Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jerome Brunet | 1681 | 100.00% | 2 | 100.00% |
Total | 1681 | 2 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019 Baylibre, SAS. * Author: Jerome Brunet <jbrunet@baylibre.com> */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/device.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/mdio-mux.h> #include <linux/module.h> #include <linux/phy.h> #include <linux/platform_device.h> #define ETH_PLL_STS 0x40 #define ETH_PLL_CTL0 0x44 #define PLL_CTL0_LOCK_DIG BIT(30) #define PLL_CTL0_RST BIT(29) #define PLL_CTL0_EN BIT(28) #define PLL_CTL0_SEL BIT(23) #define PLL_CTL0_N GENMASK(14, 10) #define PLL_CTL0_M GENMASK(8, 0) #define PLL_LOCK_TIMEOUT 1000000 #define PLL_MUX_NUM_PARENT 2 #define ETH_PLL_CTL1 0x48 #define ETH_PLL_CTL2 0x4c #define ETH_PLL_CTL3 0x50 #define ETH_PLL_CTL4 0x54 #define ETH_PLL_CTL5 0x58 #define ETH_PLL_CTL6 0x5c #define ETH_PLL_CTL7 0x60 #define ETH_PHY_CNTL0 0x80 #define EPHY_G12A_ID 0x33010180 #define ETH_PHY_CNTL1 0x84 #define PHY_CNTL1_ST_MODE GENMASK(2, 0) #define PHY_CNTL1_ST_PHYADD GENMASK(7, 3) #define EPHY_DFLT_ADD 8 #define PHY_CNTL1_MII_MODE GENMASK(15, 14) #define EPHY_MODE_RMII 0x1 #define PHY_CNTL1_CLK_EN BIT(16) #define PHY_CNTL1_CLKFREQ BIT(17) #define PHY_CNTL1_PHY_ENB BIT(18) #define ETH_PHY_CNTL2 0x88 #define PHY_CNTL2_USE_INTERNAL BIT(5) #define PHY_CNTL2_SMI_SRC_MAC BIT(6) #define PHY_CNTL2_RX_CLK_EPHY BIT(9) #define MESON_G12A_MDIO_EXTERNAL_ID 0 #define MESON_G12A_MDIO_INTERNAL_ID 1 struct g12a_mdio_mux { bool pll_is_enabled; void __iomem *regs; void *mux_handle; struct clk *pclk; struct clk *pll; }; struct g12a_ephy_pll { void __iomem *base; struct clk_hw hw; }; #define g12a_ephy_pll_to_dev(_hw) \ container_of(_hw, struct g12a_ephy_pll, hw) static unsigned long g12a_ephy_pll_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct g12a_ephy_pll *pll = g12a_ephy_pll_to_dev(hw); u32 val, m, n; val = readl(pll->base + ETH_PLL_CTL0); m = FIELD_GET(PLL_CTL0_M, val); n = FIELD_GET(PLL_CTL0_N, val); return parent_rate * m / n; } static int g12a_ephy_pll_enable(struct clk_hw *hw) { struct g12a_ephy_pll *pll = g12a_ephy_pll_to_dev(hw); u32 val = readl(pll->base + ETH_PLL_CTL0); /* Apply both enable an reset */ val |= PLL_CTL0_RST | PLL_CTL0_EN; writel(val, pll->base + ETH_PLL_CTL0); /* Clear the reset to let PLL lock */ val &= ~PLL_CTL0_RST; writel(val, pll->base + ETH_PLL_CTL0); /* Poll on the digital lock instead of the usual analog lock * This is done because bit 31 is unreliable on some SoC. Bit * 31 may indicate that the PLL is not lock eventhough the clock * is actually running */ return readl_poll_timeout(pll->base + ETH_PLL_CTL0, val, val & PLL_CTL0_LOCK_DIG, 0, PLL_LOCK_TIMEOUT); } static void g12a_ephy_pll_disable(struct clk_hw *hw) { struct g12a_ephy_pll *pll = g12a_ephy_pll_to_dev(hw); u32 val; val = readl(pll->base + ETH_PLL_CTL0); val &= ~PLL_CTL0_EN; val |= PLL_CTL0_RST; writel(val, pll->base + ETH_PLL_CTL0); } static int g12a_ephy_pll_is_enabled(struct clk_hw *hw) { struct g12a_ephy_pll *pll = g12a_ephy_pll_to_dev(hw); unsigned int val; val = readl(pll->base + ETH_PLL_CTL0); return (val & PLL_CTL0_LOCK_DIG) ? 