count += */ readl(base + 0x80); /*ndev->stats.tx_pause_count += */ readl(base + 0x84); ndev->stats.tx_carrier_errors += readl(base + 0x88) & 0xff; } static struct net_device_stats *ns83820_get_stats(struct net_device *ndev) { struct ns83820 *dev = PRIV(ndev); /* somewhat overkill */ spin_lock_irq(&dev->misc_lock); ns83820_update_stats(dev); spin_unlock_irq(&dev->misc_lock); return &ndev->stats; } /* Let ethtool retrieve info */ static int ns83820_get_link_ksettings(struct net_device *ndev, struct ethtool_link_ksettings *cmd) { struct ns83820 *dev = PRIV(ndev); u32 cfg, tanar, tbicr; int fullduplex = 0; u32 supported; /* * Here's the list of available ethtool commands from other drivers: * cmd->advertising = * ethtool_cmd_speed_set(cmd, ...) * cmd->duplex = * cmd->port = 0; * cmd->phy_address = * cmd->transceiver = 0; * cmd->autoneg = * cmd->maxtxpkt = 0; * cmd->maxrxpkt = 0; */ /* read current configuration */ cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY; tanar = readl(dev->base + TANAR); tbicr = readl(dev->base + TBICR); fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0; supported = SUPPORTED_Autoneg; if (dev->CFG_cache & CFG_TBI_EN) { /* we have optical interface */ supported |= SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE; cmd->base.port = PORT_FIBRE; } else { /* we have copper */ supported |= SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | SUPPORTED_MII; cmd->base.port = PORT_MII; } ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, supported); cmd->base.duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF; switch (cfg / CFG_SPDSTS0 & 3) { case 2: cmd->base.speed = SPEED_1000; break; case 1: cmd->base.speed = SPEED_100; break; default: cmd->base.speed = SPEED_10; break; } cmd->base.autoneg = (tbicr & TBICR_MR_AN_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE; return 0; } /* Let ethool change settings*/ static int ns83820_set_link_ksettings(struct net_device *ndev, const struct ethtool_link_ksettings *cmd) { struct ns83820 *dev = PRIV(ndev); u32 cfg, tanar; int have_optical = 0; int fullduplex = 0; /* read current configuration */ cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY; tanar = readl(dev->base + TANAR); if (dev->CFG_cache & CFG_TBI_EN) { /* we have optical */ have_optical = 1; fullduplex = (tanar & TANAR_FULL_DUP); } else { /* we have copper */ fullduplex = cfg & CFG_DUPSTS; } spin_lock_irq(&dev->misc_lock); spin_lock(&dev->tx_lock); /* Set duplex */ if (cmd->base.duplex != fullduplex) { if (have_optical) { /*set full duplex*/ if (cmd->base.duplex == DUPLEX_FULL) { /* force full duplex */ writel(readl(dev->base + TXCFG) | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP, dev->base + TXCFG); writel(readl(dev->base + RXCFG) | RXCFG_RX_FD, dev->base + RXCFG); /* Light up full duplex LED */ writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT, dev->base + GPIOR); } else { /*TODO: set half duplex */ } } else { /*we have copper*/ /* TODO: Set duplex for copper cards */ } printk(KERN_INFO "%s: Duplex set via ethtool\n", ndev->name); } /* Set autonegotiation */ if (1) { if (cmd->base.autoneg == AUTONEG_ENABLE) { /* restart auto negotiation */ writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN, dev->base + TBICR); writel(TBICR_MR_AN_ENABLE, dev->base + TBICR); dev->linkstate = LINK_AUTONEGOTIATE; printk(KERN_INFO "%s: autoneg enabled via ethtool\n", ndev->name); } else { /* disable auto negotiation */ writel(0x00000000, dev->base + TBICR); } printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name, cmd->base.autoneg ? "ENABLED" : "DISABLED"); } phy_intr(ndev); spin_unlock(&dev->tx_lock); spin_unlock_irq(&dev->misc_lock); return 0; } /* end ethtool get/set support -df */ static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info) { struct ns83820 *dev = PRIV(ndev); strlcpy(info->driver, "ns83820", sizeof(info->driver)); strlcpy(info->version, VERSION, sizeof(info->version)); strlcpy(info->bus_info, pci_name(dev->pci_dev), sizeof(info->bus_info)); } static u32 ns83820_get_link(struct net_device *ndev) { struct ns83820 *dev = PRIV(ndev); u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY; return cfg & CFG_LNKSTS ? 