Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vladimir Kondratiev | 5824 | 30.47% | 65 | 43.62% |
Dedy Lansky | 5027 | 26.30% | 15 | 10.07% |
Ahmad Masri | 2415 | 12.63% | 7 | 4.70% |
Maya Erez | 1805 | 9.44% | 16 | 10.74% |
Lior David | 1792 | 9.37% | 27 | 18.12% |
Gidon Studinski | 1777 | 9.30% | 3 | 2.01% |
Alexei Avshalom Lazar | 311 | 1.63% | 3 | 2.01% |
Lazar Alexei | 64 | 0.33% | 2 | 1.34% |
Hamad Kadmany | 51 | 0.27% | 3 | 2.01% |
Toke Höiland-Jörgensen | 30 | 0.16% | 1 | 0.67% |
Avraham Stern | 12 | 0.06% | 1 | 0.67% |
Johannes Berg | 5 | 0.03% | 4 | 2.68% |
Nicholas Mc Guire | 2 | 0.01% | 1 | 0.67% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 0.67% |
Total | 19116 | 149 |
/* * Copyright (c) 2012-2017 Qualcomm Atheros, Inc. * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <linux/moduleparam.h> #include <linux/etherdevice.h> #include <linux/if_arp.h> #include "wil6210.h" #include "txrx.h" #include "wmi.h" #include "trace.h" /* set the default max assoc sta to max supported by driver */ uint max_assoc_sta = WIL6210_MAX_CID; module_param(max_assoc_sta, uint, 0444); MODULE_PARM_DESC(max_assoc_sta, " Max number of stations associated to the AP"); int agg_wsize; /* = 0; */ module_param(agg_wsize, int, 0644); MODULE_PARM_DESC(agg_wsize, " Window size for Tx Block Ack after connect;" " 0 - use default; < 0 - don't auto-establish"); u8 led_id = WIL_LED_INVALID_ID; module_param(led_id, byte, 0444); MODULE_PARM_DESC(led_id, " 60G device led enablement. Set the led ID (0-2) to enable"); #define WIL_WAIT_FOR_SUSPEND_RESUME_COMP 200 #define WIL_WMI_CALL_GENERAL_TO_MS 100 #define WIL_WMI_PCP_STOP_TO_MS 5000 /** * WMI event receiving - theory of operations * * When firmware about to report WMI event, it fills memory area * in the mailbox and raises misc. IRQ. Thread interrupt handler invoked for * the misc IRQ, function @wmi_recv_cmd called by thread IRQ handler. * * @wmi_recv_cmd reads event, allocates memory chunk and attaches it to the * event list @wil->pending_wmi_ev. Then, work queue @wil->wmi_wq wakes up * and handles events within the @wmi_event_worker. Every event get detached * from list, processed and deleted. * * Purpose for this mechanism is to release IRQ thread; otherwise, * if WMI event handling involves another WMI command flow, this 2-nd flow * won't be completed because of blocked IRQ thread. */ /** * Addressing - theory of operations * * There are several buses present on the WIL6210 card. * Same memory areas are visible at different address on * the different busses. There are 3 main bus masters: * - MAC CPU (ucode) * - User CPU (firmware) * - AHB (host) * * On the PCI bus, there is one BAR (BAR0) of 2Mb size, exposing * AHB addresses starting from 0x880000 * * Internally, firmware uses addresses that allow faster access but * are invisible from the host. To read from these addresses, alternative * AHB address must be used. */ /** * @sparrow_fw_mapping provides memory remapping table for sparrow * * array size should be in sync with the declaration in the wil6210.h * * Sparrow memory mapping: * Linker address PCI/Host address * 0x880000 .. 0xa80000 2Mb BAR0 * 0x800000 .. 0x808000 0x900000 .. 0x908000 32k DCCM * 0x840000 .. 0x860000 0x908000 .. 0x928000 128k PERIPH */ const struct fw_map sparrow_fw_mapping[] = { /* FW code RAM 256k */ {0x000000, 0x040000, 0x8c0000, "fw_code", true, true}, /* FW data RAM 32k */ {0x800000, 0x808000, 0x900000, "fw_data", true, true}, /* periph data 128k */ {0x840000, 0x860000, 0x908000, "fw_peri", true, true}, /* various RGF 40k */ {0x880000, 0x88a000, 0x880000, "rgf", true, true}, /* AGC table 4k */ {0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true, true}, /* Pcie_ext_rgf 4k */ {0x88b000, 0x88c000, 0x88b000, "rgf_ext", true, true}, /* mac_ext_rgf 512b */ {0x88c000, 0x88c200, 0x88c000, "mac_rgf_ext", true, true}, /* upper area 548k */ {0x8c0000, 0x949000, 0x8c0000, "upper", true, true}, /* UCODE areas - accessible by debugfs blobs but not by * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas! */ /* ucode code RAM 128k */ {0x000000, 0x020000, 0x920000, "uc_code", false, false}, /* ucode data RAM 16k */ {0x800000, 0x804000, 0x940000, "uc_data", false, false}, }; /** * @sparrow_d0_mac_rgf_ext - mac_rgf_ext section for Sparrow D0 * it is a bit larger to support extra features */ const struct fw_map sparrow_d0_mac_rgf_ext = { 0x88c000, 0x88c500, 0x88c000, "mac_rgf_ext", true, true }; /** * @talyn_fw_mapping provides memory remapping table for Talyn * * array size should be in sync with the declaration in the wil6210.h * * Talyn memory mapping: * Linker address PCI/Host address * 0x880000 .. 0xc80000 4Mb BAR0 * 0x800000 .. 0x820000 0xa00000 .. 0xa20000 128k DCCM * 0x840000 .. 0x858000 0xa20000 .. 0xa38000 96k PERIPH */ const struct fw_map talyn_fw_mapping[] = { /* FW code RAM 1M */ {0x000000, 0x100000, 0x900000, "fw_code", true, true}, /* FW data RAM 128k */ {0x800000, 0x820000, 0xa00000, "fw_data", true, true}, /* periph. data RAM 96k */ {0x840000, 0x858000, 0xa20000, "fw_peri", true, true}, /* various RGF 40k */ {0x880000, 0x88a000, 0x880000, "rgf", true, true}, /* AGC table 4k */ {0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true, true}, /* Pcie_ext_rgf 4k */ {0x88b000, 0x88c000, 0x88b000, "rgf_ext", true, true}, /* mac_ext_rgf 1344b */ {0x88c000, 0x88c540, 0x88c000, "mac_rgf_ext", true, true}, /* ext USER RGF 4k */ {0x88d000, 0x88e000, 0x88d000, "ext_user_rgf", true, true}, /* OTP 4k */ {0x8a0000, 0x8a1000, 0x8a0000, "otp", true, false}, /* DMA EXT RGF 64k */ {0x8b0000, 0x8c0000, 0x8b0000, "dma_ext_rgf", true, true}, /* upper area 1536k */ {0x900000, 0xa80000, 0x900000, "upper", true, true}, /* UCODE areas - accessible by debugfs blobs but not by * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas! */ /* ucode code RAM 256k */ {0x000000, 0x040000, 0xa38000, "uc_code", false, false}, /* ucode data RAM 32k */ {0x800000, 0x808000, 0xa78000, "uc_data", false, false}, }; /** * @talyn_mb_fw_mapping provides memory remapping table for Talyn-MB * * array size should be in sync with the declaration in the wil6210.h * * Talyn MB memory mapping: * Linker address PCI/Host address * 0x880000 .. 0xc80000 4Mb BAR0 * 0x800000 .. 0x820000 0xa00000 .. 0xa20000 128k DCCM * 0x840000 .. 0x858000 0xa20000 .. 0xa38000 96k PERIPH */ const struct fw_map talyn_mb_fw_mapping[] = { /* FW code RAM 768k */ {0x000000, 0x0c0000, 0x900000, "fw_code", true, true}, /* FW data RAM 128k */ {0x800000, 0x820000, 0xa00000, "fw_data", true, true}, /* periph. data RAM 96k */ {0x840000, 0x858000, 0xa20000, "fw_peri", true, true}, /* various RGF 40k */ {0x880000, 0x88a000, 0x880000, "rgf", true, true}, /* AGC table 4k */ {0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true, true}, /* Pcie_ext_rgf 4k */ {0x88b000, 0x88c000, 0x88b000, "rgf_ext", true, true}, /* mac_ext_rgf 2256b */ {0x88c000, 0x88c8d0, 0x88c000, "mac_rgf_ext", true, true}, /* ext USER RGF 4k */ {0x88d000, 0x88e000, 0x88d000, "ext_user_rgf", true, true}, /* SEC PKA 16k */ {0x890000, 0x894000, 0x890000, "sec_pka", true, true}, /* SEC KDF RGF 3096b */ {0x898000, 0x898c18, 0x898000, "sec_kdf_rgf", true, true}, /* SEC MAIN 2124b */ {0x89a000, 0x89a84c, 0x89a000, "sec_main", true, true}, /* OTP 4k */ {0x8a0000, 0x8a1000, 0x8a0000, "otp", true, false}, /* DMA EXT RGF 64k */ {0x8b0000, 0x8c0000, 0x8b0000, "dma_ext_rgf", true, true}, /* DUM USER RGF 528b */ {0x8c0000, 0x8c0210, 0x8c0000, "dum_user_rgf", true, true}, /* DMA OFU 296b */ {0x8c2000, 0x8c2128, 0x8c2000, "dma_ofu", true, true}, /* ucode debug 4k */ {0x8c3000, 0x8c4000, 0x8c3000, "ucode_debug", true, true}, /* upper area 1536k */ {0x900000, 0xa80000, 0x900000, "upper", true, true}, /* UCODE areas - accessible by debugfs blobs but not by * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas! */ /* ucode code RAM 256k */ {0x000000, 0x040000, 0xa38000, "uc_code", false, false}, /* ucode data RAM 32k */ {0x800000, 0x808000, 0xa78000, "uc_data", false, false}, }; struct fw_map fw_mapping[MAX_FW_MAPPING_TABLE_SIZE]; struct blink_on_off_time led_blink_time[] = { {WIL_LED_BLINK_ON_SLOW_MS, WIL_LED_BLINK_OFF_SLOW_MS}, {WIL_LED_BLINK_ON_MED_MS, WIL_LED_BLINK_OFF_MED_MS}, {WIL_LED_BLINK_ON_FAST_MS, WIL_LED_BLINK_OFF_FAST_MS}, }; struct auth_no_hdr { __le16 auth_alg; __le16 auth_transaction; __le16 status_code; /* possibly followed by Challenge text */ u8 variable[0]; } __packed; u8 led_polarity = LED_POLARITY_LOW_ACTIVE; /** * return AHB address for given firmware internal (linker) address * @x - internal address * If address have no valid AHB mapping, return 0 */ static u32 wmi_addr_remap(u32 x) { uint i; for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) { if (fw_mapping[i].fw && ((x >= fw_mapping[i].from) && (x < fw_mapping[i].to))) return x + fw_mapping[i].host - fw_mapping[i].from; } return 0; } /** * find fw_mapping entry by section name * @section - section name * * Return pointer to section or NULL if not found */ struct fw_map *wil_find_fw_mapping(const char *section) { int i; for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) if (fw_mapping[i].name && !strcmp(section, fw_mapping[i].name)) return &fw_mapping[i]; return NULL; } /** * Check address validity for WMI buffer; remap if needed * @ptr - internal (linker) fw/ucode address * @size - if non zero, validate the block does not * exceed the device memory (bar) * * Valid buffer should be DWORD aligned * * return address for accessing buffer from the host; * if buffer is not valid, return NULL. */ void __iomem *wmi_buffer_block(struct wil6210_priv *wil, __le32 ptr_, u32 size) { u32 off; u32 ptr = le32_to_cpu(ptr_); if (ptr % 4) return NULL; ptr = wmi_addr_remap(ptr); if (ptr < WIL6210_FW_HOST_OFF) return NULL; off = HOSTADDR(ptr); if (off > wil->bar_size - 4) return NULL; if (size && ((off + size > wil->bar_size) || (off + size < off))) return NULL; return wil->csr + off; } void __iomem *wmi_buffer(struct wil6210_priv *wil, __le32 ptr_) { return wmi_buffer_block(wil, ptr_, 0); } /** * Check address validity */ void __iomem *wmi_addr(struct wil6210_priv *wil, u32 ptr) { u32 off; if (ptr % 4) return NULL; if (ptr < WIL6210_FW_HOST_OFF) return NULL; off = HOSTADDR(ptr); if (off > wil->bar_size - 4) return NULL; return wil->csr + off; } int wmi_read_hdr(struct wil6210_priv *wil, __le32 ptr, struct wil6210_mbox_hdr *hdr) { void __iomem *src = wmi_buffer(wil, ptr); if (!src) return -EINVAL; wil_memcpy_fromio_32(hdr, src, sizeof(*hdr)); return 0; } static const char *cmdid2name(u16 cmdid) { switch (cmdid) { case WMI_NOTIFY_REQ_CMDID: return "WMI_NOTIFY_REQ_CMD"; case WMI_START_SCAN_CMDID: return "WMI_START_SCAN_CMD"; case WMI_CONNECT_CMDID: return "WMI_CONNECT_CMD"; case WMI_DISCONNECT_CMDID: return "WMI_DISCONNECT_CMD"; case WMI_SW_TX_REQ_CMDID: return "WMI_SW_TX_REQ_CMD"; case WMI_GET_RF_SECTOR_PARAMS_CMDID: return "WMI_GET_RF_SECTOR_PARAMS_CMD"; case WMI_SET_RF_SECTOR_PARAMS_CMDID: return "WMI_SET_RF_SECTOR_PARAMS_CMD"; case WMI_GET_SELECTED_RF_SECTOR_INDEX_CMDID: return "WMI_GET_SELECTED_RF_SECTOR_INDEX_CMD"; case WMI_SET_SELECTED_RF_SECTOR_INDEX_CMDID: return "WMI_SET_SELECTED_RF_SECTOR_INDEX_CMD"; case WMI_BRP_SET_ANT_LIMIT_CMDID: return "WMI_BRP_SET_ANT_LIMIT_CMD"; case WMI_TOF_SESSION_START_CMDID: return "WMI_TOF_SESSION_START_CMD"; case WMI_AOA_MEAS_CMDID: return "WMI_AOA_MEAS_CMD"; case WMI_PMC_CMDID: return "WMI_PMC_CMD"; case WMI_TOF_GET_TX_RX_OFFSET_CMDID: return "WMI_TOF_GET_TX_RX_OFFSET_CMD"; case WMI_TOF_SET_TX_RX_OFFSET_CMDID: return "WMI_TOF_SET_TX_RX_OFFSET_CMD"; case WMI_VRING_CFG_CMDID: return "WMI_VRING_CFG_CMD"; case WMI_BCAST_VRING_CFG_CMDID: return "WMI_BCAST_VRING_CFG_CMD"; case WMI_TRAFFIC_SUSPEND_CMDID: return "WMI_TRAFFIC_SUSPEND_CMD"; case WMI_TRAFFIC_RESUME_CMDID: return "WMI_TRAFFIC_RESUME_CMD"; case WMI_ECHO_CMDID: return "WMI_ECHO_CMD"; case WMI_SET_MAC_ADDRESS_CMDID: return "WMI_SET_MAC_ADDRESS_CMD"; case WMI_LED_CFG_CMDID: return "WMI_LED_CFG_CMD"; case WMI_PCP_START_CMDID: return "WMI_PCP_START_CMD"; case WMI_PCP_STOP_CMDID: return "WMI_PCP_STOP_CMD"; case WMI_SET_SSID_CMDID: return "WMI_SET_SSID_CMD"; case WMI_GET_SSID_CMDID: return "WMI_GET_SSID_CMD"; case WMI_SET_PCP_CHANNEL_CMDID: return "WMI_SET_PCP_CHANNEL_CMD"; case WMI_GET_PCP_CHANNEL_CMDID: return "WMI_GET_PCP_CHANNEL_CMD"; case WMI_P2P_CFG_CMDID: return "WMI_P2P_CFG_CMD"; case WMI_PORT_ALLOCATE_CMDID: return "WMI_PORT_ALLOCATE_CMD"; case WMI_PORT_DELETE_CMDID: return "WMI_PORT_DELETE_CMD"; case WMI_START_LISTEN_CMDID: return "WMI_START_LISTEN_CMD"; case WMI_START_SEARCH_CMDID: return "WMI_START_SEARCH_CMD"; case WMI_DISCOVERY_STOP_CMDID: return "WMI_DISCOVERY_STOP_CMD"; case WMI_DELETE_CIPHER_KEY_CMDID: return "WMI_DELETE_CIPHER_KEY_CMD"; case WMI_ADD_CIPHER_KEY_CMDID: return "WMI_ADD_CIPHER_KEY_CMD"; case WMI_SET_APPIE_CMDID: return "WMI_SET_APPIE_CMD"; case WMI_CFG_RX_CHAIN_CMDID: return "WMI_CFG_RX_CHAIN_CMD"; case WMI_TEMP_SENSE_CMDID: return "WMI_TEMP_SENSE_CMD"; case WMI_DEL_STA_CMDID: return "WMI_DEL_STA_CMD"; case WMI_DISCONNECT_STA_CMDID: return "WMI_DISCONNECT_STA_CMD"; case WMI_RING_BA_EN_CMDID: return "WMI_RING_BA_EN_CMD"; case WMI_RING_BA_DIS_CMDID: return "WMI_RING_BA_DIS_CMD"; case WMI_RCP_DELBA_CMDID: return "WMI_RCP_DELBA_CMD"; case WMI_RCP_ADDBA_RESP_CMDID: return "WMI_RCP_ADDBA_RESP_CMD"; case WMI_RCP_ADDBA_RESP_EDMA_CMDID: return "WMI_RCP_ADDBA_RESP_EDMA_CMD"; case WMI_PS_DEV_PROFILE_CFG_CMDID: return "WMI_PS_DEV_PROFILE_CFG_CMD"; case WMI_SET_MGMT_RETRY_LIMIT_CMDID: return "WMI_SET_MGMT_RETRY_LIMIT_CMD"; case WMI_GET_MGMT_RETRY_LIMIT_CMDID: return "WMI_GET_MGMT_RETRY_LIMIT_CMD"; case WMI_ABORT_SCAN_CMDID: return "WMI_ABORT_SCAN_CMD"; case WMI_NEW_STA_CMDID: return "WMI_NEW_STA_CMD"; case WMI_SET_THERMAL_THROTTLING_CFG_CMDID: return "WMI_SET_THERMAL_THROTTLING_CFG_CMD"; case WMI_GET_THERMAL_THROTTLING_CFG_CMDID: return "WMI_GET_THERMAL_THROTTLING_CFG_CMD"; case WMI_LINK_MAINTAIN_CFG_WRITE_CMDID: return "WMI_LINK_MAINTAIN_CFG_WRITE_CMD"; case WMI_LO_POWER_CALIB_FROM_OTP_CMDID: return "WMI_LO_POWER_CALIB_FROM_OTP_CMD"; case WMI_START_SCHED_SCAN_CMDID: return "WMI_START_SCHED_SCAN_CMD"; case WMI_STOP_SCHED_SCAN_CMDID: return "WMI_STOP_SCHED_SCAN_CMD"; case WMI_TX_STATUS_RING_ADD_CMDID: return "WMI_TX_STATUS_RING_ADD_CMD"; case WMI_RX_STATUS_RING_ADD_CMDID: return "WMI_RX_STATUS_RING_ADD_CMD"; case WMI_TX_DESC_RING_ADD_CMDID: return "WMI_TX_DESC_RING_ADD_CMD"; case WMI_RX_DESC_RING_ADD_CMDID: return "WMI_RX_DESC_RING_ADD_CMD"; case WMI_BCAST_DESC_RING_ADD_CMDID: return "WMI_BCAST_DESC_RING_ADD_CMD"; case WMI_CFG_DEF_RX_OFFLOAD_CMDID: return "WMI_CFG_DEF_RX_OFFLOAD_CMD"; case WMI_LINK_STATS_CMDID: return "WMI_LINK_STATS_CMD"; case WMI_SW_TX_REQ_EXT_CMDID: return "WMI_SW_TX_REQ_EXT_CMDID"; case WMI_FT_AUTH_CMDID: return "WMI_FT_AUTH_CMD"; case WMI_FT_REASSOC_CMDID: return "WMI_FT_REASSOC_CMD"; case WMI_UPDATE_FT_IES_CMDID: return "WMI_UPDATE_FT_IES_CMD"; default: return "Untracked CMD"; } } static const char *eventid2name(u16 eventid) { switch (eventid) { case WMI_NOTIFY_REQ_DONE_EVENTID: return "WMI_NOTIFY_REQ_DONE_EVENT"; case WMI_DISCONNECT_EVENTID: return "WMI_DISCONNECT_EVENT"; case WMI_SW_TX_COMPLETE_EVENTID: return "WMI_SW_TX_COMPLETE_EVENT"; case WMI_GET_RF_SECTOR_PARAMS_DONE_EVENTID: return "WMI_GET_RF_SECTOR_PARAMS_DONE_EVENT"; case WMI_SET_RF_SECTOR_PARAMS_DONE_EVENTID: return "WMI_SET_RF_SECTOR_PARAMS_DONE_EVENT"; case WMI_GET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID: return "WMI_GET_SELECTED_RF_SECTOR_INDEX_DONE_EVENT"; case WMI_SET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID: return "WMI_SET_SELECTED_RF_SECTOR_INDEX_DONE_EVENT"; case WMI_BRP_SET_ANT_LIMIT_EVENTID: return "WMI_BRP_SET_ANT_LIMIT_EVENT"; case WMI_FW_READY_EVENTID: return "WMI_FW_READY_EVENT"; case WMI_TRAFFIC_RESUME_EVENTID: return "WMI_TRAFFIC_RESUME_EVENT"; case WMI_TOF_GET_TX_RX_OFFSET_EVENTID: return "WMI_TOF_GET_TX_RX_OFFSET_EVENT"; case WMI_TOF_SET_TX_RX_OFFSET_EVENTID: return "WMI_TOF_SET_TX_RX_OFFSET_EVENT"; case WMI_VRING_CFG_DONE_EVENTID: return "WMI_VRING_CFG_DONE_EVENT"; case WMI_READY_EVENTID: return "WMI_READY_EVENT"; case WMI_RX_MGMT_PACKET_EVENTID: return "WMI_RX_MGMT_PACKET_EVENT"; case WMI_TX_MGMT_PACKET_EVENTID: return "WMI_TX_MGMT_PACKET_EVENT"; case WMI_SCAN_COMPLETE_EVENTID: return "WMI_SCAN_COMPLETE_EVENT"; case WMI_ACS_PASSIVE_SCAN_COMPLETE_EVENTID: return "WMI_ACS_PASSIVE_SCAN_COMPLETE_EVENT"; case WMI_CONNECT_EVENTID: return "WMI_CONNECT_EVENT"; case WMI_EAPOL_RX_EVENTID: return "WMI_EAPOL_RX_EVENT"; case WMI_BA_STATUS_EVENTID: return "WMI_BA_STATUS_EVENT"; case WMI_RCP_ADDBA_REQ_EVENTID: return "WMI_RCP_ADDBA_REQ_EVENT"; case WMI_DELBA_EVENTID: return "WMI_DELBA_EVENT"; case WMI_RING_EN_EVENTID: return "WMI_RING_EN_EVENT"; case WMI_DATA_PORT_OPEN_EVENTID: return "WMI_DATA_PORT_OPEN_EVENT"; case WMI_AOA_MEAS_EVENTID: return "WMI_AOA_MEAS_EVENT"; case WMI_TOF_SESSION_END_EVENTID: return "WMI_TOF_SESSION_END_EVENT"; case WMI_TOF_GET_CAPABILITIES_EVENTID: return "WMI_TOF_GET_CAPABILITIES_EVENT"; case WMI_TOF_SET_LCR_EVENTID: return "WMI_TOF_SET_LCR_EVENT"; case WMI_TOF_SET_LCI_EVENTID: return "WMI_TOF_SET_LCI_EVENT"; case WMI_TOF_FTM_PER_DEST_RES_EVENTID: return "WMI_TOF_FTM_PER_DEST_RES_EVENT"; case WMI_TOF_CHANNEL_INFO_EVENTID: return "WMI_TOF_CHANNEL_INFO_EVENT"; case WMI_TRAFFIC_SUSPEND_EVENTID: return "WMI_TRAFFIC_SUSPEND_EVENT"; case WMI_ECHO_RSP_EVENTID: return "WMI_ECHO_RSP_EVENT"; case WMI_LED_CFG_DONE_EVENTID: return "WMI_LED_CFG_DONE_EVENT"; case WMI_PCP_STARTED_EVENTID: return "WMI_PCP_STARTED_EVENT"; case WMI_PCP_STOPPED_EVENTID: return "WMI_PCP_STOPPED_EVENT"; case WMI_GET_SSID_EVENTID: return "WMI_GET_SSID_EVENT"; case WMI_GET_PCP_CHANNEL_EVENTID: return "WMI_GET_PCP_CHANNEL_EVENT"; case WMI_P2P_CFG_DONE_EVENTID: return "WMI_P2P_CFG_DONE_EVENT"; case WMI_PORT_ALLOCATED_EVENTID: return "WMI_PORT_ALLOCATED_EVENT"; case WMI_PORT_DELETED_EVENTID: return "WMI_PORT_DELETED_EVENT"; case WMI_LISTEN_STARTED_EVENTID: return "WMI_LISTEN_STARTED_EVENT"; case WMI_SEARCH_STARTED_EVENTID: return "WMI_SEARCH_STARTED_EVENT"; case WMI_DISCOVERY_STOPPED_EVENTID: return "WMI_DISCOVERY_STOPPED_EVENT"; case WMI_CFG_RX_CHAIN_DONE_EVENTID: return "WMI_CFG_RX_CHAIN_DONE_EVENT"; case WMI_TEMP_SENSE_DONE_EVENTID: return "WMI_TEMP_SENSE_DONE_EVENT"; case WMI_RCP_ADDBA_RESP_SENT_EVENTID: return "WMI_RCP_ADDBA_RESP_SENT_EVENT"; case WMI_PS_DEV_PROFILE_CFG_EVENTID: return "WMI_PS_DEV_PROFILE_CFG_EVENT"; case WMI_SET_MGMT_RETRY_LIMIT_EVENTID: return "WMI_SET_MGMT_RETRY_LIMIT_EVENT"; case WMI_GET_MGMT_RETRY_LIMIT_EVENTID: return "WMI_GET_MGMT_RETRY_LIMIT_EVENT"; case WMI_SET_THERMAL_THROTTLING_CFG_EVENTID: return "WMI_SET_THERMAL_THROTTLING_CFG_EVENT"; case WMI_GET_THERMAL_THROTTLING_CFG_EVENTID: return "WMI_GET_THERMAL_THROTTLING_CFG_EVENT"; case WMI_LINK_MAINTAIN_CFG_WRITE_DONE_EVENTID: return "WMI_LINK_MAINTAIN_CFG_WRITE_DONE_EVENT"; case WMI_LO_POWER_CALIB_FROM_OTP_EVENTID: return "WMI_LO_POWER_CALIB_FROM_OTP_EVENT"; case WMI_START_SCHED_SCAN_EVENTID: return "WMI_START_SCHED_SCAN_EVENT"; case WMI_STOP_SCHED_SCAN_EVENTID: return "WMI_STOP_SCHED_SCAN_EVENT"; case WMI_SCHED_SCAN_RESULT_EVENTID: return "WMI_SCHED_SCAN_RESULT_EVENT"; case WMI_TX_STATUS_RING_CFG_DONE_EVENTID: return "WMI_TX_STATUS_RING_CFG_DONE_EVENT"; case WMI_RX_STATUS_RING_CFG_DONE_EVENTID: return "WMI_RX_STATUS_RING_CFG_DONE_EVENT"; case WMI_TX_DESC_RING_CFG_DONE_EVENTID: return "WMI_TX_DESC_RING_CFG_DONE_EVENT"; case WMI_RX_DESC_RING_CFG_DONE_EVENTID: return "WMI_RX_DESC_RING_CFG_DONE_EVENT"; case WMI_CFG_DEF_RX_OFFLOAD_DONE_EVENTID: return "WMI_CFG_DEF_RX_OFFLOAD_DONE_EVENT"; case WMI_LINK_STATS_CONFIG_DONE_EVENTID: return "WMI_LINK_STATS_CONFIG_DONE_EVENT"; case WMI_LINK_STATS_EVENTID: return "WMI_LINK_STATS_EVENT"; case WMI_COMMAND_NOT_SUPPORTED_EVENTID: return "WMI_COMMAND_NOT_SUPPORTED_EVENT"; case WMI_FT_AUTH_STATUS_EVENTID: return "WMI_FT_AUTH_STATUS_EVENT"; case WMI_FT_REASSOC_STATUS_EVENTID: return "WMI_FT_REASSOC_STATUS_EVENT"; default: return "Untracked EVENT"; } } static int __wmi_send(struct wil6210_priv *wil, u16 cmdid, u8 mid, void *buf, u16 len) { struct { struct wil6210_mbox_hdr hdr; struct wmi_cmd_hdr wmi; } __packed cmd = { .hdr = { .type = WIL_MBOX_HDR_TYPE_WMI, .flags = 0, .len = cpu_to_le16(sizeof(cmd.wmi) + len), }, .wmi = { .mid = mid, .command_id = cpu_to_le16(cmdid), }, }; struct wil6210_mbox_ring *r = &wil->mbox_ctl.tx; struct wil6210_mbox_ring_desc d_head; u32 next_head; void __iomem *dst; void __iomem *head = wmi_addr(wil, r->head); uint retry; int rc = 0; if (len > r->entry_size - sizeof(cmd)) { wil_err(wil, "WMI size too large: %d bytes, max is %d\n", (int)(sizeof(cmd) + len), r->entry_size); return -ERANGE; } might_sleep(); if (!test_bit(wil_status_fwready, wil->status)) { wil_err(wil, "WMI: cannot send command while FW not ready\n"); return -EAGAIN; } /* Allow sending only suspend / resume commands during susepnd flow */ if ((test_bit(wil_status_suspending, wil->status) || test_bit(wil_status_suspended, wil->status) || test_bit(wil_status_resuming, wil->status)) && ((cmdid != WMI_TRAFFIC_SUSPEND_CMDID) && (cmdid != WMI_TRAFFIC_RESUME_CMDID))) { wil_err(wil, "WMI: reject send_command during suspend\n"); return -EINVAL; } if (!head) { wil_err(wil, "WMI head is garbage: 0x%08x\n", r->head); return -EINVAL; } wil_halp_vote(wil); /* read Tx head till it is not busy */ for (retry = 5; retry > 0; retry--) { wil_memcpy_fromio_32(&d_head, head, sizeof(d_head)); if (d_head.sync == 0) break; msleep(20); } if (d_head.sync != 0) { wil_err(wil, "WMI head busy\n"); rc = -EBUSY; goto out; } /* next head */ next_head = r->base + ((r->head - r->base + sizeof(d_head)) % r->size); wil_dbg_wmi(wil, "Head 0x%08x -> 0x%08x\n", r->head, next_head); /* wait till FW finish with previous command */ for (retry = 5; retry > 0; retry--) { if (!test_bit(wil_status_fwready, wil->status)) { wil_err(wil, "WMI: cannot send command while FW not ready\n"); rc = -EAGAIN; goto out; } r->tail = wil_r(wil, RGF_MBOX + offsetof(struct wil6210_mbox_ctl, tx.tail)); if (next_head != r->tail) break; msleep(20); } if (next_head == r->tail) { wil_err(wil, "WMI ring full\n"); rc = -EBUSY; goto out; } dst = wmi_buffer(wil, d_head.addr); if (!dst) { wil_err(wil, "invalid WMI buffer: 0x%08x\n", le32_to_cpu(d_head.addr)); rc = -EAGAIN; goto out; } cmd.hdr.seq = cpu_to_le16(++wil->wmi_seq); /* set command */ wil_dbg_wmi(wil, "sending %s (0x%04x) [%d] mid %d\n", cmdid2name(cmdid), cmdid, len, mid); wil_hex_dump_wmi("Cmd ", DUMP_PREFIX_OFFSET, 16, 1, &cmd, sizeof(cmd), true); wil_hex_dump_wmi("cmd ", DUMP_PREFIX_OFFSET, 16, 1, buf, len, true); wil_memcpy_toio_32(dst, &cmd, sizeof(cmd)); wil_memcpy_toio_32(dst + sizeof(cmd), buf, len); /* mark entry as full */ wil_w(wil, r->head + offsetof(struct wil6210_mbox_ring_desc, sync), 1); /* advance next ptr */ wil_w(wil, RGF_MBOX + offsetof(struct wil6210_mbox_ctl, tx.head), r->head = next_head); trace_wil6210_wmi_cmd(&cmd.wmi, buf, len); /* interrupt to FW */ wil_w(wil, RGF_USER_USER_ICR + offsetof(struct RGF_ICR, ICS), SW_INT_MBOX); out: wil_halp_unvote(wil); return rc; } int wmi_send(struct wil6210_priv *wil, u16 cmdid, u8 mid, void *buf, u16 len) { int rc; mutex_lock(&wil->wmi_mutex); rc = __wmi_send(wil, cmdid, mid, buf, len); mutex_unlock(&wil->wmi_mutex); return rc; } /*=== Event handlers ===*/ static void wmi_evt_ready(struct wil6210_vif *vif, int id, void *d, int len) { struct wil6210_priv *wil = vif_to_wil(vif); struct wiphy *wiphy = wil_to_wiphy(wil); struct wmi_ready_event *evt = d; u8 fw_max_assoc_sta; wil_info(wil, "FW ver. %s(SW %d); MAC %pM; %d MID's\n", wil->fw_version, le32_to_cpu(evt->sw_version), evt->mac, evt->numof_additional_mids); if (evt->numof_additional_mids + 1 < wil->max_vifs) { wil_err(wil, "FW does not support enough MIDs (need %d)", wil->max_vifs - 1); return; /* FW load will fail after timeout */ } /* ignore MAC address, we already have it from the boot loader */ strlcpy(wiphy->fw_version, wil->fw_version, sizeof(wiphy->fw_version)); if (len > offsetof(struct wmi_ready_event, rfc_read_calib_result)) { wil_dbg_wmi(wil, "rfc calibration result %d\n", evt->rfc_read_calib_result); wil->fw_calib_result = evt->rfc_read_calib_result; } fw_max_assoc_sta = WIL6210_RX_DESC_MAX_CID; if (len > offsetof(struct wmi_ready_event, max_assoc_sta) && evt->max_assoc_sta > 0) { fw_max_assoc_sta = evt->max_assoc_sta; wil_dbg_wmi(wil, "fw reported max assoc sta %d\n", fw_max_assoc_sta); if (fw_max_assoc_sta > WIL6210_MAX_CID) { wil_dbg_wmi(wil, "fw max assoc sta %d exceeds max driver supported %d\n", fw_max_assoc_sta, WIL6210_MAX_CID); fw_max_assoc_sta = WIL6210_MAX_CID; } } max_assoc_sta = min_t(uint, max_assoc_sta, fw_max_assoc_sta); wil_dbg_wmi(wil, "setting max assoc sta to %d\n", max_assoc_sta); wil_set_recovery_state(wil, fw_recovery_idle); set_bit(wil_status_fwready, wil->status); /* let the reset sequence continue */ complete(&wil->wmi_ready); } static void wmi_evt_rx_mgmt(struct wil6210_vif *vif, int id, void *d, int len) { struct wil6210_priv *wil = vif_to_wil(vif); struct wmi_rx_mgmt_packet_event *data = d; struct wiphy *wiphy = wil_to_wiphy(wil); struct ieee80211_mgmt *rx_mgmt_frame = (struct ieee80211_mgmt *)data->payload; int flen = len - offsetof(struct wmi_rx_mgmt_packet_event, payload); int ch_no; u32 freq; struct ieee80211_channel *channel; s32 signal; __le16 fc; u32 d_len; u16 d_status; if (flen < 0) { wil_err(wil, "MGMT Rx: short event, len %d\n", len); return; } d_len = le32_to_cpu(data->info.len); if (d_len != flen) { wil_err(wil, "MGMT Rx: length mismatch, d_len %d should be %d\n", d_len, flen); return; } ch_no = data->info.channel + 1; freq = ieee80211_channel_to_frequency(ch_no, NL80211_BAND_60GHZ); channel = ieee80211_get_channel(wiphy, freq); if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities)) signal = 100 * data->info.rssi; else signal = data->info.sqi; d_status = le16_to_cpu(data->info.status); fc = rx_mgmt_frame->frame_control; wil_dbg_wmi(wil, "MGMT Rx: channel %d MCS %d RSSI %d SQI %d%%\n", data->info.channel, data->info.mcs, data->info.rssi, data->info.sqi); wil_dbg_wmi(wil, "status 0x%04x len %d fc 0x%04x\n", d_status, d_len, le16_to_cpu(fc)); wil_dbg_wmi(wil, "qid %d mid %d cid %d\n", data->info.qid, data->info.mid, data->info.cid); wil_hex_dump_wmi("MGMT Rx ", DUMP_PREFIX_OFFSET, 16, 1, rx_mgmt_frame, d_len, true); if (!channel) { wil_err(wil, "Frame on unsupported channel\n"); return; } if (ieee80211_is_beacon(fc) || ieee80211_is_probe_resp(fc)) { struct cfg80211_bss *bss; u64 tsf = le64_to_cpu(rx_mgmt_frame->u.beacon.timestamp); u16 cap = le16_to_cpu(rx_mgmt_frame->u.beacon.capab_info); u16 bi = le16_to_cpu(rx_mgmt_frame->u.beacon.beacon_int); const u8 *ie_buf = rx_mgmt_frame->u.beacon.variable; size_t ie_len = d_len - offsetof(struct ieee80211_mgmt, u.beacon.variable); wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap); wil_dbg_wmi(wil, "TSF : 0x%016llx\n", tsf); wil_dbg_wmi(wil, "Beacon interval : %d\n", bi); wil_hex_dump_wmi("IE ", DUMP_PREFIX_OFFSET, 16, 1, ie_buf, ie_len, true); wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap); bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame, d_len, signal, GFP_KERNEL); if (bss) { wil_dbg_wmi(wil, "Added BSS %pM\n", rx_mgmt_frame->bssid); cfg80211_put_bss(wiphy, bss); } else { wil_err(wil, "cfg80211_inform_bss_frame() failed\n"); } } else { mutex_lock(&wil->vif_mutex); cfg80211_rx_mgmt(vif_to_radio_wdev(wil, vif), freq, signal, (void *)rx_mgmt_frame, d_len, 0); mutex_unlock(&wil->vif_mutex); } } static void wmi_evt_tx_mgmt(struct wil6210_vif *vif, int id, void *d, int len) { struct wmi_tx_mgmt_packet_event *data = d; struct ieee80211_mgmt *mgmt_frame = (struct ieee80211_mgmt *)data->payload; int flen = len - offsetof(struct wmi_tx_mgmt_packet_event, payload); wil_hex_dump_wmi("MGMT Tx ", DUMP_PREFIX_OFFSET, 16, 1, mgmt_frame, flen, true); } static void wmi_evt_scan_complete(struct wil6210_vif *vif, int id, void *d, int len) { struct wil6210_priv *wil = vif_to_wil(vif); mutex_lock(&wil->vif_mutex); if (vif->scan_request) { struct wmi_scan_complete_event *data = d; int status = le32_to_cpu(data->status); struct cfg80211_scan_info info = { .aborted = ((status != WMI_SCAN_SUCCESS) && (status != WMI_SCAN_ABORT_REJECTED)), }; wil_dbg_wmi(wil, "SCAN_COMPLETE(0x%08x)\n", status); wil_dbg_misc(wil, "Complete scan_request 0x%p aborted %d\n", vif->scan_request, info.aborted); del_timer_sync(&vif->scan_timer); cfg80211_scan_done(vif->scan_request, &info); if (vif->mid == 0) wil->radio_wdev = wil->main_ndev->ieee80211_ptr; vif->scan_request = NULL; wake_up_interruptible(&wil->wq); if (vif->p2p.pending_listen_wdev) { wil_dbg_misc(wil, "Scheduling delayed listen\n"); schedule_work(&vif->p2p.delayed_listen_work); } } else { wil_err(wil, "SCAN_COMPLETE while not scanning\n"); } mutex_unlock(&wil->vif_mutex); } static void wmi_evt_connect(struct wil6210_vif *vif, int id, void *d, int len) { struct wil6210_priv *wil = vif_to_wil(vif); struct net_device *ndev = vif_to_ndev(vif); struct wireless_dev *wdev = vif_to_wdev(vif); struct wmi_connect_event *evt = d; int ch; /* channel number */ struct station_info *sinfo; u8 *assoc_req_ie, *assoc_resp_ie; size_t assoc_req_ielen, assoc_resp_ielen; /* capinfo(u16) + listen_interval(u16) + IEs */ const size_t assoc_req_ie_offset = sizeof(u16) * 2; /* capinfo(u16) + status_code(u16) + associd(u16) + IEs */ const size_t assoc_resp_ie_offset = sizeof(u16) * 3; int rc; if (len < sizeof(*evt)) { wil_err(wil, "Connect event too short : %d bytes\n", len); return; } if (len != sizeof(*evt) + evt->beacon_ie_len + evt->assoc_req_len + evt->assoc_resp_len) { wil_err(wil, "Connect event corrupted : %d != %d + %d + %d + %d\n", len, (int)sizeof(*evt), evt->beacon_ie_len, evt->assoc_req_len, evt->assoc_resp_len); return; } if (evt->cid >= max_assoc_sta) { wil_err(wil, "Connect CID invalid : %d\n", evt->cid); return; } ch = evt->channel + 1; wil_info(wil, "Connect %pM channel [%d] cid %d aid %d\n", evt->bssid, ch, evt->cid, evt->aid); wil_hex_dump_wmi("connect AI : ", DUMP_PREFIX_OFFSET, 16, 1, evt->assoc_info, len - sizeof(*evt), true); /* figure out IE's */ assoc_req_ie = &evt->assoc_info[evt->beacon_ie_len + assoc_req_ie_offset]; assoc_req_ielen = evt->assoc_req_len - assoc_req_ie_offset; if (evt->assoc_req_len <= assoc_req_ie_offset) { assoc_req_ie = NULL; assoc_req_ielen = 0; } assoc_resp_ie = &evt->assoc_info[evt->beacon_ie_len + evt->assoc_req_len + assoc_resp_ie_offset]; assoc_resp_ielen = evt->assoc_resp_len - assoc_resp_ie_offset; if (evt->assoc_resp_len <= assoc_resp_ie_offset) { assoc_resp_ie = NULL; assoc_resp_ielen = 0; } if (test_bit(wil_status_resetting, wil->status) || !test_bit(wil_status_fwready, wil->status)) { wil_err(wil, "status_resetting, cancel connect event, CID %d\n", evt->cid); /* no need for cleanup, wil_reset will do that */ return; } mutex_lock(&wil->mutex); if ((wdev->iftype == NL80211_IFTYPE_STATION) || (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) { if (!test_bit(wil_vif_fwconnecting, vif->status)) { wil_err(wil, "Not in connecting state\n"); mutex_unlock(&wil->mutex); return; } del_timer_sync(&vif->connect_timer); } else if ((wdev->iftype == NL80211_IFTYPE_AP) || (wdev->iftype == NL80211_IFTYPE_P2P_GO)) { if (wil->sta[evt->cid].status != wil_sta_unused) { wil_err(wil, "AP: Invalid status %d for CID %d\n", wil->sta[evt->cid].status, evt->cid); mutex_unlock(&wil->mutex); return; } } ether_addr_copy(wil->sta[evt->cid].addr, evt->bssid); wil->sta[evt->cid].mid = vif->mid; wil->sta[evt->cid].status = wil_sta_conn_pending; rc = wil_ring_init_tx(vif, evt->cid); if (rc) { wil_err(wil, "config tx vring failed for CID %d, rc (%d)\n", evt->cid, rc); wmi_disconnect_sta(vif, wil->sta[evt->cid].addr, WLAN_REASON_UNSPECIFIED, false); } else { wil_info(wil, "successful connection to CID %d\n", evt->cid); } if ((wdev->iftype == NL80211_IFTYPE_STATION) || (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) { if (rc) { netif_carrier_off(ndev); wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS); wil_err(wil, "cfg80211_connect_result with failure\n"); cfg80211_connect_result(ndev, evt->bssid, NULL, 0, NULL, 0, WLAN_STATUS_UNSPECIFIED_FAILURE, GFP_KERNEL); goto out; } else { struct wiphy *wiphy = wil_to_wiphy(wil); cfg80211_ref_bss(wiphy, vif->bss); cfg80211_connect_bss(ndev, evt->bssid, vif->bss, assoc_req_ie, assoc_req_ielen, assoc_resp_ie, assoc_resp_ielen, WLAN_STATUS_SUCCESS, GFP_KERNEL, NL80211_TIMEOUT_UNSPECIFIED); } vif->bss = NULL; } else if ((wdev->iftype == NL80211_IFTYPE_AP) || (wdev->iftype == NL80211_IFTYPE_P2P_GO)) { if (rc) { if (disable_ap_sme) /* notify new_sta has failed */ cfg80211_del_sta(ndev, evt->bssid, GFP_KERNEL); goto out; } sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL); if (!sinfo) { rc = -ENOMEM; goto out; } sinfo->generation = wil->sinfo_gen++; if (assoc_req_ie) { sinfo->assoc_req_ies = assoc_req_ie; sinfo->assoc_req_ies_len = assoc_req_ielen; } cfg80211_new_sta(ndev, evt->bssid, sinfo, GFP_KERNEL); kfree(sinfo); } else { wil_err(wil, "unhandled iftype %d for CID %d\n", wdev->iftype, evt->cid); goto out; } wil->sta[evt->cid].status = wil_sta_connected; wil->sta[evt->cid].aid = evt->aid; if (!test_and_set_bit(wil_vif_fwconnected, vif->status)) atomic_inc(&wil->connected_vifs); wil_update_net_queues_bh(wil, vif, NULL, false); out: if (rc) { wil->sta[evt->cid].status = wil_sta_unused; wil->sta[evt->cid].mid = U8_MAX; } clear_bit(wil_vif_fwconnecting, vif->status); mutex_unlock(&wil->mutex); } static void wmi_evt_disconnect(struct wil6210_vif *vif, int id, void *d, int len) { struct wil6210_priv *wil = vif_to_wil(vif); struct wmi_disconnect_event *evt = d; u16 reason_code = le16_to_cpu(evt->protocol_reason_status); wil_info(wil, "Disconnect %pM reason [proto %d wmi %d]\n", evt->bssid, reason_code, evt->disconnect_reason); wil->sinfo_gen++; if (test_bit(wil_status_resetting, wil->status) || !test_bit(wil_status_fwready, wil->status)) { wil_err(wil, "status_resetting, cancel disconnect event\n"); /* no need for cleanup, wil_reset will do that */ return; } mutex_lock(&wil->mutex); wil6210_disconnect_complete(vif, evt->bssid, reason_code); if (disable_ap_sme) { struct wireless_dev *wdev = vif_to_wdev(vif); struct net_device *ndev = vif_to_ndev(vif); /* disconnect event in disable_ap_sme mode means link loss */ switch (wdev->iftype) { /* AP-like interface */ case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: /* notify hostapd about link loss */ cfg80211_cqm_pktloss_notify(ndev, evt->bssid, 0, GFP_KERNEL); break; default: break; } } mutex_unlock(&wil->mutex); } /* * Firmware reports EAPOL frame using WME event. * Reconstruct Ethernet frame and deliver it via normal Rx */ static void wmi_evt_eapol_rx(struct wil6210_vif *vif, int id, void *d, int len) { struct wil6210_priv *wil = vif_to_wil(vif); struct net_device *ndev = vif_to_ndev(vif); struct wmi_eapol_rx_event *evt = d; u16 eapol_len = le16_to_cpu(evt->eapol_len); int sz = eapol_len + ETH_HLEN; struct sk_buff *skb; struct ethhdr *eth; int cid; struct wil_net_stats *stats = NULL; wil_dbg_wmi(wil, "EAPOL len %d from %pM MID %d\n", eapol_len, evt->src_mac, vif->mid); cid = wil_find_cid(wil, vif->mid, evt->src_mac); if (cid >= 0) stats = &wil->sta[cid].stats; if (eapol_len > 196) { /* TODO: revisit size limit */ wil_err(wil, "EAPOL too