1 : 0; } static void g12a_ephy_pll_init(struct clk_hw *hw) { struct g12a_ephy_pll *pll = g12a_ephy_pll_to_dev(hw); /* Apply PLL HW settings */ writel(0x29c0040a, pll->base + ETH_PLL_CTL0); writel(0x927e0000, pll->base + ETH_PLL_CTL1); writel(0xac5f49e5, pll->base + ETH_PLL_CTL2); writel(0x00000000, pll->base + ETH_PLL_CTL3); writel(0x00000000, pll->base + ETH_PLL_CTL4); writel(0x20200000, pll->base + ETH_PLL_CTL5); writel(0x0000c002, pll->base + ETH_PLL_CTL6); writel(0x00000023, pll->base + ETH_PLL_CTL7); } static const struct clk_ops g12a_ephy_pll_ops = { .recalc_rate = g12a_ephy_pll_recalc_rate, .is_enabled = g12a_ephy_pll_is_enabled, .enable = g12a_ephy_pll_enable, .disable = g12a_ephy_pll_disable, .init = g12a_ephy_pll_init, }; static int g12a_enable_internal_mdio(struct g12a_mdio_mux *priv) { int ret; /* Enable the phy clock */ if (!priv->pll_is_enabled) { ret = clk_prepare_enable(priv->pll); if (ret) return ret; } priv->pll_is_enabled = true; /* Initialize ephy control */ writel(EPHY_G12A_ID, priv->regs + ETH_PHY_CNTL0); writel(FIELD_PREP(PHY_CNTL1_ST_MODE, 3) | FIELD_PREP(PHY_CNTL1_ST_PHYADD, EPHY_DFLT_ADD) | FIELD_PREP(PHY_CNTL1_MII_MODE, EPHY_MODE_RMII) | PHY_CNTL1_CLK_EN | PHY_CNTL1_CLKFREQ | PHY_CNTL1_PHY_ENB, priv->regs + ETH_PHY_CNTL1); writel(PHY_CNTL2_USE_INTERNAL | PHY_CNTL2_SMI_SRC_MAC | PHY_CNTL2_RX_CLK_EPHY, priv->regs + ETH_PHY_CNTL2); return 0; } static int g12a_enable_external_mdio(struct g12a_mdio_mux *priv) { /* Reset the mdio bus mux */ writel_relaxed(0x0, priv->regs + ETH_PHY_CNTL2); /* Disable the phy clock if enabled */ if (priv->pll_is_enabled) { clk_disable_unprepare(priv->pll); priv->pll_is_enabled = false; } return 0; } static int g12a_mdio_switch_fn(int current_child, int desired_child, void *data) { struct g12a_mdio_mux *priv = dev_get_drvdata(data); if (current_child == desired_child) return 0; switch (desired_child) { case MESON_G12A_MDIO_EXTERNAL_ID: return g12a_enable_external_mdio(priv); case MESON_G12A_MDIO_INTERNAL_ID: return g12a_enable_internal_mdio(priv); default: return -EINVAL; } } static const struct of_device_id g12a_mdio_mux_match[] = { { .compatible = "amlogic,g12a-mdio-mux", }, {}, }; MODULE_DEVICE_TABLE(of, g12a_mdio_mux_match); static int g12a_ephy_glue_clk_register(struct device *dev) { struct g12a_mdio_mux *priv = dev_get_drvdata(dev); const char *parent_names[PLL_MUX_NUM_PARENT]; struct clk_init_data init; struct g12a_ephy_pll *pll; struct clk_mux *mux; struct clk *clk; char *name; int i; /* get the mux parents */ for (i = 0; i < PLL_MUX_NUM_PARENT; i++) { char in_name[8]; snprintf(in_name, sizeof(in_name), "clkin%d", i); clk = devm_clk_get(dev, in_name); if (IS_ERR(clk)) { if (PTR_ERR(clk) != -EPROBE_DEFER) dev_err(dev, "Missing clock %s\n", in_name); return PTR_ERR(clk); } parent_names[i] = __clk_get_name(clk); } /* create the input mux */ mux = devm_kzalloc(dev, sizeof(*mux), GFP_KERNEL); if (!mux) return -ENOMEM; name = kasprintf(GFP_KERNEL, "%s#mux", dev_name(dev)); if (!name) return -ENOMEM; init.name = name; init.ops = &clk_mux_ro_ops; init.flags = 0; init.parent_names = parent_names; init.num_parents = PLL_MUX_NUM_PARENT; mux->reg = priv->regs + ETH_PLL_CTL0; mux->shift = __ffs(PLL_CTL0_SEL); mux->mask = PLL_CTL0_SEL >> mux->shift; mux->hw.init = &init; clk = devm_clk_register(dev, &mux->hw); kfree(name); if (IS_ERR(clk)) { dev_err(dev, "failed to register input mux\n"); return PTR_ERR(clk); } /* create the pll */ pll = devm_kzalloc(dev, sizeof(*pll), GFP_KERNEL); if (!pll) return -ENOMEM; name = kasprintf(GFP_KERNEL, "%s#pll", dev_name(dev)); if (!name) return -ENOMEM; init.name = name; init.ops = &g12a_ephy_pll_ops; init.flags = 0; parent_names[0] = __clk_get_name(clk); init.parent_names = parent_names; init.num_parents = 1; pll->base = priv->regs; pll->hw.init = &init; clk = devm_clk_register(dev, &pll->hw); kfree(name); if (IS_ERR(clk)) { dev_err(dev, "failed to register input mux\n"); return PTR_ERR(clk); } priv->pll = clk; return 0; } static int g12a_mdio_mux_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct g12a_mdio_mux *priv; struct resource *res; int ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; platform_set_drvdata(pdev, priv); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); priv->regs = devm_ioremap_resource(dev, res); if (IS_ERR(priv->regs)) return PTR_ERR(priv->regs); priv->pclk = devm_clk_get(dev, "pclk"); if (IS_ERR(priv->pclk)) { ret = PTR_ERR(priv->pclk); if (ret != -EPROBE_DEFER) dev_err(dev, "failed to get peripheral clock\n"); return ret; } /* Make sure the device registers are clocked */ ret = clk_prepare_enable(priv->pclk); if (ret) { dev_err(dev, "failed to enable peripheral clock"); return ret; } /* Register PLL in CCF */ ret = g12a_ephy_glue_clk_register(dev); if (ret) goto err; ret = mdio_mux_init(dev, dev->of_node, g12a_mdio_switch_fn, &priv->mux_handle, dev, NULL); if (ret) { if (ret != -EPROBE_DEFER) dev_err(dev, "mdio multiplexer init failed: %d", ret); goto err; } return 0; err: clk_disable_unprepare(priv->pclk); return ret; } static int g12a_mdio_mux_remove(struct platform_device *pdev) { struct g12a_mdio_mux *priv = platform_get_drvdata(pdev); mdio_mux_uninit(priv->mux_handle); if (priv->pll_is_enabled) clk_disable_unprepare(priv->pll); clk_disable_unprepare(priv->pclk); return 0; } static struct platform_driver g12a_mdio_mux_driver = { .probe = g12a_mdio_mux_probe, .remove = g12a_mdio_mux_remove, .driver = { .name = "g12a-mdio_mux", .of_match_table = g12a_mdio_mux_match, }, }; module_platform_driver(g12a_mdio_mux_driver); MODULE_DESCRIPTION("Amlogic G12a MDIO multiplexer driver"); MODULE_AUTHOR("Jerome Brunet <jbrunet@baylibre.com>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1