Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Krzysztof Hałasa | 1824 | 89.81% | 8 | 38.10% |
Al Viro | 158 | 7.78% | 4 | 19.05% |
Joe Perches | 26 | 1.28% | 1 | 4.76% |
Andrew Morton | 8 | 0.39% | 1 | 4.76% |
Benoit Taine | 6 | 0.30% | 1 | 4.76% |
Ingo Molnar | 3 | 0.15% | 1 | 4.76% |
Thomas Gleixner | 3 | 0.15% | 2 | 9.52% |
Jeff Garzik | 1 | 0.05% | 1 | 4.76% |
Arjan van de Ven | 1 | 0.05% | 1 | 4.76% |
Yoann Padioleau | 1 | 0.05% | 1 | 4.76% |
Total | 2031 | 21 |
// SPDX-License-Identifier: GPL-2.0-only /* * Goramo PCI200SYN synchronous serial card driver for Linux * * Copyright (C) 2002-2008 Krzysztof Halasa <khc@pm.waw.pl> * * For information see <http://www.kernel.org/pub/linux/utils/net/hdlc/> * * Sources of information: * Hitachi HD64572 SCA-II User's Manual * PLX Technology Inc. PCI9052 Data Book */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/kernel.h> #include <linux/capability.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/in.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/netdevice.h> #include <linux/hdlc.h> #include <linux/pci.h> #include <linux/delay.h> #include <asm/io.h> #include "hd64572.h" #undef DEBUG_PKT #define DEBUG_RINGS #define PCI200SYN_PLX_SIZE 0x80 /* PLX control window size (128b) */ #define PCI200SYN_SCA_SIZE 0x400 /* SCA window size (1Kb) */ #define MAX_TX_BUFFERS 10 static int pci_clock_freq = 33000000; #define CLOCK_BASE pci_clock_freq /* * PLX PCI9052 local configuration and shared runtime registers. * This structure can be used to access 9052 registers (memory mapped). */ typedef struct { u32 loc_addr_range[4]; /* 00-0Ch : Local Address Ranges */ u32 loc_rom_range; /* 10h : Local ROM Range */ u32 loc_addr_base[4]; /* 14-20h : Local Address Base Addrs */ u32 loc_rom_base; /* 24h : Local ROM Base */ u32 loc_bus_descr[4]; /* 28-34h : Local Bus Descriptors */ u32 rom_bus_descr; /* 38h : ROM Bus Descriptor */ u32 cs_base[4]; /* 3C-48h : Chip Select Base Addrs */ u32 intr_ctrl_stat; /* 4Ch : Interrupt Control/Status */ u32 init_ctrl; /* 50h : EEPROM ctrl, Init Ctrl, etc */ }plx9052; typedef struct port_s { struct napi_struct napi; struct net_device *netdev; struct card_s *card; spinlock_t lock; /* TX lock */ sync_serial_settings settings; int rxpart; /* partial frame received, next frame invalid*/ unsigned short encoding; unsigned short parity; u16 rxin; /* rx ring buffer 'in' pointer */ u16 txin; /* tx ring buffer 'in' and 'last' pointers */ u16 txlast; u8 rxs, txs, tmc; /* SCA registers */ u8 chan; /* physical port # - 0 or 1 */ }port_t; typedef struct card_s { u8 __iomem *rambase; /* buffer memory base (virtual) */ u8 __iomem *scabase; /* SCA memory base (virtual) */ plx9052 __iomem *plxbase;/* PLX registers memory base (virtual) */ u16 rx_ring_buffers; /* number of buffers in a ring */ u16 tx_ring_buffers; u16 buff_offset; /* offset of first buffer of first channel */ u8 irq; /* interrupt request level */ port_t ports[2]; }card_t; #define get_port(card, port) (&card->ports[port]) #define sca_flush(card) (sca_in(IER0, card)); static inline void new_memcpy_toio(char __iomem *dest, char *src, int length) { int len; do { len = length > 256 ? 