large\n"); return; } skb = alloc_skb(sz, GFP_KERNEL); if (!skb) { wil_err(wil, "Failed to allocate skb\n"); return; } eth = skb_put(skb, ETH_HLEN); ether_addr_copy(eth->h_dest, ndev->dev_addr); ether_addr_copy(eth->h_source, evt->src_mac); eth->h_proto = cpu_to_be16(ETH_P_PAE); skb_put_data(skb, evt->eapol, eapol_len); skb->protocol = eth_type_trans(skb, ndev); if (likely(netif_rx_ni(skb) == NET_RX_SUCCESS)) { ndev->stats.rx_packets++; ndev->stats.rx_bytes += sz; if (stats) { stats->rx_packets++; stats->rx_bytes += sz; } } else { ndev->stats.rx_dropped++; if (stats) stats->rx_dropped++; } } static void wmi_evt_ring_en(struct wil6210_vif *vif, int id, void *d, int len) { struct wil6210_priv *wil = vif_to_wil(vif); struct wmi_ring_en_event *evt = d; u8 vri = evt->ring_index; struct wireless_dev *wdev = vif_to_wdev(vif); struct wil_sta_info *sta; u8 cid; struct key_params params; wil_dbg_wmi(wil, "Enable vring %d MID %d\n", vri, vif->mid); if (vri >= ARRAY_SIZE(wil->ring_tx)) { wil_err(wil, "Enable for invalid vring %d\n", vri); return; } if (wdev->iftype != NL80211_IFTYPE_AP || !disable_ap_sme || test_bit(wil_vif_ft_roam, vif->status)) /* in AP mode with disable_ap_sme that is not FT, * this is done by wil_cfg80211_change_station() */ wil->ring_tx_data[vri].dot1x_open = true; if (vri == vif->bcast_ring) /* no BA for bcast */ return; cid = wil->ring2cid_tid[vri][0]; if (!wil_cid_valid(cid)) { wil_err(wil, "invalid cid %d for vring %d\n", cid, vri); return; } /* In FT mode we get key but not store it as it is received * before WMI_CONNECT_EVENT received from FW. * wil_set_crypto_rx is called here to reset the security PN */ sta = &wil->sta[cid]; if (test_bit(wil_vif_ft_roam, vif->status)) { memset(¶ms, 0, sizeof(params)); wil_set_crypto_rx(0, WMI_KEY_USE_PAIRWISE, sta, ¶ms); if (wdev->iftype != NL80211_IFTYPE_AP) clear_bit(wil_vif_ft_roam, vif->status); } if (agg_wsize >= 0) wil_addba_tx_request(wil, vri, agg_wsize); } static void wmi_evt_ba_status(struct wil6210_vif *vif, int id, void *d, int len) { struct wil6210_priv *wil = vif_to_wil(vif); struct wmi_ba_status_event *evt = d; struct wil_ring_tx_data *txdata; wil_dbg_wmi(wil, "BACK[%d] %s {%d} timeout %d AMSDU%s\n", evt->ringid, evt->status == WMI_BA_AGREED ? "OK" : "N/A", evt->agg_wsize, __le16_to_cpu(evt->ba_timeout), evt->amsdu ? "+" : "-"); if (evt->ringid >= WIL6210_MAX_TX_RINGS) { wil_err(wil, "invalid ring id %d\n", evt->ringid); return; } if (evt->status != WMI_BA_AGREED) { evt->ba_timeout = 0; evt->agg_wsize = 0; evt->amsdu = 0; } txdata = &wil->ring_tx_data[evt->ringid]; txdata->agg_timeout = le16_to_cpu(evt->ba_timeout); txdata->agg_wsize = evt->agg_wsize; txdata->agg_amsdu = evt->amsdu; txdata->addba_in_progress = false; } static void wmi_evt_addba_rx_req(struct wil6210_vif *vif, int id, void *d, int len) { struct wil6210_priv *wil = vif_to_wil(vif); u8 cid, tid; struct wmi_rcp_addba_req_event *evt = d; if (evt->cidxtid != CIDXTID_EXTENDED_CID_TID) { parse_cidxtid(evt->cidxtid, &cid, &tid); } else { cid = evt->cid; tid = evt->tid; } wil_addba_rx_request(wil, vif->mid, cid, tid, evt->dialog_token, evt->ba_param_set, evt->ba_timeout, evt->ba_seq_ctrl); } static void wmi_evt_delba(struct wil6210_vif *vif, int id, void *d, int len) __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock) { struct wil6210_priv *wil = vif_to_wil(vif); struct wmi_delba_event *evt = d; u8 cid, tid; u16 reason = __le16_to_cpu(evt->reason); struct wil_sta_info *sta; struct wil_tid_ampdu_rx *r; might_sleep(); if (evt->cidxtid != CIDXTID_EXTENDED_CID_TID) { parse_cidxtid(evt->cidxtid, &cid, &tid); } else { cid = evt->cid; tid = evt->tid; } wil_dbg_wmi(wil, "DELBA MID %d CID %d TID %d from %s reason %d\n", vif->mid, cid, tid, evt->from_initiator ? "originator" : "recipient", reason); if (!evt->from_initiator) { int i; /* find Tx vring it belongs to */ for (i = 0; i < ARRAY_SIZE(wil->ring2cid_tid); i++) { if (wil->ring2cid_tid[i][0] == cid && wil->ring2cid_tid[i][1] == tid) { struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i]; wil_dbg_wmi(wil, "DELBA Tx vring %d\n", i); txdata->agg_timeout = 0; txdata->agg_wsize = 0; txdata->addba_in_progress = false; break; /* max. 1 matching ring */ } } if (i >= ARRAY_SIZE(wil->ring2cid_tid)) wil_err(wil, "DELBA: unable to find Tx vring\n"); return; } sta = &wil->sta[cid]; spin_lock_bh(&sta->tid_rx_lock); r = sta->tid_rx[tid]; sta->tid_rx[tid] = NULL; wil_tid_ampdu_rx_free(wil, r); spin_unlock_bh(&sta->tid_rx_lock); } static void wmi_evt_sched_scan_result(struct wil6210_vif *vif, int id, void *d, int len) { struct wil6210_priv *wil = vif_to_wil(vif); struct wmi_sched_scan_result_event *data = d; struct wiphy *wiphy = wil_to_wiphy(wil); struct ieee80211_mgmt *rx_mgmt_frame = (struct ieee80211_mgmt *)data->payload; int flen = len - offsetof(struct wmi_sched_scan_result_event, payload); int ch_no; u32 freq; struct ieee80211_channel *channel; s32 signal; __le16 fc; u32 d_len; struct cfg80211_bss *bss; if (flen < 0) { wil_err(wil, "sched scan result event too short, len %d\n", len); return; } d_len = le32_to_cpu(data->info.len); if (d_len != flen) { wil_err(wil, "sched scan result length mismatch, d_len %d should be %d\n", d_len, flen); return; } fc = rx_mgmt_frame->frame_control; if (!ieee80211_is_probe_resp(fc)) { wil_err(wil, "sched scan result invalid frame, fc 0x%04x\n", fc); return; } ch_no = data->info.channel + 1; freq = ieee80211_channel_to_frequency(ch_no, NL80211_BAND_60GHZ); channel = ieee80211_get_channel(wiphy, freq); if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities)) signal = 100 * data->info.rssi; else signal = data->info.sqi; wil_dbg_wmi(wil, "sched scan result: channel %d MCS %d RSSI %d\n", data->info.channel, data->info.mcs, data->info.rssi); wil_dbg_wmi(wil, "len %d qid %d mid %d cid %d\n", d_len, data->info.qid, data->info.mid, data->info.cid); wil_hex_dump_wmi("PROBE ", DUMP_PREFIX_OFFSET, 16, 1, rx_mgmt_frame, d_len, true); if (!channel) { wil_err(wil, "Frame on unsupported channel\n"); return; } bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame, d_len, signal, GFP_KERNEL); if (bss) { wil_dbg_wmi(wil, "Added BSS %pM\n", rx_mgmt_frame->bssid); cfg80211_put_bss(wiphy, bss); } else { wil_err(wil, "cfg80211_inform_bss_frame() failed\n"); } cfg80211_sched_scan_results(wiphy, 0); } static void wil_link_stats_store_basic(struct wil6210_vif *vif, struct wmi_link_stats_basic *basic) { struct wil6210_priv *wil = vif_to_wil(vif); u8 cid = basic->cid; struct wil_sta_info *sta; if (cid < 0 || cid >= max_assoc_sta) { wil_err(wil, "invalid cid %d\n", cid); return; } sta = &wil->sta[cid]; sta->fw_stats_basic = *basic; } static void wil_link_stats_store_global(struct wil6210_vif *vif, struct wmi_link_stats_global *global) { struct wil6210_priv *wil = vif_to_wil(vif); wil->fw_stats_global.stats = *global; } static void wmi_link_stats_parse(struct wil6210_vif *vif, u64 tsf, bool has_next, void *payload, size_t payload_size) { struct wil6210_priv *wil = vif_to_wil(vif); size_t hdr_size = sizeof(struct wmi_link_stats_record); size_t stats_size, record_size, expected_size; struct wmi_link_stats_record *hdr; if (payload_size < hdr_size) { wil_err(wil, "link stats wrong event size %zu\n", payload_size); return; } while (payload_size >= hdr_size) { hdr = payload; stats_size = le16_to_cpu(hdr->record_size); record_size = hdr_size + stats_size; if (payload_size < record_size) { wil_err(wil, "link stats payload ended unexpectedly, size %zu < %zu\n", payload_size, record_size); return; } switch (hdr->record_type_id) { case WMI_LINK_STATS_TYPE_BASIC: expected_size = sizeof(struct wmi_link_stats_basic); if (stats_size < expected_size) { wil_err(wil, "link stats invalid basic record size %zu < %zu\n", stats_size, expected_size); return; } if (vif->fw_stats_ready) { /* clean old statistics */ vif->fw_stats_tsf = 0; vif->fw_stats_ready = 0; } wil_link_stats_store_basic(vif, payload + hdr_size); if (!has_next) { vif->fw_stats_tsf = tsf; vif->fw_stats_ready = 1; } break; case WMI_LINK_STATS_TYPE_GLOBAL: expected_size = sizeof(struct wmi_link_stats_global); if (stats_size < sizeof(struct wmi_link_stats_global)) { wil_err(wil, "link stats invalid global record size %zu < %zu\n", stats_size, expected_size); return; } if (wil->fw_stats_global.ready) { /* clean old statistics */ wil->fw_stats_global.tsf = 0; wil->fw_stats_global.ready = 0; } wil_link_stats_store_global(vif, payload + hdr_size); if (!has_next) { wil->fw_stats_global.tsf = tsf; wil->fw_stats_global.ready = 1; } break; default: break; } /* skip to next record */ payload += record_size; payload_size -= record_size; } } static void wmi_evt_link_stats(struct wil6210_vif *vif, int id, void *d, int len) { struct wil6210_priv *wil = vif_to_wil(vif); struct wmi_link_stats_event *evt = d; size_t payload_size; if (len < offsetof(struct wmi_link_stats_event, payload)) { wil_err(wil, "stats event way too short %d\n", len); return; } payload_size = le16_to_cpu(evt->payload_size); if (len < sizeof(struct wmi_link_stats_event) + payload_size) { wil_err(wil, "stats event too short %d\n", len); return; } wmi_link_stats_parse(vif, le64_to_cpu(evt->tsf), evt->has_next, evt->payload, payload_size); } /** * find cid and ringid for the station vif * * return error, if other interfaces are used or ring was not found */ static int wil_find_cid_ringid_sta(struct wil6210_priv *wil, struct wil6210_vif *vif, int *cid, int *ringid) { struct wil_ring *ring; struct wil_ring_tx_data *txdata; int min_ring_id = wil_get_min_tx_ring_id(wil); int i; u8 lcid; if (!(vif->wdev.iftype == NL80211_IFTYPE_STATION || vif->wdev.iftype == NL80211_IFTYPE_P2P_CLIENT)) { wil_err(wil, "invalid interface type %d\n", vif->wdev.iftype); return -EINVAL; } /* In the STA mode, it is expected to have only one ring * for the AP we are connected to. * find it and return the cid associated with it. */ for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { ring = &wil->ring_tx[i]; txdata = &wil->ring_tx_data[i]; if (!ring->va || !txdata->enabled || txdata->mid != vif->mid) continue; lcid = wil->ring2cid_tid[i][0]; if (lcid >= max_assoc_sta) /* skip BCAST */ continue; wil_dbg_wmi(wil, "find sta -> ringid %d cid %d\n", i, lcid); *cid = lcid; *ringid = i; return 0; } wil_dbg_wmi(wil, "find sta cid while no rings active?