1 : 0; } static const struct ethtool_ops ops = { .get_drvinfo = ns83820_get_drvinfo, .get_link = ns83820_get_link, .get_link_ksettings = ns83820_get_link_ksettings, .set_link_ksettings = ns83820_set_link_ksettings, }; static inline void ns83820_disable_interrupts(struct ns83820 *dev) { writel(0, dev->base + IMR); writel(0, dev->base + IER); readl(dev->base + IER); } /* this function is called in irq context from the ISR */ static void ns83820_mib_isr(struct ns83820 *dev) { unsigned long flags; spin_lock_irqsave(&dev->misc_lock, flags); ns83820_update_stats(dev); spin_unlock_irqrestore(&dev->misc_lock, flags); } static void ns83820_do_isr(struct net_device *ndev, u32 isr); static irqreturn_t ns83820_irq(int foo, void *data) { struct net_device *ndev = data; struct ns83820 *dev = PRIV(ndev); u32 isr; dprintk("ns83820_irq(%p)\n", ndev); dev->ihr = 0; isr = readl(dev->base + ISR); dprintk("irq: %08x\n", isr); ns83820_do_isr(ndev, isr); return IRQ_HANDLED; } static void ns83820_do_isr(struct net_device *ndev, u32 isr) { struct ns83820 *dev = PRIV(ndev); unsigned long flags; #ifdef DEBUG if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC)) Dprintk("odd isr? 0x%08x\n", isr); #endif if (ISR_RXIDLE & isr) { dev->rx_info.idle = 1; Dprintk("oh dear, we are idle\n"); ns83820_rx_kick(ndev); } if ((ISR_RXDESC | ISR_RXOK) & isr) { prefetch(dev->rx_info.next_rx_desc); spin_lock_irqsave(&dev->misc_lock, flags); dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK); writel(dev->IMR_cache, dev->base + IMR); spin_unlock_irqrestore(&dev->misc_lock, flags); tasklet_schedule(&dev->rx_tasklet); //rx_irq(ndev); //writel(4, dev->base + IHR); } if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr) ns83820_rx_kick(ndev); if (unlikely(ISR_RXSOVR & isr)) { //printk("overrun: rxsovr\n"); ndev->stats.rx_fifo_errors++; } if (unlikely(ISR_RXORN & isr)) { //printk("overrun: rxorn\n"); ndev->stats.rx_fifo_errors++; } if ((ISR_RXRCMP & isr) && dev->rx_info.up) writel(CR_RXE, dev->base + CR); if (ISR_TXIDLE & isr) { u32 txdp; txdp = readl(dev->base + TXDP); dprintk("txdp: %08x\n", txdp); txdp -= dev->tx_phy_descs; dev->tx_idx = txdp / (DESC_SIZE * 4); if (dev->tx_idx >= NR_TX_DESC) { printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name); dev->tx_idx = 0; } /* The may have been a race between a pci originated read * and the descriptor update from the cpu. Just in case, * kick the transmitter if the hardware thinks it is on a * different descriptor than we are. */ if (dev->tx_idx != dev->tx_free_idx) kick_tx(dev); } /* Defer tx ring processing until more than a minimum amount of * work has accumulated */ if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) { spin_lock_irqsave(&dev->tx_lock, flags); do_tx_done(ndev); spin_unlock_irqrestore(&dev->tx_lock, flags); /* Disable TxOk if there are no outstanding tx packets. */ if ((dev->tx_done_idx == dev->tx_free_idx) && (dev->IMR_cache & ISR_TXOK)) { spin_lock_irqsave(&dev->misc_lock, flags); dev->IMR_cache &= ~ISR_TXOK; writel(dev->IMR_cache, dev->base + IMR); spin_unlock_irqrestore(&dev->misc_lock, flags); } } /* The TxIdle interrupt can come in before the transmit has * completed. Normally we reap packets off of the combination * of TxDesc and TxIdle and leave TxOk disabled (since it * occurs on every packet), but when no further irqs of this * nature are expected, we must enable TxOk. */ if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) { spin_lock_irqsave(&dev->misc_lock, flags); dev->IMR_cache |= ISR_TXOK; writel(dev->IMR_cache, dev->base + IMR); spin_unlock_irqrestore(&dev->misc_lock, flags); } /* MIB interrupt: one of the statistics counters is about to overflow */ if (unlikely(ISR_MIB & isr)) ns83820_mib_isr(dev); /* PHY: Link up/down/negotiation state change */ if (unlikely(ISR_PHY & isr)) phy_intr(ndev); #if 0 /* Still working on the interrupt mitigation strategy */ if (dev->ihr) writel(dev->ihr, dev->base + IHR); #endif } static void ns83820_do_reset(struct ns83820 *dev, u32 which) { Dprintk("resetting chip...