256 : length; memcpy_toio(dest, src, len); dest += len; src += len; length -= len; readb(dest); } while (len); } #undef memcpy_toio #define memcpy_toio new_memcpy_toio #include "hd64572.c" static void pci200_set_iface(port_t *port) { card_t *card = port->card; u16 msci = get_msci(port); u8 rxs = port->rxs & CLK_BRG_MASK; u8 txs = port->txs & CLK_BRG_MASK; sca_out(EXS_TES1, (port->chan ? MSCI1_OFFSET : MSCI0_OFFSET) + EXS, port->card); switch(port->settings.clock_type) { case CLOCK_INT: rxs |= CLK_BRG; /* BRG output */ txs |= CLK_PIN_OUT | CLK_TX_RXCLK; /* RX clock */ break; case CLOCK_TXINT: rxs |= CLK_LINE; /* RXC input */ txs |= CLK_PIN_OUT | CLK_BRG; /* BRG output */ break; case CLOCK_TXFROMRX: rxs |= CLK_LINE; /* RXC input */ txs |= CLK_PIN_OUT | CLK_TX_RXCLK; /* RX clock */ break; default: /* EXTernal clock */ rxs |= CLK_LINE; /* RXC input */ txs |= CLK_PIN_OUT | CLK_LINE; /* TXC input */ break; } port->rxs = rxs; port->txs = txs; sca_out(rxs, msci + RXS, card); sca_out(txs, msci + TXS, card); sca_set_port(port); } static int pci200_open(struct net_device *dev) { port_t *port = dev_to_port(dev); int result = hdlc_open(dev); if (result) return result; sca_open(dev); pci200_set_iface(port); sca_flush(port->card); return 0; } static int pci200_close(struct net_device *dev) { sca_close(dev); sca_flush(dev_to_port(dev)->card); hdlc_close(dev); return 0; } static int pci200_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { const size_t size = sizeof(sync_serial_settings); sync_serial_settings new_line; sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync; port_t *port = dev_to_port(dev); #ifdef DEBUG_RINGS if (cmd == SIOCDEVPRIVATE) { sca_dump_rings(dev); return 0; } #endif if (cmd != SIOCWANDEV) return hdlc_ioctl(dev, ifr, cmd); switch(ifr->ifr_settings.type) { case IF_GET_IFACE: ifr->ifr_settings.type = IF_IFACE_V35; if (ifr->ifr_settings.size < size) { ifr->ifr_settings.size = size; /* data size wanted */ return -ENOBUFS; } if (copy_to_user(line, &port->settings, size)) return -EFAULT; return 0; case IF_IFACE_V35: case IF_IFACE_SYNC_SERIAL: if (!capable(CAP_NET_ADMIN)) return -EPERM; if (copy_from_user(&new_line, line, size)) return -EFAULT; if (new_line.clock_type != CLOCK_EXT && new_line.clock_type != CLOCK_TXFROMRX && new_line.clock_type != CLOCK_INT && new_line.clock_type != CLOCK_TXINT) return -EINVAL; /* No such clock setting */ if (new_line.loopback != 0 && new_line.loopback != 1) return -EINVAL; memcpy(&port->settings, &new_line, size); /* Update settings */ pci200_set_iface(port); sca_flush(port->card); return 0; default: return hdlc_ioctl(dev, ifr, cmd); } } static void pci200_pci_remove_one(struct pci_dev *pdev) { int i; card_t *card = pci_get_drvdata(pdev); for (i = 0; i < 2; i++) if (card->ports[i].card) unregister_hdlc_device(card->ports[i].netdev); if (card->irq) free_irq(card->irq, card); if (card->rambase) iounmap(card->rambase); if (card->scabase) iounmap(card->scabase); if (card->plxbase) iounmap(card->plxbase); pci_release_regions(pdev); pci_disable_device(pdev); if (card->ports[0].netdev) free_netdev(card->ports[0].netdev); if (card->ports[1].netdev) free_netdev(card->ports[1].netdev); kfree(card); } static const struct net_device_ops pci200_ops = { .ndo_open = pci200_open, .ndo_stop = pci200_close, .ndo_start_xmit = hdlc_start_xmit, .ndo_do_ioctl = pci200_ioctl, }; static int pci200_pci_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { card_t *card; u32 __iomem *p; int i; u32 ramsize; u32 ramphys; /* buffer memory base */ u32 scaphys; /* SCA memory base */ u32 plxphys; /* PLX registers memory base */ i = pci_enable_device(pdev); if (i) return i; i = pci_request_regions(pdev, "PCI200SYN"); if (i) { pci_disable_device(pdev); return i; } card = kzalloc(sizeof(card_t), GFP_KERNEL); if (card == NULL) { pci_release_regions(pdev); pci_disable_device(pdev); return -ENOBUFS; } pci_set_drvdata(pdev, card); card->ports[0].netdev = alloc_hdlcdev(&card->ports[0]); card->ports[1].netdev = alloc_hdlcdev(&card->ports[1]); if (!card->ports[0].netdev || !card->ports[1].netdev) { pr_err("unable to allocate memory\n"); pci200_pci_remove_one(pdev); return -ENOMEM; } if (pci_resource_len(pdev, 0) != PCI200SYN_PLX_SIZE || pci_resource_len(pdev, 2) != PCI200SYN_SCA_SIZE || pci_resource_len(pdev, 3) < 16384) { pr_err("invalid card EEPROM parameters\n"); pci200_pci_remove_one(pdev); return -EFAULT; } plxphys = pci_resource_start(pdev,0) & PCI_BASE_ADDRESS_MEM_MASK; card->plxbase = ioremap(plxphys, PCI200SYN_PLX_SIZE); scaphys = pci_resource_start(pdev,2) & PCI_BASE_ADDRESS_MEM_MASK; card->scabase = ioremap(scaphys, PCI200SYN_SCA_SIZE); ramphys = pci_resource_start(pdev,3) & PCI_BASE_ADDRESS_MEM_MASK; card->rambase = pci_ioremap_bar(pdev, 3); if (card->plxbase == NULL || card->scabase == NULL || card->rambase == NULL) { pr_err("ioremap() failed\n"); pci200_pci_remove_one(pdev); return -EFAULT; } /* Reset PLX */ p = &card->plxbase->init_ctrl; writel(readl(p) | 0x40000000, p); readl(p); /* Flush the write - do not use sca_flush */ udelay(1); writel(readl(p) & ~0x40000000, p); readl(p); /* Flush the write - do not use sca_flush */ udelay(1); ramsize = sca_detect_ram(card, card->rambase, pci_resource_len(pdev, 3)); /* number of TX + RX buffers for one port - this is dual port card */ i = ramsize / (2 * (sizeof(pkt_desc) + HDLC_MAX_MRU)); card->tx_ring_buffers = min(i / 2, MAX_TX_BUFFERS); card->rx_ring_buffers = i - card->tx_ring_buffers; card->buff_offset = 2 * sizeof(pkt_desc) * (card->tx_ring_buffers + card->rx_ring_buffers); pr_info("%u KB RAM at 0x%x, IRQ%u, using %u TX + %u RX packets rings\n", ramsize / 1024, ramphys, pdev->irq, card->tx_ring_buffers, card->rx_ring_buffers); if (card->tx_ring_buffers < 1) { pr_err("RAM test failed\n"); pci200_pci_remove_one(pdev); return -EFAULT; } /* Enable interrupts on the PCI bridge */ p = &card->plxbase->intr_ctrl_stat; writew(readw(p) | 0x0040, p); /* Allocate IRQ */ if (request_irq(pdev->irq, sca_intr, IRQF_SHARED, "pci200syn", card)) { pr_warn("could not allocate IRQ%d\n", pdev->irq); pci200_pci_remove_one(pdev); return -EBUSY; } card->irq = pdev->irq; sca_init(card, 0); for (i = 0; i < 2; i++) { port_t *port = &card->ports[i]; struct net_device *dev = port->netdev; hdlc_device *hdlc = dev_to_hdlc(dev); port->chan = i; spin_lock_init(&port->lock); dev->irq = card->irq; dev->mem_start = ramphys; dev->mem_end = ramphys + ramsize - 1; dev->tx_queue_len = 50; dev->netdev_ops = &pci200_ops; hdlc->attach = sca_attach; hdlc->xmit = sca_xmit; port->settings.clock_type = CLOCK_EXT; port->card = card; sca_init_port(port); if (register_hdlc_device(dev)) { pr_err("unable to register hdlc device\n"); port->card = NULL; pci200_pci_remove_one(pdev); return -ENOBUFS; } netdev_info(dev, "PCI200SYN channel %d\n", port->chan); } sca_flush(card); return 0; } static const struct pci_device_id pci200_pci_tbl[] = { { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9050, PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_PCI200SYN, 0, 0, 0 }, { 0, } }; static struct pci_driver pci200_pci_driver = { .name = "PCI200SYN", .id_table = pci200_pci_tbl, .probe = pci200_pci_init_one, .remove = pci200_pci_remove_one, }; static int __init pci200_init_module(void) { if (pci_clock_freq < 1000000 || pci_clock_freq > 80000000) { pr_err("Invalid PCI clock frequency\n"); return -EINVAL; } return pci_register_driver(&pci200_pci_driver); } static void __exit pci200_cleanup_module(void) { pci_unregister_driver(&pci200_pci_driver); } MODULE_AUTHOR("Krzysztof Halasa <khc@pm.waw.pl>"); MODULE_DESCRIPTION("Goramo PCI200SYN serial port driver"); MODULE_LICENSE("GPL v2"); MODULE_DEVICE_TABLE(pci, pci200_pci_tbl); module_param(pci_clock_freq, int, 0444); MODULE_PARM_DESC(pci_clock_freq, "System PCI clock frequency in Hz"); module_init(pci200_init_module); module_exit(pci200_cleanup_module);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1