\n"); return -ENOENT; } static void wmi_evt_auth_status(struct wil6210_vif *vif, int id, void *d, int len) { struct wil6210_priv *wil = vif_to_wil(vif); struct net_device *ndev = vif_to_ndev(vif); struct wmi_ft_auth_status_event *data = d; int ie_len = len - offsetof(struct wmi_ft_auth_status_event, ie_info); int rc, cid = 0, ringid = 0; struct cfg80211_ft_event_params ft; u16 d_len; /* auth_alg(u16) + auth_transaction(u16) + status_code(u16) */ const size_t auth_ie_offset = sizeof(u16) * 3; struct auth_no_hdr *auth = (struct auth_no_hdr *)data->ie_info; /* check the status */ if (ie_len >= 0 && data->status != WMI_FW_STATUS_SUCCESS) { wil_err(wil, "FT: auth failed. status %d\n", data->status); goto fail; } if (ie_len < auth_ie_offset) { wil_err(wil, "FT: auth event too short, len %d\n", len); goto fail; } d_len = le16_to_cpu(data->ie_len); if (d_len != ie_len) { wil_err(wil, "FT: auth ie length mismatch, d_len %d should be %d\n", d_len, ie_len); goto fail; } if (!test_bit(wil_vif_ft_roam, wil->status)) { wil_err(wil, "FT: Not in roaming state\n"); goto fail; } if (le16_to_cpu(auth->auth_transaction) != 2) { wil_err(wil, "FT: auth error. auth_transaction %d\n", le16_to_cpu(auth->auth_transaction)); goto fail; } if (le16_to_cpu(auth->auth_alg) != WLAN_AUTH_FT) { wil_err(wil, "FT: auth error. auth_alg %d\n", le16_to_cpu(auth->auth_alg)); goto fail; } wil_dbg_wmi(wil, "FT: Auth to %pM successfully\n", data->mac_addr); wil_hex_dump_wmi("FT Auth ies : ", DUMP_PREFIX_OFFSET, 16, 1, data->ie_info, d_len, true); /* find cid and ringid */ rc = wil_find_cid_ringid_sta(wil, vif, &cid, &ringid); if (rc) { wil_err(wil, "No valid cid found\n"); goto fail; } if (vif->privacy) { /* For secure assoc, remove old keys */ rc = wmi_del_cipher_key(vif, 0, wil->sta[cid].addr, WMI_KEY_USE_PAIRWISE); if (rc) { wil_err(wil, "WMI_DELETE_CIPHER_KEY_CMD(PTK) failed\n"); goto fail; } rc = wmi_del_cipher_key(vif, 0, wil->sta[cid].addr, WMI_KEY_USE_RX_GROUP); if (rc) { wil_err(wil, "WMI_DELETE_CIPHER_KEY_CMD(GTK) failed\n"); goto fail; } } memset(&ft, 0, sizeof(ft)); ft.ies = data->ie_info + auth_ie_offset; ft.ies_len = d_len - auth_ie_offset; ft.target_ap = data->mac_addr; cfg80211_ft_event(ndev, &ft); return; fail: wil6210_disconnect(vif, NULL, WLAN_REASON_PREV_AUTH_NOT_VALID); } static void wmi_evt_reassoc_status(struct wil6210_vif *vif, int id, void *d, int len) { struct wil6210_priv *wil = vif_to_wil(vif); struct net_device *ndev = vif_to_ndev(vif); struct wiphy *wiphy = wil_to_wiphy(wil); struct wmi_ft_reassoc_status_event *data = d; int ies_len = len - offsetof(struct wmi_ft_reassoc_status_event, ie_info); int rc = -ENOENT, cid = 0, ringid = 0; int ch; /* channel number (primary) */ size_t assoc_req_ie_len = 0, assoc_resp_ie_len = 0; u8 *assoc_req_ie = NULL, *assoc_resp_ie = NULL; /* capinfo(u16) + listen_interval(u16) + current_ap mac addr + IEs */ const size_t assoc_req_ie_offset = sizeof(u16) * 2 + ETH_ALEN; /* capinfo(u16) + status_code(u16) + associd(u16) + IEs */ const size_t assoc_resp_ie_offset = sizeof(u16) * 3; u16 d_len; int freq; struct cfg80211_roam_info info; if (ies_len < 0) { wil_err(wil, "ft reassoc event too short, len %d\n", len); goto fail; } wil_dbg_wmi(wil, "Reasoc Status event: status=%d, aid=%d", data->status, data->aid); wil_dbg_wmi(wil, " mac_addr=%pM, beacon_ie_len=%d", data->mac_addr, data->beacon_ie_len); wil_dbg_wmi(wil, " reassoc_req_ie_len=%d, reassoc_resp_ie_len=%d", le16_to_cpu(data->reassoc_req_ie_len), le16_to_cpu(data->reassoc_resp_ie_len)); d_len = le16_to_cpu(data->beacon_ie_len) + le16_to_cpu(data->reassoc_req_ie_len) + le16_to_cpu(data->reassoc_resp_ie_len); if (d_len != ies_len) { wil_err(wil, "ft reassoc ie length mismatch, d_len %d should be %d\n", d_len, ies_len); goto fail; } /* check the status */ if (data->status != WMI_FW_STATUS_SUCCESS) { wil_err(wil, "ft reassoc failed. status %d\n", data->status); goto fail; } /* find cid and ringid */ rc = wil_find_cid_ringid_sta(wil, vif, &cid, &ringid); if (rc) { wil_err(wil, "No valid cid found\n"); goto fail; } ch = data->channel + 1; wil_info(wil, "FT: Roam %pM channel [%d] cid %d aid %d\n", data->mac_addr, ch, cid, data->aid); wil_hex_dump_wmi("reassoc AI : ", DUMP_PREFIX_OFFSET, 16, 1, data->ie_info, len - sizeof(*data), true); /* figure out IE's */ if (le16_to_cpu(data->reassoc_req_ie_len) > assoc_req_ie_offset) { assoc_req_ie = &data->ie_info[assoc_req_ie_offset]; assoc_req_ie_len = le16_to_cpu(data->reassoc_req_ie_len) - assoc_req_ie_offset; } if (le16_to_cpu(data->reassoc_resp_ie_len) <= assoc_resp_ie_offset) { wil_err(wil, "FT: reassoc resp ie len is too short, len %d\n", le16_to_cpu(data->reassoc_resp_ie_len)); goto fail; } assoc_resp_ie = &data->ie_info[le16_to_cpu(data->reassoc_req_ie_len) + assoc_resp_ie_offset]; assoc_resp_ie_len = le16_to_cpu(data->reassoc_resp_ie_len) - assoc_resp_ie_offset; if (test_bit(wil_status_resetting, wil->status) || !test_bit(wil_status_fwready, wil->status)) { wil_err(wil, "FT: status_resetting, cancel reassoc event\n"); /* no need for cleanup, wil_reset will do that */ return; } mutex_lock(&wil->mutex); /* ring modify to set the ring for the roamed AP settings */ wil_dbg_wmi(wil, "ft modify tx config for connection CID %d ring %d\n", cid, ringid); rc = wil->txrx_ops.tx_ring_modify(vif, ringid, cid, 0); if (rc) { wil_err(wil, "modify TX for CID %d MID %d ring %d failed (%d)\n", cid, vif->mid, ringid, rc); mutex_unlock(&wil->mutex); goto fail; } /* Update the driver STA members with the new bss */ wil->sta[cid].aid = data->aid; wil->sta[cid].stats.ft_roams++; ether_addr_copy(wil->sta[cid].addr, vif->bss->bssid); mutex_unlock(&wil->mutex); del_timer_sync(&vif->connect_timer); cfg80211_ref_bss(wiphy, vif->bss); freq = ieee80211_channel_to_frequency(ch, NL80211_BAND_60GHZ); memset(&info, 0, sizeof(info)); info.channel = ieee80211_get_channel(wiphy, freq); info.bss = vif->bss; info.req_ie = assoc_req_ie; info.req_ie_len = assoc_req_ie_len; info.resp_ie = assoc_resp_ie; info.resp_ie_len = assoc_resp_ie_len; cfg80211_roamed(ndev, &info, GFP_KERNEL); vif->bss = NULL; return; fail: wil6210_disconnect(vif, NULL, WLAN_REASON_PREV_AUTH_NOT_VALID); } /** * Some events are ignored for purpose; and need not be interpreted as * "unhandled events" */ static void wmi_evt_ignore(struct wil6210_vif *vif, int id, void *d, int len) { struct wil6210_priv *wil = vif_to_wil(vif); wil_dbg_wmi(wil, "Ignore event 0x%04x len %d\n", id, len); } static const struct { int eventid; void (*handler)(struct wil6210_vif *vif, int eventid, void *data, int data_len); } wmi_evt_handlers[] = { {WMI_READY_EVENTID, wmi_evt_ready}, {WMI_FW_READY_EVENTID, wmi_evt_ignore}, {WMI_RX_MGMT_PACKET_EVENTID, wmi_evt_rx_mgmt}, {WMI_TX_MGMT_PACKET_EVENTID, wmi_evt_tx_mgmt}, {WMI_SCAN_COMPLETE_EVENTID, wmi_evt_scan_complete}, {WMI_CONNECT_EVENTID, wmi_evt_connect}, {WMI_DISCONNECT_EVENTID, wmi_evt_disconnect}, {WMI_EAPOL_RX_EVENTID, wmi_evt_eapol_rx}, {WMI_BA_STATUS_EVENTID, wmi_evt_ba_status}, {WMI_RCP_ADDBA_REQ_EVENTID, wmi_evt_addba_rx_req}, {WMI_DELBA_EVENTID, wmi_evt_delba}, {WMI_RING_EN_EVENTID, wmi_evt_ring_en}, {WMI_DATA_PORT_OPEN_EVENTID, wmi_evt_ignore}, {WMI_SCHED_SCAN_RESULT_EVENTID, wmi_evt_sched_scan_result}, {WMI_LINK_STATS_EVENTID, wmi_evt_link_stats}, {WMI_FT_AUTH_STATUS_EVENTID, wmi_evt_auth_status}, {WMI_FT_REASSOC_STATUS_EVENTID, wmi_evt_reassoc_status}, }; /* * Run in IRQ context * Extract WMI command from mailbox. Queue it to the @wil->pending_wmi_ev * that will be eventually handled by the @wmi_event_worker in the thread * context of thread "wil6210_wmi" */ void wmi_recv_cmd(struct wil6210_priv *wil) { struct wil6210_mbox_ring_desc d_tail; struct wil6210_mbox_hdr hdr; struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx; struct pending_wmi_event *evt; u8 *cmd; void __iomem *src; ulong flags; unsigned n; unsigned int num_immed_reply = 0; if (!test_bit(wil_status_mbox_ready, wil->status)) { wil_err(wil, "Reset in progress. Cannot handle WMI event\n"); return; } if (test_bit(wil_status_suspended, wil->status)) { wil_err(wil, "suspended. cannot handle WMI event\n"); return; } for (n = 0;; n++) { u16 len; bool q; bool immed_reply = false; r->head = wil_r(wil, RGF_MBOX + offsetof(struct wil6210_mbox_ctl, rx.head)); if (r->tail == r->head) break; wil_dbg_wmi(wil, "Mbox head %08x tail %08x\n", r->head, r->tail); /* read cmd descriptor from tail */ wil_memcpy_fromio_32(&d_tail, wil->csr + HOSTADDR(r->tail), sizeof(struct wil6210_mbox_ring_desc)); if (d_tail.sync == 0) { wil_err(wil, "Mbox evt not owned by FW?\n"); break; } /* read cmd header from descriptor */ if (0 != wmi_read_hdr(wil, d_tail.addr, &hdr)) { wil_err(wil, "Mbox evt at 0x%08x?\n", le32_to_cpu(d_tail.addr)); break; } len = le16_to_cpu(hdr.len); wil_dbg_wmi(wil, "Mbox evt %04x %04x %04x %02x\n", le16_to_cpu(hdr.seq), len, le16_to_cpu(hdr.type), hdr.flags); /* read cmd buffer from descriptor */ src = wmi_buffer(wil, d_tail.addr) + sizeof(struct wil6210_mbox_hdr); evt = kmalloc(ALIGN(offsetof(struct pending_wmi_event, event.wmi) + len, 4), GFP_KERNEL); if (!evt) break; evt->event.hdr = hdr; cmd = (void *)&evt->event.wmi; wil_memcpy_fromio_32(cmd, src, len); /* mark entry as empty */ wil_w(wil, r->tail + offsetof(struct wil6210_mbox_ring_desc, sync), 0); /* indicate */ if ((hdr.type == WIL_MBOX_HDR_TYPE_WMI) && (len >= sizeof(struct wmi_cmd_hdr))) { struct wmi_cmd_hdr *wmi = &evt->event.wmi; u16 id = le16_to_cpu(wmi->command_id); u8 mid = wmi->mid; u32 tstamp = le32_to_cpu(wmi->fw_timestamp); if (test_bit(wil_status_resuming, wil->status)) { if (id == WMI_TRAFFIC_RESUME_EVENTID) clear_bit(wil_status_resuming, wil->status); else wil_err(wil, "WMI evt %d while resuming\n", id); } spin_lock_irqsave(&wil->wmi_ev_lock, flags); if (wil->reply_id && wil->reply_id == id && wil->reply_mid == mid) { if (wil->reply_buf) { memcpy(wil->reply_buf, wmi, min(len, wil->reply_size)); immed_reply = true; } if (id == WMI_TRAFFIC_SUSPEND_EVENTID) { wil_dbg_wmi(wil, "set suspend_resp_rcvd\n"); wil->suspend_resp_rcvd = true; } } spin_unlock_irqrestore(&wil->wmi_ev_lock, flags); wil_dbg_wmi(wil, "recv %s (0x%04x) MID %d @%d msec\n", eventid2name(id), id, wmi->mid, tstamp); trace_wil6210_wmi_event(wmi, &wmi[1], len - sizeof(*wmi)); } wil_hex_dump_wmi("evt ", DUMP_PREFIX_OFFSET, 16, 1, &evt->event.hdr, sizeof(hdr) + len, true); /* advance tail */ r->tail = r->base + ((r->tail - r->base + sizeof(struct wil6210_mbox_ring_desc)) % r->size); wil_w(wil, RGF_MBOX + offsetof(struct wil6210_mbox_ctl, rx.tail), r->tail); if (immed_reply) { wil_dbg_wmi(wil, "recv_cmd: Complete WMI 0x%04x\n", wil->reply_id); kfree(evt); num_immed_reply++; complete(&wil->wmi_call); } else { /* add to the pending list */ spin_lock_irqsave(&wil->wmi_ev_lock, flags); list_add_tail(&evt->list, &wil->pending_wmi_ev); spin_unlock_irqrestore(&wil->wmi_ev_lock, flags); q = queue_work(wil->wmi_wq, &wil->wmi_event_worker); wil_dbg_wmi(wil, "queue_work -> %d\n", q); } } /* normally, 1 event per IRQ should be processed */ wil_dbg_wmi(wil, "recv_cmd: -> %d events queued, %d completed\n", n - num_immed_reply, num_immed_reply); } int wmi_call(struct wil6210_priv *wil, u16 cmdid, u8 mid, void *buf, u16 len, u16 reply_id, void *reply, u16 reply_size, int to_msec) { int rc; unsigned long remain; ulong flags; mutex_lock(&wil->wmi_mutex); spin_lock_irqsave(&wil->wmi_ev_lock, flags); wil->reply_id = reply_id; wil->reply_mid = mid; wil->reply_buf = reply; wil->reply_size = reply_size; reinit_completion(&wil->wmi_call); spin_unlock_irqrestore(&wil->wmi_ev_lock, flags); rc = __wmi_send(wil, cmdid, mid, buf, len); if (rc) goto out; remain = wait_for_completion_timeout(&wil->wmi_call, msecs_to_jiffies(to_msec)); if (0 == remain) { wil_err(wil, "wmi_call(0x%04x->0x%04x) timeout %d msec\n", cmdid, reply_id, to_msec); rc = -ETIME; } else { wil_dbg_wmi(wil, "wmi_call(0x%04x->0x%04x) completed in %d msec\n", cmdid, reply_id, to_msec - jiffies_to_msecs(remain)); } out: spin_lock_irqsave(&wil->wmi_ev_lock, flags); wil->reply_id = 0; wil->reply_mid = U8_MAX; wil->reply_buf = NULL; wil->reply_size = 0; spin_unlock_irqrestore(&wil->wmi_ev_lock, flags); mutex_unlock(&wil->wmi_mutex); return rc; } int wmi_echo(struct wil6210_priv *wil) { struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); struct wmi_echo_cmd cmd = { .value = cpu_to_le32(0x12345678), }; return wmi_call(wil, WMI_ECHO_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_ECHO_RSP_EVENTID, NULL, 0, 50); } int wmi_set_mac_address(struct wil6210_priv *wil, void *addr) { struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); struct wmi_set_mac_address_cmd cmd; ether_addr_copy(cmd.mac, addr); wil_dbg_wmi(wil, "Set MAC %pM\n", addr); return wmi_send(wil, WMI_SET_MAC_ADDRESS_CMDID, vif->mid, &cmd, sizeof(cmd)); } int wmi_led_cfg(struct wil6210_priv *wil, bool enable) { struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); int rc = 0; struct wmi_led_cfg_cmd cmd = { .led_mode = enable, .id = led_id, .slow_blink_cfg.blink_on = cpu_to_le32(led_blink_time[WIL_LED_TIME_SLOW].on_ms), .slow_blink_cfg.blink_off = cpu_to_le32(led_blink_time[WIL_LED_TIME_SLOW].off_ms), .medium_blink_cfg.blink_on = cpu_to_le32(led_blink_time[WIL_LED_TIME_MED].on_ms), .medium_blink_cfg.blink_off = cpu_to_le32(led_blink_time[WIL_LED_TIME_MED].off_ms), .fast_blink_cfg.blink_on = cpu_to_le32(led_blink_time[WIL_LED_TIME_FAST].on_ms), .fast_blink_cfg.blink_off = cpu_to_le32(led_blink_time[WIL_LED_TIME_FAST].off_ms), .led_polarity = led_polarity, }; struct { struct wmi_cmd_hdr wmi; struct wmi_led_cfg_done_event evt; } __packed reply = { .evt = {.status = cpu_to_le32(WMI_FW_STATUS_FAILURE)}, }; if (led_id == WIL_LED_INVALID_ID) goto out; if (led_id > WIL_LED_MAX_ID) { wil_err(wil, "Invalid led id %d\n", led_id); rc = -EINVAL; goto out; } wil_dbg_wmi(wil, "%s led %d\n", enable ? "enabling" : "disabling", led_id); rc = wmi_call(wil, WMI_LED_CFG_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_LED_CFG_DONE_EVENTID, &reply, sizeof(reply), 100); if (rc) goto out; if (reply.evt.status) { wil_err(wil, "led %d cfg failed with status %d\n", led_id, le32_to_cpu(reply.evt.status)); rc = -EINVAL; } out: return rc; } int wmi_pcp_start(struct wil6210_vif *vif, int bi, u8 wmi_nettype, u8 chan, u8 hidden_ssid, u8 is_go) { struct wil6210_priv *wil = vif_to_wil(vif); int rc; struct wmi_pcp_start_cmd cmd = { .bcon_interval = cpu_to_le16(bi), .network_type = wmi_nettype, .disable_sec_offload = 1, .channel = chan - 1, .pcp_max_assoc_sta = max_assoc_sta, .hidden_ssid = hidden_ssid, .is_go = is_go, .ap_sme_offload_mode = disable_ap_sme ? WMI_AP_SME_OFFLOAD_PARTIAL : WMI_AP_SME_OFFLOAD_FULL, .abft_len = wil->abft_len, }; struct { struct wmi_cmd_hdr wmi; struct wmi_pcp_started_event evt; } __packed reply = { .evt = {.status = WMI_FW_STATUS_FAILURE}, }; if (!vif->privacy) cmd.disable_sec = 1; if ((cmd.pcp_max_assoc_sta > WIL6210_MAX_CID) || (cmd.pcp_max_assoc_sta <= 0)) { wil_err(wil, "unexpected max_assoc_sta %d\n", cmd.pcp_max_assoc_sta); return -EOPNOTSUPP; } if (disable_ap_sme && !test_bit(WMI_FW_CAPABILITY_AP_SME_OFFLOAD_PARTIAL, wil->fw_capabilities)) { wil_err(wil, "disable_ap_sme not supported by FW\n"); return -EOPNOTSUPP; } /* * Processing time may be huge, in case of secure AP it takes about * 3500ms for FW to start AP */ rc = wmi_call(wil, WMI_PCP_START_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_PCP_STARTED_EVENTID, &reply, sizeof(reply), 5000); if (rc) return rc; if (reply.evt.status != WMI_FW_STATUS_SUCCESS) rc = -EINVAL; if (wmi_nettype != WMI_NETTYPE_P2P) /* Don't fail due to error in the led configuration */ wmi_led_cfg(wil, true); return rc; } int wmi_pcp_stop(struct wil6210_vif *vif) { struct wil6210_priv *wil = vif_to_wil(vif); int rc; rc = wmi_led_cfg(wil, false); if (rc) return rc; return wmi_call(wil, WMI_PCP_STOP_CMDID, vif->mid, NULL, 0, WMI_PCP_STOPPED_EVENTID, NULL, 0, WIL_WMI_PCP_STOP_TO_MS); } int wmi_set_ssid(struct wil6210_vif *vif, u8 ssid_len, const void *ssid) { struct wil6210_priv *wil = vif_to_wil(vif); struct wmi_set_ssid_cmd cmd = { .ssid_len = cpu_to_le32(ssid_len), }; if (ssid_len > sizeof(cmd.ssid)) return -EINVAL; memcpy(cmd.ssid, ssid, ssid_len); return wmi_send(wil, WMI_SET_SSID_CMDID, vif->mid, &cmd, sizeof(cmd)); } int wmi_get_ssid(struct wil6210_vif *vif, u8 *ssid_len, void *ssid) { struct wil6210_priv *wil = vif_to_wil(vif); int rc; struct { struct wmi_cmd_hdr wmi; struct wmi_set_ssid_cmd cmd; } __packed reply; int len; /* reply.cmd.ssid_len in CPU order */ memset(&reply, 0, sizeof(reply)); rc = wmi_call(wil, WMI_GET_SSID_CMDID, vif->mid, NULL, 0, WMI_GET_SSID_EVENTID, &reply, sizeof(reply), 20); if (rc) return rc; len = le32_to_cpu(reply.cmd.ssid_len); if (len > sizeof(reply.cmd.ssid)) return -EINVAL; *ssid_len = len; memcpy(ssid, reply.cmd.ssid, len); return 0; } int wmi_set_channel(struct wil6210_priv *wil, int channel) { struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); struct wmi_set_pcp_channel_cmd cmd = { .channel = channel - 1, }; return wmi_send(wil, WMI_SET_PCP_CHANNEL_CMDID, vif->mid, &cmd, sizeof(cmd)); } int wmi_get_channel(struct wil6210_priv *wil, int *channel) { struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); int rc; struct { struct wmi_cmd_hdr wmi; struct wmi_set_pcp_channel_cmd cmd; } __packed reply; memset(&reply, 0, sizeof(reply)); rc = wmi_call(wil, WMI_GET_PCP_CHANNEL_CMDID, vif->mid, NULL, 0, WMI_GET_PCP_CHANNEL_EVENTID, &reply, sizeof(reply), 20); if (rc) return rc; if (reply.cmd.channel > 3) return -EINVAL; *channel = reply.cmd.channel + 1; return 0; } int wmi_p2p_cfg(struct wil6210_vif *vif, int channel, int bi) { struct wil6210_priv *wil = vif_to_wil(vif); int rc; struct wmi_p2p_cfg_cmd cmd = { .discovery_mode = WMI_DISCOVERY_MODE_PEER2PEER, .bcon_interval = cpu_to_le16(bi), .channel = channel - 1, }; struct { struct wmi_cmd_hdr wmi; struct wmi_p2p_cfg_done_event evt; } __packed reply = { .evt = {.status = WMI_FW_STATUS_FAILURE}, }; wil_dbg_wmi(wil, "sending WMI_P2P_CFG_CMDID\n"); rc = wmi_call(wil, WMI_P2P_CFG_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_P2P_CFG_DONE_EVENTID, &reply, sizeof(reply), 300); if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) { wil_err(wil, "P2P_CFG failed. status %d\n", reply.evt.status); rc = -EINVAL; } return rc; } int wmi_start_listen(struct wil6210_vif *vif) { struct wil6210_priv *wil = vif_to_wil(vif); int rc; struct { struct wmi_cmd_hdr wmi; struct wmi_listen_started_event evt; } __packed reply = { .evt = {.status = WMI_FW_STATUS_FAILURE}, }; wil_dbg_wmi(wil, "sending WMI_START_LISTEN_CMDID\n"); rc = wmi_call(wil, WMI_START_LISTEN_CMDID, vif->mid, NULL, 0, WMI_LISTEN_STARTED_EVENTID, &reply, sizeof(reply), 300); if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) { wil_err(wil, "device failed to start listen. status %d\n", reply.evt.status); rc = -EINVAL; } return rc; } int wmi_start_search(struct wil6210_vif *vif) { struct wil6210_priv *wil = vif_to_wil(vif); int rc; struct { struct wmi_cmd_hdr wmi; struct wmi_search_started_event evt; } __packed reply = { .evt = {.status = WMI_FW_STATUS_FAILURE}, }; wil_dbg_wmi(wil, "sending WMI_START_SEARCH_CMDID\n"); rc = wmi_call(wil, WMI_START_SEARCH_CMDID, vif->mid, NULL, 0, WMI_SEARCH_STARTED_EVENTID, &reply, sizeof(reply), 300); if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) { wil_err(wil, "device failed to start search. status %d\n", reply.evt.status); rc = -EINVAL; } return rc; } int wmi_stop_discovery(struct wil6210_vif *vif) { struct wil6210_priv *wil = vif_to_wil(vif); int rc; wil_dbg_wmi(wil, "sending WMI_DISCOVERY_STOP_CMDID\n"); rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, vif->mid, NULL, 0, WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 100); if (rc) wil_err(wil, "Failed to stop discovery\n"); return rc; } int wmi_del_cipher_key(struct wil6210_vif *vif, u8 key_index, const void *mac_addr, int key_usage) { struct wil6210_priv *wil = vif_to_wil(vif); struct wmi_delete_cipher_key_cmd cmd = { .key_index = key_index, }; if (mac_addr) memcpy(cmd.mac, mac_addr, WMI_MAC_LEN); return wmi_send(wil, WMI_DELETE_CIPHER_KEY_CMDID, vif->mid, &cmd, sizeof(cmd)); } int wmi_add_cipher_key(struct wil6210_vif *vif, u8 key_index, const void *mac_addr, int key_len, const void *key, int key_usage) { struct wil6210_priv *wil = vif_to_wil(vif); struct wmi_add_cipher_key_cmd cmd = { .key_index = key_index, .key_usage = key_usage, .key_len = key_len, }; if (!key || (key_len > sizeof(cmd.key))) return -EINVAL; memcpy(cmd.key, key, key_len); if (mac_addr) memcpy(cmd.mac, mac_addr, WMI_MAC_LEN); return wmi_send(wil, WMI_ADD_CIPHER_KEY_CMDID, vif->mid, &cmd, sizeof(cmd)); } int wmi_set_ie(struct wil6210_vif *vif, u8 type, u16 ie_len, const void *ie) { struct wil6210_priv *wil = vif_to_wil(vif); static const char *const names[] = { [WMI_FRAME_BEACON] = "BEACON", [WMI_FRAME_PROBE_REQ] = "PROBE_REQ", [WMI_FRAME_PROBE_RESP] = "WMI_FRAME_PROBE_RESP", [WMI_FRAME_ASSOC_REQ] = "WMI_FRAME_ASSOC_REQ", [WMI_FRAME_ASSOC_RESP] = "WMI_FRAME_ASSOC_RESP", }; int rc; u16 len = sizeof(struct wmi_set_appie_cmd) + ie_len; struct wmi_set_appie_cmd *cmd; if (len < ie_len) { rc = -EINVAL; goto out; } cmd = kzalloc(len, GFP_KERNEL); if (!cmd) { rc = -ENOMEM; goto out; } if (!ie) ie_len = 0; cmd->mgmt_frm_type = type; /* BUG: FW API define ieLen as u8. Will fix FW */ cmd->ie_len = cpu_to_le16(ie_len); memcpy(cmd->ie_info, ie, ie_len); rc = wmi_send(wil, WMI_SET_APPIE_CMDID, vif->mid, cmd, len); kfree(cmd); out: if (rc) { const char *name = type < ARRAY_SIZE(names) ? names[type] : "??"; wil_err(wil, "set_ie(%d %s) failed : %d\n", type, name, rc); } return rc; } int wmi_update_ft_ies(struct wil6210_vif *vif, u16 ie_len, const void *ie) { struct wil6210_priv *wil = vif_to_wil(vif); u16 len; struct wmi_update_ft_ies_cmd *cmd; int rc; if (!ie) ie_len = 0; len = sizeof(struct wmi_update_ft_ies_cmd) + ie_len; if (len < ie_len) { wil_err(wil, "wraparound. ie len %d\n", ie_len); return -EINVAL; } cmd = kzalloc(len, GFP_KERNEL); if (!cmd) { rc = -ENOMEM; goto out; } cmd->ie_len = cpu_to_le16(ie_len); memcpy(cmd->ie_info, ie, ie_len); rc = wmi_send(wil, WMI_UPDATE_FT_IES_CMDID, vif->mid, cmd, len); kfree(cmd); out: if (rc) wil_err(wil, "update ft ies failed : %d\n", rc); return rc; } /** * wmi_rxon - turn radio on/off * @on: turn on if true, off otherwise * * Only switch radio. Channel should be set separately. * No timeout for rxon - radio turned on forever unless some other call * turns it off */ int wmi_rxon(struct wil6210_priv *wil, bool on) { struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); int rc; struct { struct wmi_cmd_hdr wmi; struct wmi_listen_started_event evt; } __packed reply = { .evt = {.status = WMI_FW_STATUS_FAILURE}, }; wil_info(wil, "(%s)\n", on ? "on" : "off"); if (on) { rc = wmi_call(wil, WMI_START_LISTEN_CMDID, vif->mid, NULL, 0, WMI_LISTEN_STARTED_EVENTID, &reply, sizeof(reply), 100); if ((rc == 0) && (reply.evt.status != WMI_FW_STATUS_SUCCESS)) rc = -EINVAL; } else { rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, vif->mid, NULL, 0, WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 20); } return rc; } int wmi_rx_chain_add(struct wil6210_priv *wil, struct wil_ring *vring) { struct net_device *ndev = wil->main_ndev; struct wireless_dev *wdev = ndev->ieee80211_ptr; struct wil6210_vif *vif = ndev_to_vif(ndev); struct wmi_cfg_rx_chain_cmd cmd = { .action = WMI_RX_CHAIN_ADD, .rx_sw_ring = { .max_mpdu_size = cpu_to_le16( wil_mtu2macbuf(wil->rx_buf_len)), .ring_mem_base = cpu_to_le64(vring->pa), .ring_size = cpu_to_le16(vring->size), }, .mid = 0, /* TODO - what is it? */ .decap_trans_type = WMI_DECAP_TYPE_802_3, .reorder_type = WMI_RX_SW_REORDER, .host_thrsh = cpu_to_le16(rx_ring_overflow_thrsh), }; struct { struct wmi_cmd_hdr wmi; struct wmi_cfg_rx_chain_done_event evt; } __packed evt; int rc; memset(&evt, 0, sizeof(evt)); if (wdev->iftype == NL80211_IFTYPE_MONITOR) { struct ieee80211_channel *ch = wil->monitor_chandef.chan; cmd.sniffer_cfg.mode = cpu_to_le32(WMI_SNIFFER_ON); if (ch) cmd.sniffer_cfg.channel = ch->hw_value - 1; cmd.sniffer_cfg.phy_info_mode = cpu_to_le32(WMI_SNIFFER_PHY_INFO_DISABLED); cmd.sniffer_cfg.phy_support = cpu_to_le32((wil->monitor_flags & MONITOR_FLAG_CONTROL) ? WMI_SNIFFER_CP : WMI_SNIFFER_BOTH_PHYS); } else { /* Initialize offload (in non-sniffer mode). * Linux IP stack always calculates IP checksum * HW always calculate TCP/UDP checksum */ cmd.l3_l4_ctrl |= (1 << L3_L4_CTRL_TCPIP_CHECKSUM_EN_POS); } if (rx_align_2) cmd.l2_802_3_offload_ctrl |= L2_802_3_OFFLOAD_CTRL_SNAP_KEEP_MSK; /* typical time for secure PCP is 840ms */ rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_CFG_RX_CHAIN_DONE_EVENTID, &evt, sizeof(evt), 2000); if (rc) return rc; if (le32_to_cpu(evt.evt.status) != WMI_CFG_RX_CHAIN_SUCCESS) rc = -EINVAL; vring->hwtail = le32_to_cpu(evt.evt.rx_ring_tail_ptr); wil_dbg_misc(wil, "Rx init: status %d tail 0x%08x\n", le32_to_cpu(evt.evt.status), vring->hwtail); return rc; } int wmi_get_temperature(struct