\n"); writel(which, dev->base + CR); do { schedule(); } while (readl(dev->base + CR) & which); Dprintk("okay!\n"); } static int ns83820_stop(struct net_device *ndev) { struct ns83820 *dev = PRIV(ndev); /* FIXME: protect against interrupt handler? */ del_timer_sync(&dev->tx_watchdog); ns83820_disable_interrupts(dev); dev->rx_info.up = 0; synchronize_irq(dev->pci_dev->irq); ns83820_do_reset(dev, CR_RST); synchronize_irq(dev->pci_dev->irq); spin_lock_irq(&dev->misc_lock); dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK); spin_unlock_irq(&dev->misc_lock); ns83820_cleanup_rx(dev); ns83820_cleanup_tx(dev); return 0; } static void ns83820_tx_timeout(struct net_device *ndev) { struct ns83820 *dev = PRIV(ndev); u32 tx_done_idx; __le32 *desc; unsigned long flags; spin_lock_irqsave(&dev->tx_lock, flags); tx_done_idx = dev->tx_done_idx; desc = dev->tx_descs + (tx_done_idx * DESC_SIZE); printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n", ndev->name, tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS])); #if defined(DEBUG) { u32 isr; isr = readl(dev->base + ISR); printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache); ns83820_do_isr(ndev, isr); } #endif do_tx_done(ndev); tx_done_idx = dev->tx_done_idx; desc = dev->tx_descs + (tx_done_idx * DESC_SIZE); printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n", ndev->name, tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS])); spin_unlock_irqrestore(&dev->tx_lock, flags); } static void ns83820_tx_watch(struct timer_list *t) { struct ns83820 *dev = from_timer(dev, t, tx_watchdog); struct net_device *ndev = dev->ndev; #if defined(DEBUG) printk("ns83820_tx_watch: %u %u %d\n", dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs) ); #endif if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) && dev->tx_done_idx != dev->tx_free_idx) { printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n", ndev->name, dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)); ns83820_tx_timeout(ndev); } mod_timer(&dev->tx_watchdog, jiffies + 2*HZ); } static int ns83820_open(struct net_device *ndev) { struct ns83820 *dev = PRIV(ndev); unsigned i; u32 desc; int ret; dprintk("ns83820_open\n"); writel(0, dev->base + PQCR); ret = ns83820_setup_rx(ndev); if (ret) goto failed; memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE); for (i=0; i<NR_TX_DESC; i++) { dev->tx_descs[(i * DESC_SIZE) + DESC_LINK] = cpu_to_le32( dev->tx_phy_descs + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4); } dev->tx_idx = 0; dev->tx_done_idx = 0; desc = dev->tx_phy_descs; writel(0, dev->base + TXDP_HI); writel(desc, dev->base + TXDP); timer_setup(&dev->tx_watchdog, ns83820_tx_watch, 0); mod_timer(&dev->tx_watchdog, jiffies + 2*HZ); netif_start_queue(ndev); /* FIXME: wait for phy to come up */ return 0; failed: ns83820_stop(ndev); return ret; } static void ns83820_getmac(struct ns83820 *dev, u8 *mac) { unsigned i; for (i=0; i<3; i++) { u32 data; /* Read from the perfect match memory: this is loaded by * the chip from the EEPROM via the EELOAD self test. */ writel(i*2, dev->base + RFCR); data = readl(dev->base + RFDR); *mac++ = data; *mac++ = data >> 8; } } static void ns83820_set_multicast(struct net_device *ndev) { struct ns83820 *dev = PRIV(ndev); u8 __iomem *rfcr = dev->base + RFCR; u32 and_mask = 