wil6210_priv *wil, u32 *t_bb, u32 *t_rf) { struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); int rc; struct wmi_temp_sense_cmd cmd = { .measure_baseband_en = cpu_to_le32(!!t_bb), .measure_rf_en = cpu_to_le32(!!t_rf), .measure_mode = cpu_to_le32(TEMPERATURE_MEASURE_NOW), }; struct { struct wmi_cmd_hdr wmi; struct wmi_temp_sense_done_event evt; } __packed reply; memset(&reply, 0, sizeof(reply)); rc = wmi_call(wil, WMI_TEMP_SENSE_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_TEMP_SENSE_DONE_EVENTID, &reply, sizeof(reply), 100); if (rc) return rc; if (t_bb) *t_bb = le32_to_cpu(reply.evt.baseband_t1000); if (t_rf) *t_rf = le32_to_cpu(reply.evt.rf_t1000); return 0; } int wmi_disconnect_sta(struct wil6210_vif *vif, const u8 *mac, u16 reason, bool del_sta) { struct wil6210_priv *wil = vif_to_wil(vif); int rc; struct wmi_disconnect_sta_cmd disc_sta_cmd = { .disconnect_reason = cpu_to_le16(reason), }; struct wmi_del_sta_cmd del_sta_cmd = { .disconnect_reason = cpu_to_le16(reason), }; struct { struct wmi_cmd_hdr wmi; struct wmi_disconnect_event evt; } __packed reply; wil_dbg_wmi(wil, "disconnect_sta: (%pM, reason %d)\n", mac, reason); memset(&reply, 0, sizeof(reply)); vif->locally_generated_disc = true; if (del_sta) { ether_addr_copy(del_sta_cmd.dst_mac, mac); rc = wmi_call(wil, WMI_DEL_STA_CMDID, vif->mid, &del_sta_cmd, sizeof(del_sta_cmd), WMI_DISCONNECT_EVENTID, &reply, sizeof(reply), 1000); } else { ether_addr_copy(disc_sta_cmd.dst_mac, mac); rc = wmi_call(wil, WMI_DISCONNECT_STA_CMDID, vif->mid, &disc_sta_cmd, sizeof(disc_sta_cmd), WMI_DISCONNECT_EVENTID, &reply, sizeof(reply), 1000); } /* failure to disconnect in reasonable time treated as FW error */ if (rc) { wil_fw_error_recovery(wil); return rc; } wil->sinfo_gen++; return 0; } int wmi_addba(struct wil6210_priv *wil, u8 mid, u8 ringid, u8 size, u16 timeout) { u8 amsdu = wil->use_enhanced_dma_hw && wil->use_rx_hw_reordering && test_bit(WMI_FW_CAPABILITY_AMSDU, wil->fw_capabilities) && wil->amsdu_en; struct wmi_ring_ba_en_cmd cmd = { .ring_id = ringid, .agg_max_wsize = size, .ba_timeout = cpu_to_le16(timeout), .amsdu = amsdu, }; wil_dbg_wmi(wil, "addba: (ring %d size %d timeout %d amsdu %d)\n", ringid, size, timeout, amsdu); return wmi_send(wil, WMI_RING_BA_EN_CMDID, mid, &cmd, sizeof(cmd)); } int wmi_delba_tx(struct wil6210_priv *wil, u8 mid, u8 ringid, u16 reason) { struct wmi_ring_ba_dis_cmd cmd = { .ring_id = ringid, .reason = cpu_to_le16(reason), }; wil_dbg_wmi(wil, "delba_tx: (ring %d reason %d)\n", ringid, reason); return wmi_send(wil, WMI_RING_BA_DIS_CMDID, mid, &cmd, sizeof(cmd)); } int wmi_delba_rx(struct wil6210_priv *wil, u8 mid, u8 cid, u8 tid, u16 reason) { struct wmi_rcp_delba_cmd cmd = { .reason = cpu_to_le16(reason), }; if (cid >= WIL6210_RX_DESC_MAX_CID) { cmd.cidxtid = CIDXTID_EXTENDED_CID_TID; cmd.cid = cid; cmd.tid = tid; } else { cmd.cidxtid = mk_cidxtid(cid, tid); } wil_dbg_wmi(wil, "delba_rx: (CID %d TID %d reason %d)\n", cid, tid, reason); return wmi_send(wil, WMI_RCP_DELBA_CMDID, mid, &cmd, sizeof(cmd)); } int wmi_addba_rx_resp(struct wil6210_priv *wil, u8 mid, u8 cid, u8 tid, u8 token, u16 status, bool amsdu, u16 agg_wsize, u16 timeout) { int rc; struct wmi_rcp_addba_resp_cmd cmd = { .dialog_token = token, .status_code = cpu_to_le16(status), /* bit 0: A-MSDU supported * bit 1: policy (should be 0 for us) * bits 2..5: TID * bits 6..15: buffer size */ .ba_param_set = cpu_to_le16((amsdu ? 1 : 0) | (tid << 2) | (agg_wsize << 6)), .ba_timeout = cpu_to_le16(timeout), }; struct { struct wmi_cmd_hdr wmi; struct wmi_rcp_addba_resp_sent_event evt; } __packed reply = { .evt = {.status = cpu_to_le16(WMI_FW_STATUS_FAILURE)}, }; if (cid >= WIL6210_RX_DESC_MAX_CID) { cmd.cidxtid = CIDXTID_EXTENDED_CID_TID; cmd.cid = cid; cmd.tid = tid; } else { cmd.cidxtid = mk_cidxtid(cid, tid); } wil_dbg_wmi(wil, "ADDBA response for MID %d CID %d TID %d size %d timeout %d status %d AMSDU%s\n", mid, cid, tid, agg_wsize, timeout, status, amsdu ? "+" : "-"); rc = wmi_call(wil, WMI_RCP_ADDBA_RESP_CMDID, mid, &cmd, sizeof(cmd), WMI_RCP_ADDBA_RESP_SENT_EVENTID, &reply, sizeof(reply), 100); if (rc) return rc; if (reply.evt.status) { wil_err(wil, "ADDBA response failed with status %d\n", le16_to_cpu(reply.evt.status)); rc = -EINVAL; } return rc; } int wmi_addba_rx_resp_edma(struct wil6210_priv *wil, u8 mid, u8 cid, u8 tid, u8 token, u16 status, bool amsdu, u16 agg_wsize, u16 timeout) { int rc; struct wmi_rcp_addba_resp_edma_cmd cmd = { .cid = cid, .tid = tid, .dialog_token = token, .status_code = cpu_to_le16(status), /* bit 0: A-MSDU supported * bit 1: policy (should be 0 for us) * bits 2..5: TID * bits 6..15: buffer size */ .ba_param_set = cpu_to_le16((amsdu ? 1 : 0) | (tid << 2) | (agg_wsize << 6)), .ba_timeout = cpu_to_le16(timeout), /* route all the connections to status ring 0 */ .status_ring_id = WIL_DEFAULT_RX_STATUS_RING_ID, }; struct { struct wmi_cmd_hdr wmi; struct wmi_rcp_addba_resp_sent_event evt; } __packed reply = { .evt = {.status = cpu_to_le16(WMI_FW_STATUS_FAILURE)}, }; wil_dbg_wmi(wil, "ADDBA response for CID %d TID %d size %d timeout %d status %d AMSDU%s, sring_id %d\n", cid, tid, agg_wsize, timeout, status, amsdu ? "+" : "-", WIL_DEFAULT_RX_STATUS_RING_ID); rc = wmi_call(wil, WMI_RCP_ADDBA_RESP_EDMA_CMDID, mid, &cmd, sizeof(cmd), WMI_RCP_ADDBA_RESP_SENT_EVENTID, &reply, sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS); if (rc) return rc; if (reply.evt.status) { wil_err(wil, "ADDBA response failed with status %d\n", le16_to_cpu(reply.evt.status)); rc = -EINVAL; } return rc; } int wmi_ps_dev_profile_cfg(struct wil6210_priv *wil, enum wmi_ps_profile_type ps_profile) { struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); int rc; struct wmi_ps_dev_profile_cfg_cmd cmd = { .ps_profile = ps_profile, }; struct { struct wmi_cmd_hdr wmi; struct wmi_ps_dev_profile_cfg_event evt; } __packed reply = { .evt = {.status = cpu_to_le32(WMI_PS_CFG_CMD_STATUS_ERROR)}, }; u32 status; wil_dbg_wmi(wil, "Setting ps dev profile %d\n", ps_profile); rc = wmi_call(wil, WMI_PS_DEV_PROFILE_CFG_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_PS_DEV_PROFILE_CFG_EVENTID, &reply, sizeof(reply), 100); if (rc) return rc; status = le32_to_cpu(reply.evt.status); if (status != WMI_PS_CFG_CMD_STATUS_SUCCESS) { wil_err(wil, "ps dev profile cfg failed with status %d\n", status); rc = -EINVAL; } return rc; } int wmi_set_mgmt_retry(struct wil6210_priv *wil, u8 retry_short) { struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); int rc; struct wmi_set_mgmt_retry_limit_cmd cmd = { .mgmt_retry_limit = retry_short, }; struct { struct wmi_cmd_hdr wmi; struct wmi_set_mgmt_retry_limit_event evt; } __packed reply = { .evt = {.status = WMI_FW_STATUS_FAILURE}, }; wil_dbg_wmi(wil, "Setting mgmt retry short %d\n", retry_short); if (!test_bit(WMI_FW_CAPABILITY_MGMT_RETRY_LIMIT, wil->fw_capabilities)) return -ENOTSUPP; rc = wmi_call(wil, WMI_SET_MGMT_RETRY_LIMIT_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_SET_MGMT_RETRY_LIMIT_EVENTID, &reply, sizeof(reply), 100); if (rc) return rc; if (reply.evt.status != WMI_FW_STATUS_SUCCESS) { wil_err(wil, "set mgmt retry limit failed with status %d\n", reply.evt.status); rc = -EINVAL; } return rc; } int wmi_get_mgmt_retry(struct wil6210_priv *wil, u8 *retry_short) { struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); int rc; struct { struct wmi_cmd_hdr wmi; struct wmi_get_mgmt_retry_limit_event evt; } __packed reply; wil_dbg_wmi(wil, "getting mgmt retry short\n"); if (!test_bit(WMI_FW_CAPABILITY_MGMT_RETRY_LIMIT, wil->fw_capabilities)) return -ENOTSUPP; memset(&reply, 0, sizeof(reply)); rc = wmi_call(wil, WMI_GET_MGMT_RETRY_LIMIT_CMDID, vif->mid, NULL, 0, WMI_GET_MGMT_RETRY_LIMIT_EVENTID, &reply, sizeof(reply), 100); if (rc) return rc; if (retry_short) *retry_short = reply.evt.mgmt_retry_limit; return 0; } int wmi_abort_scan(struct wil6210_vif *vif) { struct wil6210_priv *wil = vif_to_wil(vif); int rc; wil_dbg_wmi(wil, "sending WMI_ABORT_SCAN_CMDID\n"); rc = wmi_send(wil, WMI_ABORT_SCAN_CMDID, vif->mid, NULL, 0); if (rc) wil_err(wil, "Failed to abort scan (%d)\n", rc); return rc; } int wmi_new_sta(struct wil6210_vif *vif, const u8 *mac, u8 aid) { struct wil6210_priv *wil = vif_to_wil(vif); int rc; struct wmi_new_sta_cmd cmd = { .aid = aid, }; wil_dbg_wmi(wil, "new sta %pM, aid %d\n", mac, aid); ether_addr_copy(cmd.dst_mac, mac); rc = wmi_send(wil, WMI_NEW_STA_CMDID, vif->mid, &cmd, sizeof(cmd)); if (rc) wil_err(wil, "Failed to send new sta (%d)\n", rc); return rc; } void wmi_event_flush(struct wil6210_priv *wil) { ulong flags; struct pending_wmi_event *evt, *t; wil_dbg_wmi(wil, "event_flush\n"); spin_lock_irqsave(&wil->wmi_ev_lock, flags); list_for_each_entry_safe(evt, t, &wil->pending_wmi_ev, list) { list_del(&evt->list); kfree(evt); } spin_unlock_irqrestore(&wil->wmi_ev_lock, flags); } static const char *suspend_status2name(u8 status) { switch (status) { case WMI_TRAFFIC_SUSPEND_REJECTED_LINK_NOT_IDLE: return "LINK_NOT_IDLE"; case WMI_TRAFFIC_SUSPEND_REJECTED_DISCONNECT: return "DISCONNECT"; case WMI_TRAFFIC_SUSPEND_REJECTED_OTHER: return "OTHER"; default: return "Untracked status"; } } int wmi_suspend(struct wil6210_priv *wil) { struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); int rc; struct wmi_traffic_suspend_cmd cmd = { .wakeup_trigger = wil->wakeup_trigger, }; struct { struct wmi_cmd_hdr wmi; struct wmi_traffic_suspend_event evt; } __packed reply = { .evt = {.status = WMI_TRAFFIC_SUSPEND_REJECTED_LINK_NOT_IDLE}, }; u32 suspend_to = WIL_WAIT_FOR_SUSPEND_RESUME_COMP; wil->suspend_resp_rcvd = false; wil->suspend_resp_comp = false; rc = wmi_call(wil, WMI_TRAFFIC_SUSPEND_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_TRAFFIC_SUSPEND_EVENTID, &reply, sizeof(reply), suspend_to); if (rc) { wil_err(wil, "wmi_call for suspend req failed, rc=%d\n", rc); if (rc == -ETIME) /* wmi_call TO */ wil->suspend_stats.rejected_by_device++; else wil->suspend_stats.rejected_by_host++; goto out; } wil_dbg_wmi(wil, "waiting for suspend_response_completed\n"); rc = wait_event_interruptible_timeout(wil->wq, wil->suspend_resp_comp, msecs_to_jiffies(suspend_to)); if (rc == 0) { wil_err(wil, "TO waiting for suspend_response_completed\n"); if (wil->suspend_resp_rcvd) /* Device responded but we TO due to another reason */ wil->suspend_stats.rejected_by_host++; else wil->suspend_stats.rejected_by_device++; rc = -EBUSY; goto out; } wil_dbg_wmi(wil, "suspend_response_completed rcvd\n"); if (reply.evt.status != WMI_TRAFFIC_SUSPEND_APPROVED) { wil_dbg_pm(wil, "device rejected the suspend, %s\n", suspend_status2name(reply.evt.status)); wil->suspend_stats.rejected_by_device++; } rc = reply.evt.status; out: wil->suspend_resp_rcvd = false; wil->suspend_resp_comp = false; return rc; } static void resume_triggers2string(u32 triggers, char *string, int str_size) { string[0] = '\0'; if (!triggers) { strlcat(string, " UNKNOWN", str_size); return; } if (triggers & WMI_RESUME_TRIGGER_HOST) strlcat(string, " HOST", str_size); if (triggers & WMI_RESUME_TRIGGER_UCAST_RX) strlcat(string, " UCAST_RX", str_size); if (triggers & WMI_RESUME_TRIGGER_BCAST_RX) strlcat(string, " BCAST_RX", str_size); if (triggers & WMI_RESUME_TRIGGER_WMI_EVT) strlcat(string, " WMI_EVT", str_size); if (triggers & WMI_RESUME_TRIGGER_DISCONNECT) strlcat(string, " DISCONNECT", str_size); } int wmi_resume(struct wil6210_priv *wil) { struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); int rc; char string[100]; struct { struct wmi_cmd_hdr wmi; struct wmi_traffic_resume_event evt; } __packed reply = { .evt = {.status = WMI_TRAFFIC_RESUME_FAILED, .resume_triggers = cpu_to_le32(WMI_RESUME_TRIGGER_UNKNOWN)}, }; rc = wmi_call(wil, WMI_TRAFFIC_RESUME_CMDID, vif->mid, NULL, 