0xffffffff; u32 or_mask = 0; u32 val; if (ndev->flags & IFF_PROMISC) or_mask |= RFCR_AAU | RFCR_AAM; else and_mask &= ~(RFCR_AAU | RFCR_AAM); if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev)) or_mask |= RFCR_AAM; else and_mask &= ~RFCR_AAM; spin_lock_irq(&dev->misc_lock); val = (readl(rfcr) & and_mask) | or_mask; /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */ writel(val & ~RFCR_RFEN, rfcr); writel(val, rfcr); spin_unlock_irq(&dev->misc_lock); } static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail) { struct ns83820 *dev = PRIV(ndev); int timed_out = 0; unsigned long start; u32 status; int loops = 0; dprintk("%s: start %s\n", ndev->name, name); start = jiffies; writel(enable, dev->base + PTSCR); for (;;) { loops++; status = readl(dev->base + PTSCR); if (!(status & enable)) break; if (status & done) break; if (status & fail) break; if (time_after_eq(jiffies, start + HZ)) { timed_out = 1; break; } schedule_timeout_uninterruptible(1); } if (status & fail) printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n", ndev->name, name, status, fail); else if (timed_out) printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n", ndev->name, name, status); dprintk("%s: done %s in %d loops\n", ndev->name, name, loops); } #ifdef PHY_CODE_IS_FINISHED static void ns83820_mii_write_bit(struct ns83820 *dev, int bit) { /* drive MDC low */ dev->MEAR_cache &= ~MEAR_MDC; writel(dev->MEAR_cache, dev->base + MEAR); readl(dev->base + MEAR); /* enable output, set bit */ dev->MEAR_cache |= MEAR_MDDIR; if (bit) dev->MEAR_cache |= MEAR_MDIO; else dev->MEAR_cache &= ~MEAR_MDIO; /* set the output bit */ writel(dev->MEAR_cache, dev->base + MEAR); readl(dev->base + MEAR); /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */ udelay(1); /* drive MDC high causing the data bit to be latched */ dev->MEAR_cache |= MEAR_MDC; writel(dev->MEAR_cache, dev->base + MEAR); readl(dev->base + MEAR); /* Wait again... */ udelay(1); } static int ns83820_mii_read_bit(struct ns83820 *dev) { int bit; /* drive MDC low, disable output */ dev->MEAR_cache &= ~MEAR_MDC; dev->MEAR_cache &= ~MEAR_MDDIR; writel(dev->MEAR_cache, dev->base + MEAR); readl(dev->base + MEAR); /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */ udelay(1); /* drive MDC high causing the data bit to be latched */ bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0; dev->MEAR_cache |= MEAR_MDC; writel(dev->MEAR_cache, dev->base + MEAR); /* Wait again... */ udelay(1); return bit; } static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg) { unsigned data = 0; int i; /* read some garbage so that we eventually sync up */ for (i=0; i<64; i++) ns83820_mii_read_bit(dev); ns83820_mii_write_bit(dev, 0); /* start */ ns83820_mii_write_bit(dev, 1); ns83820_mii_write_bit(dev, 1); /* opcode read */ ns83820_mii_write_bit(dev, 0); /* write out the phy address: 5 bits, msb first */ for (i=0; i<5; i++) ns83820_mii_write_bit(dev, phy & (0x10 >> i)); /* write out the register address, 5 bits, msb first */ for (i=0; i<5; i++) ns83820_mii_write_bit(dev, reg & (0x10 >> i)); ns83820_mii_read_bit(dev); /* turn around cycles */ ns83820_mii_read_bit(dev); /* read in the register data, 16 bits msb first */ for (i=0; i<16; i++) { data <<= 1; data |= ns83820_mii_read_bit(dev); } return data; } static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data) { int i; /* read some garbage so that we eventually sync up */ for (i=0; i<64; i++) ns83820_mii_read_bit(dev); ns83820_mii_write_bit(dev, 0); /* start */ ns83820_mii_write_bit(dev, 1); ns83820_mii_write_bit(dev, 0); /* opcode read */ ns83820_mii_write_bit(dev, 1); /* write out the phy address: 5 bits, msb first */ for (i=0; i<5; i++) ns83820_mii_write_bit(dev, phy & (0x10 >> i)); /* write out the register address, 5 bits, msb first */ for (i=0; i<5; i++) ns83820_mii_write_bit(dev, reg & (0x10 >> i)); ns83820_mii_read_bit(dev); /* turn around cycles */ ns83820_mii_read_bit(dev); /* read in the register data, 16 bits msb first */ for (i=0; i<16; i++) ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1); return data; } static void ns83820_probe_phy(struct net_device *ndev) { struct ns83820 *dev = PRIV(ndev); int j; unsigned a, b; for (j = 0; j < 0x16; j += 4) { dprintk("%s: [0x%02x] %04x %04x %04x %04x\n", ndev->name, j, ns83820_mii_read_reg(dev, 1, 0 + j), ns83820_mii_read_reg(dev, 1, 1 + j), ns83820_mii_read_reg(dev, 1, 2 + j), ns83820_mii_read_reg(dev, 1, 3 + j) ); } /* read firmware version: memory addr is 0x8402 and 0x8403 */ ns83820_mii_write_reg(dev, 1, 0x16, 0x000d); ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e); a = ns83820_mii_read_reg(dev, 1, 0x1d); ns83820_mii_write_reg(dev, 1, 0x16, 0x000d); ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e); b = ns83820_mii_read_reg(dev, 1, 0x1d); dprintk("version: 0x%04x 0x%04x\n", a, b); } #endif static const struct net_device_ops netdev_ops = { .ndo_open = ns83820_open, .ndo_stop = ns83820_stop, .ndo_start_xmit = ns83820_hard_start_xmit, .ndo_get_stats = ns83820_get_stats, .ndo_set_rx_mode = ns83820_set_multicast, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = eth_mac_addr, .ndo_tx_timeout = ns83820_tx_timeout, }; static int ns83820_init_one(struct pci_dev *pci_dev, const struct pci_device_id *id) { struct net_device *ndev; struct ns83820 *dev; long addr; int err; int using_dac = 0; /* See if we can set the dma mask early on; failure is fatal. */ if (sizeof(dma_addr_t) == 8 && !pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) { using_dac = 1; } else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) { using_dac = 0; } else { dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n"); return -ENODEV; } ndev = alloc_etherdev(sizeof(struct ns83820)); err = -ENOMEM; if (!ndev) goto out; dev = PRIV(ndev); dev->ndev = ndev; spin_lock_init(&dev->rx_info.lock); spin_lock_init(&dev->tx_lock); spin_lock_init(&dev->misc_lock); dev->pci_dev = pci_dev; SET_NETDEV_DEV(ndev, &pci_dev->dev); INIT_WORK(&dev->tq_refill, queue_refill); tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev); err = pci_enable_device(pci_dev); if (err) { dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err); goto out_free; } pci_set_master(pci_dev); addr = pci_resource_start(pci_dev, 1); dev->base = ioremap_nocache(addr, PAGE_SIZE); dev->tx_descs = pci_alloc_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs); dev->rx_info.descs = pci_alloc_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs); err = -ENOMEM; if (!dev->base || !dev->tx_descs || !dev->rx_info.descs) goto out_disable; dprintk("%p: %08lx %p: %08lx\n", dev->tx_descs, (long)dev->tx_phy_descs, dev->rx_info.descs, (long)dev->rx_info.phy_descs); ns83820_disable_interrupts(dev); dev->IMR_cache = 0; err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED, DRV_NAME, ndev); if (err) { dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n", pci_dev->irq, err); goto out_disable; } /* * FIXME: we are holding rtnl_lock() over obscenely long area only * because some of the setup code uses dev->name. It's Wrong(tm) - * we should be using driver-specific names for all that stuff. * For now that will do, but we really need to come back and kill * most of the dev_alloc_name() users later. */ rtnl_lock(); err = dev_alloc_name(ndev, ndev->name); if (err < 0) { dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err); goto out_free_irq; } printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n", ndev->name, le32_to_cpu(readl(dev->base + 0x22c)), pci_dev->subsystem_vendor, pci_dev->subsystem_device); ndev->netdev_ops = &netdev_ops; ndev->ethtool_ops = &ops; ndev->watchdog_timeo = 5 * HZ; pci_set_drvdata(pci_dev, ndev); ns83820_do_reset(dev, CR_RST); /* Must reset the ram bist before running it */ writel(PTSCR_RBIST_RST, dev->base + PTSCR); ns83820_run_bist(ndev, "sram bist", PTSCR_RBIST_EN, PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL); ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0, PTSCR_EEBIST_FAIL); ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0); /* I love config registers */ dev->CFG_cache = readl(dev->base + CFG); if ((dev->CFG_cache & CFG_PCI64_DET)) { printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n", ndev->name); /*dev->CFG_cache |= CFG_DATA64_EN;*/ if (!(dev->CFG_cache & CFG_DATA64_EN)) printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus. Disabled.\n", ndev->name); } else dev->CFG_cache &= ~(CFG_DATA64_EN); dev->CFG_cache &= (CFG_TBI_EN | CFG_MRM_DIS | CFG_MWI_DIS | CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 | CFG_M64ADDR); dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS | CFG_EXTSTS_EN | CFG_EXD | CFG_PESEL; dev->CFG_cache |= CFG_REQALG; dev->CFG_cache |= CFG_POW; dev->CFG_cache |= CFG_TMRTEST; /* When compiled with 64 bit addressing, we must always enable * the 64 bit descriptor format. */ if (sizeof(dma_addr_t) == 8) dev->CFG_cache |= CFG_M64ADDR; if (using_dac) dev->CFG_cache |= CFG_T64ADDR; /* Big endian mode does not seem to do what the docs suggest */ dev->CFG_cache &= ~CFG_BEM; /* setup optical transceiver if we have one */ if (dev->CFG_cache & CFG_TBI_EN) { printk(KERN_INFO "%s: enabling optical transceiver\n", ndev->name); writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR); /* setup auto negotiation feature advertisement */ writel(readl(dev->base + TANAR) | TANAR_HALF_DUP | TANAR_FULL_DUP, dev->base + TANAR); /* start auto negotiation */ writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN, dev->base + TBICR); writel(TBICR_MR_AN_ENABLE, dev->base + TBICR); dev->linkstate = LINK_AUTONEGOTIATE; dev->CFG_cache |= CFG_MODE_1000; } writel(dev->CFG_cache, dev->base + CFG); dprintk("CFG: %08x\n", dev->CFG_cache); if (reset_phy) { printk(KERN_INFO "%s: resetting phy\n", ndev->name); writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG); msleep(10); writel(dev->CFG_cache, dev->base + CFG); } #if 0 /* Huh? This sets the PCI latency register. Should be done via * the PCI layer. FIXME. */ if (readl(dev->base + SRR)) writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c); #endif /* Note! The DMA burst size interacts with packet * transmission, such that the largest packet that * can be transmitted is 8192 - FLTH - burst size. * If only the transmit fifo was larger... */ /* Ramit : 1024 DMA is not a good idea, it ends up banging * some DELL and COMPAQ SMP systems */ writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512 | ((1600 / 32) * 0x100), dev->base + TXCFG); /* Flush the interrupt holdoff timer */ writel(0x000, dev->base + IHR); writel(0x100, dev->base + IHR); writel(0x000, dev->base + IHR); /* Set Rx to full duplex, don't accept runt, errored, long or length * range errored packets. Use 512 byte DMA. */ /* Ramit : 1024 DMA is not a good idea, it ends up banging * some DELL and COMPAQ SMP systems * Turn on ALP, only we are accpeting Jumbo Packets */ writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD | RXCFG_STRIPCRC //| RXCFG_ALP | (RXCFG_MXDMA512) | 0, dev->base + RXCFG); /* Disable priority queueing */ writel(0, dev->base + PQCR); /* Enable IP checksum validation and detetion of VLAN headers. * Note: do not set the reject options as at least the 0x102 * revision of the chip does not properly accept IP fragments * at least for UDP. */ /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since * the MAC it calculates the packetsize AFTER stripping the VLAN * header, and if a VLAN Tagged packet of 64 bytes is received (like * a ping with a VLAN header) then the card, strips the 4 byte VLAN * tag and then checks the packet size, so if RXCFG_ARP is not enabled, * it discrards it!. These guys...... * also turn on tag stripping if hardware acceleration is enabled */ #ifdef NS83820_VLAN_ACCEL_SUPPORT #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN) #else #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN) #endif writel(VRCR_INIT_VALUE, dev->base + VRCR); /* Enable per-packet TCP/UDP/IP checksumming * and per packet vlan tag insertion if * vlan hardware acceleration is enabled */ #ifdef NS83820_VLAN_ACCEL_SUPPORT #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI) #else #define VTCR_INIT_VALUE VTCR_PPCHK #endif writel(VTCR_INIT_VALUE, dev->base + VTCR); /* Ramit : Enable async and sync pause frames */ /* writel(0, dev->base + PCR); */ writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K | PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT), dev->base + PCR); /* Disable Wake On Lan */ writel(0, dev->base + WCSR); ns83820_getmac(dev, ndev->dev_addr); /* Yes, we support dumb IP checksum on transmit */ ndev->features |= NETIF_F_SG; ndev->features |= NETIF_F_IP_CSUM; ndev->min_mtu = 0; #ifdef NS83820_VLAN_ACCEL_SUPPORT /* We also support hardware vlan acceleration */ ndev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; #endif if (using_dac) { printk(KERN_INFO "%s: using 64 bit addressing.\n", ndev->name); ndev->features |= NETIF_F_HIGHDMA; } printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n", ndev->name, (unsigned)readl(dev->base + SRR) >> 8, (unsigned)readl(dev->base + SRR) & 0xff, ndev->dev_addr, addr, pci_dev->irq, (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg" ); #ifdef PHY_CODE_IS_FINISHED ns83820_probe_phy(ndev); #endif err = register_netdevice(ndev); if (err) { printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err); goto out_cleanup; } rtnl_unlock(); return 0; out_cleanup: ns83820_disable_interrupts(dev); /* paranoia */ out_free_irq: rtnl_unlock(); free_irq(pci_dev->irq, ndev); out_disable: if (dev->base) iounmap(dev->base); pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs); pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs); pci_disable_device(pci_dev); out_free: free_netdev(ndev); out: return err; } static void ns83820_remove_one(struct pci_dev *pci_dev) { struct net_device *ndev = pci_get_drvdata(pci_dev); struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */ if (!ndev) /* paranoia */ return; ns83820_disable_interrupts(dev); /* paranoia */ unregister_netdev(ndev); free_irq(dev->pci_dev->irq, ndev); iounmap(dev->base); pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs); pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs); pci_disable_device(dev->pci_dev); free_netdev(ndev); } static const struct pci_device_id ns83820_pci_tbl[] = { { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, }, { 0, }, }; static struct pci_driver driver = { .name = "ns83820", .id_table = ns83820_pci_tbl, .probe = ns83820_init_one, .remove = ns83820_remove_one, #if 0 /* FIXME: implement */ .suspend = , .resume = , #endif }; static int __init ns83820_init(void) { printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n"); return pci_register_driver(&driver); } static void __exit ns83820_exit(void) { pci_unregister_driver(&driver); } MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>"); MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver"); MODULE_LICENSE("GPL"); MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl); module_param(lnksts, int, 0); MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit"); module_param(ihr, int, 0); MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)"); module_param(reset_phy, int, 0); MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup"); module_init(ns83820_init); module_exit(ns83820_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1