0, WMI_TRAFFIC_RESUME_EVENTID, &reply, sizeof(reply), WIL_WAIT_FOR_SUSPEND_RESUME_COMP); if (rc) return rc; resume_triggers2string(le32_to_cpu(reply.evt.resume_triggers), string, sizeof(string)); wil_dbg_pm(wil, "device resume %s, resume triggers:%s (0x%x)\n", reply.evt.status ? "failed" : "passed", string, le32_to_cpu(reply.evt.resume_triggers)); return reply.evt.status; } int wmi_port_allocate(struct wil6210_priv *wil, u8 mid, const u8 *mac, enum nl80211_iftype iftype) { int rc; struct wmi_port_allocate_cmd cmd = { .mid = mid, }; struct { struct wmi_cmd_hdr wmi; struct wmi_port_allocated_event evt; } __packed reply = { .evt = {.status = WMI_FW_STATUS_FAILURE}, }; wil_dbg_misc(wil, "port allocate, mid %d iftype %d, mac %pM\n", mid, iftype, mac); ether_addr_copy(cmd.mac, mac); switch (iftype) { case NL80211_IFTYPE_STATION: cmd.port_role = WMI_PORT_STA; break; case NL80211_IFTYPE_AP: cmd.port_role = WMI_PORT_AP; break; case NL80211_IFTYPE_P2P_CLIENT: cmd.port_role = WMI_PORT_P2P_CLIENT; break; case NL80211_IFTYPE_P2P_GO: cmd.port_role = WMI_PORT_P2P_GO; break; /* what about monitor??? */ default: wil_err(wil, "unsupported iftype: %d\n", iftype); return -EINVAL; } rc = wmi_call(wil, WMI_PORT_ALLOCATE_CMDID, mid, &cmd, sizeof(cmd), WMI_PORT_ALLOCATED_EVENTID, &reply, sizeof(reply), 300); if (rc) { wil_err(wil, "failed to allocate port, status %d\n", rc); return rc; } if (reply.evt.status != WMI_FW_STATUS_SUCCESS) { wil_err(wil, "WMI_PORT_ALLOCATE returned status %d\n", reply.evt.status); return -EINVAL; } return 0; } int wmi_port_delete(struct wil6210_priv *wil, u8 mid) { int rc; struct wmi_port_delete_cmd cmd = { .mid = mid, }; struct { struct wmi_cmd_hdr wmi; struct wmi_port_deleted_event evt; } __packed reply = { .evt = {.status = WMI_FW_STATUS_FAILURE}, }; wil_dbg_misc(wil, "port delete, mid %d\n", mid); rc = wmi_call(wil, WMI_PORT_DELETE_CMDID, mid, &cmd, sizeof(cmd), WMI_PORT_DELETED_EVENTID, &reply, sizeof(reply), 2000); if (rc) { wil_err(wil, "failed to delete port, status %d\n", rc); return rc; } if (reply.evt.status != WMI_FW_STATUS_SUCCESS) { wil_err(wil, "WMI_PORT_DELETE returned status %d\n", reply.evt.status); return -EINVAL; } return 0; } static bool wmi_evt_call_handler(struct wil6210_vif *vif, int id, void *d, int len) { uint i; for (i = 0; i < ARRAY_SIZE(wmi_evt_handlers); i++) { if (wmi_evt_handlers[i].eventid == id) { wmi_evt_handlers[i].handler(vif, id, d, len); return true; } } return false; } static void wmi_event_handle(struct wil6210_priv *wil, struct wil6210_mbox_hdr *hdr) { u16 len = le16_to_cpu(hdr->len); struct wil6210_vif *vif; if ((hdr->type == WIL_MBOX_HDR_TYPE_WMI) && (len >= sizeof(struct wmi_cmd_hdr))) { struct wmi_cmd_hdr *wmi = (void *)(&hdr[1]); void *evt_data = (void *)(&wmi[1]); u16 id = le16_to_cpu(wmi->command_id); u8 mid = wmi->mid; wil_dbg_wmi(wil, "Handle %s (0x%04x) (reply_id 0x%04x,%d)\n", eventid2name(id), id, wil->reply_id, wil->reply_mid); if (mid == MID_BROADCAST) mid = 0; if (mid >= GET_MAX_VIFS(wil)) { wil_dbg_wmi(wil, "invalid mid %d, event skipped\n", mid); return; } vif = wil->vifs[mid]; if (!vif) { wil_dbg_wmi(wil, "event for empty VIF(%d), skipped\n", mid); return; } /* check if someone waits for this event */ if (wil->reply_id && wil->reply_id == id && wil->reply_mid == mid) { WARN_ON(wil->reply_buf); wmi_evt_call_handler(vif, id, evt_data, len - sizeof(*wmi)); wil_dbg_wmi(wil, "event_handle: Complete WMI 0x%04x\n", id); complete(&wil->wmi_call); return; } /* unsolicited event */ /* search for handler */ if (!wmi_evt_call_handler(vif, id, evt_data, len - sizeof(*wmi))) { wil_info(wil, "Unhandled event 0x%04x\n", id); } } else { wil_err(wil, "Unknown event type\n"); print_hex_dump(KERN_ERR, "evt?? ", DUMP_PREFIX_OFFSET, 16, 1, hdr, sizeof(*hdr) + len, true); } } /* * Retrieve next WMI event from the pending list */ static struct list_head *next_wmi_ev(struct wil6210_priv *wil) { ulong flags; struct list_head *ret = NULL; spin_lock_irqsave(&wil->wmi_ev_lock, flags); if (!list_empty(&wil->pending_wmi_ev)) { ret = wil->pending_wmi_ev.next; list_del(ret); } spin_unlock_irqrestore(&wil->wmi_ev_lock, flags); return ret; } /* * Handler for the WMI events */ void wmi_event_worker(struct work_struct *work) { struct wil6210_priv *wil = container_of(work, struct wil6210_priv, wmi_event_worker); struct pending_wmi_event *evt; struct list_head *lh; wil_dbg_wmi(wil, "event_worker: Start\n"); while ((lh = next_wmi_ev(wil)) != NULL) { evt = list_entry(lh, struct pending_wmi_event, list); wmi_event_handle(wil, &evt->event.hdr); kfree(evt); } wil_dbg_wmi(wil, "event_worker: Finished\n"); } bool wil_is_wmi_idle(struct wil6210_priv *wil) { ulong flags; struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx; bool rc = false; spin_lock_irqsave(&wil->wmi_ev_lock, flags); /* Check if there are pending WMI events in the events queue */ if (!list_empty(&wil->pending_wmi_ev)) { wil_dbg_pm(wil, "Pending WMI events in queue\n"); goto out; } /* Check if there is a pending WMI call */ if (wil->reply_id) { wil_dbg_pm(wil, "Pending WMI call\n"); goto out; } /* Check if there are pending RX events in mbox */ r->head = wil_r(wil, RGF_MBOX + offsetof(struct wil6210_mbox_ctl, rx.head)); if (r->tail != r->head) wil_dbg_pm(wil, "Pending WMI mbox events\n"); else rc = true; out: spin_unlock_irqrestore(&wil->wmi_ev_lock, flags); return rc; } static void wmi_sched_scan_set_ssids(struct wil6210_priv *wil, struct wmi_start_sched_scan_cmd *cmd, struct cfg80211_ssid *ssids, int n_ssids, struct cfg80211_match_set *match_sets, int n_match_sets) { int i; if (n_match_sets > WMI_MAX_PNO_SSID_NUM) { wil_dbg_wmi(wil, "too many match sets (%d), use first %d\n", n_match_sets, WMI_MAX_PNO_SSID_NUM); n_match_sets = WMI_MAX_PNO_SSID_NUM; } cmd->num_of_ssids = n_match_sets; for (i = 0; i < n_match_sets; i++) { struct wmi_sched_scan_ssid_match *wmi_match = &cmd->ssid_for_match[i]; struct cfg80211_match_set *cfg_match = &match_sets[i]; int j; wmi_match->ssid_len = cfg_match->ssid.ssid_len; memcpy(wmi_match->ssid, cfg_match->ssid.ssid, min_t(u8, wmi_match->ssid_len, WMI_MAX_SSID_LEN)); wmi_match->rssi_threshold = S8_MIN; if (cfg_match->rssi_thold >= S8_MIN && cfg_match->rssi_thold <= S8_MAX) wmi_match->rssi_threshold = cfg_match->rssi_thold; for (j = 0; j < n_ssids; j++) if (wmi_match->ssid_len == ssids[j].ssid_len && memcmp(wmi_match->ssid, ssids[j].ssid, wmi_match->ssid_len) == 0) wmi_match->add_ssid_to_probe = true; } } static void wmi_sched_scan_set_channels(struct wil6210_priv *wil, struct wmi_start_sched_scan_cmd *cmd, u32 n_channels, struct ieee80211_channel **channels) { int i; if (n_channels > WMI_MAX_CHANNEL_NUM) { wil_dbg_wmi(wil, "too many channels (%d), use first %d\n", n_channels, WMI_MAX_CHANNEL_NUM); n_channels = WMI_MAX_CHANNEL_NUM; } cmd->num_of_channels = n_channels; for (i = 0; i < n_channels; i++) { struct ieee80211_channel *cfg_chan = channels[i]; cmd->channel_list[i] = cfg_chan->hw_value - 1; } } static void wmi_sched_scan_set_plans(struct wil6210_priv *wil, struct wmi_start_sched_scan_cmd *cmd, struct cfg80211_sched_scan_plan *scan_plans, int n_scan_plans) { int i; if (n_scan_plans > WMI_MAX_PLANS_NUM) { wil_dbg_wmi(wil, "too many plans (%d), use first %d\n", n_scan_plans, WMI_MAX_PLANS_NUM); n_scan_plans = WMI_MAX_PLANS_NUM; } for (i = 0; i < n_scan_plans; i++) { struct cfg80211_sched_scan_plan *cfg_plan = &scan_plans[i]; cmd->scan_plans[i].interval_sec = cpu_to_le16(cfg_plan->interval); cmd->scan_plans[i].num_of_iterations = cpu_to_le16(cfg_plan->iterations); } } int wmi_start_sched_scan(struct wil6210_priv *wil, struct cfg80211_sched_scan_request *request) { struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); int rc; struct wmi_start_sched_scan_cmd cmd = { .min_rssi_threshold = S8_MIN, .initial_delay_sec = cpu_to_le16(request->delay), }; struct { struct wmi_cmd_hdr wmi; struct wmi_start_sched_scan_event evt; } __packed reply = { .evt = {.result = WMI_PNO_REJECT}, }; if (!test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) return -ENOTSUPP; if (request->min_rssi_thold >= S8_MIN && request->min_rssi_thold <= S8_MAX) cmd.min_rssi_threshold = request->min_rssi_thold; wmi_sched_scan_set_ssids(wil, &cmd, request->ssids, request->n_ssids, request->match_sets, request->n_match_sets); wmi_sched_scan_set_channels(wil, &cmd, request->n_channels, request->channels); wmi_sched_scan_set_plans(wil, &cmd, request->scan_plans, request->n_scan_plans); rc = wmi_call(wil, WMI_START_SCHED_SCAN_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_START_SCHED_SCAN_EVENTID, &reply, sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS); if (rc) return rc; if (reply.evt.result != WMI_PNO_SUCCESS) { wil_err(wil, "start sched scan failed, result %d\n", reply.evt.result); return -EINVAL; } return 0; } int wmi_stop_sched_scan(struct wil6210_priv *wil) { struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); int rc; struct { struct wmi_cmd_hdr wmi; struct wmi_stop_sched_scan_event evt; } __packed reply = { .evt = {.result = WMI_PNO_REJECT}, }; if (!test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities)) return -ENOTSUPP; rc = wmi_call(wil, WMI_STOP_SCHED_SCAN_CMDID, vif->mid, NULL, 0, WMI_STOP_SCHED_SCAN_EVENTID, &reply, sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS); if (rc) return rc; if (reply.evt.result != WMI_PNO_SUCCESS) { wil_err(wil, "stop sched scan failed, result %d\n", reply.evt.result); return -EINVAL; } return 0; } int wmi_mgmt_tx(struct wil6210_vif *vif, const u8 *buf, size_t len) { size_t total; struct wil6210_priv *wil = vif_to_wil(vif); struct ieee80211_mgmt *mgmt_frame = (void *)buf; struct wmi_sw_tx_req_cmd *cmd; struct { struct wmi_cmd_hdr wmi; struct wmi_sw_tx_complete_event evt; } __packed evt = { .evt = {.status = WMI_FW_STATUS_FAILURE}, }; int rc; wil_dbg_misc(wil, "mgmt_tx mid %d\n", vif->mid); wil_hex_dump_misc("mgmt tx frame ", DUMP_PREFIX_OFFSET, 16, 1, buf, len, true); if (len < sizeof(struct ieee80211_hdr_3addr)) return -EINVAL; total = sizeof(*cmd) + len; if (total < len) { wil_err(wil, "mgmt_tx invalid len %zu\n", len); return -EINVAL; } cmd = kmalloc(total, GFP_KERNEL); if (!cmd) return -ENOMEM; memcpy(cmd->dst_mac, mgmt_frame->da, WMI_MAC_LEN); cmd->len = cpu_to_le16(len); memcpy(cmd->payload, buf, len); rc = wmi_call(wil, WMI_SW_TX_REQ_CMDID, vif->mid, cmd, total, WMI_SW_TX_COMPLETE_EVENTID, &evt, sizeof(evt), 2000); if (!rc && evt.evt.status != WMI_FW_STATUS_SUCCESS) { wil_dbg_wmi(wil, "mgmt_tx failed with status %d\n", evt.evt.status); rc = -EAGAIN; } kfree(cmd); return rc; } int wmi_mgmt_tx_ext(struct wil6210_vif *vif, const u8 *buf, size_t len, u8 channel, u16 duration_ms) { size_t total; struct wil6210_priv *wil = vif_to_wil(vif); struct ieee80211_mgmt *mgmt_frame = (void *)buf; struct wmi_sw_tx_req_ext_cmd *cmd; struct { struct wmi_cmd_hdr wmi; struct wmi_sw_tx_complete_event evt; } __packed evt = { .evt = {.status = WMI_FW_STATUS_FAILURE}, }; int rc; wil_dbg_wmi(wil, "mgmt_tx_ext mid %d channel %d duration %d\n", vif->mid, channel, duration_ms); wil_hex_dump_wmi("mgmt_tx_ext frame ", DUMP_PREFIX_OFFSET, 16, 1, buf, len, true); if (len < sizeof(struct ieee80211_hdr_3addr)) { wil_err(wil, "short frame. len %zu\n", len); return -EINVAL; } total = sizeof(*cmd) + len; if (total < len) { wil_err(wil, "mgmt_tx_ext invalid len %zu\n", len); return -EINVAL; } cmd = kzalloc(total, GFP_KERNEL); if (!cmd) return -ENOMEM; memcpy(cmd->dst_mac, mgmt_frame->da, WMI_MAC_LEN); cmd->len = cpu_to_le16(len); memcpy(cmd->payload, buf, len); cmd->channel = channel - 1; cmd->duration_ms = cpu_to_le16(duration_ms); rc = wmi_call(wil, WMI_SW_TX_REQ_EXT_CMDID, vif->mid, cmd, total, WMI_SW_TX_COMPLETE_EVENTID, &evt, sizeof(evt), 2000); if (!rc && evt.evt.status != WMI_FW_STATUS_SUCCESS) { wil_dbg_wmi(wil, "mgmt_tx_ext failed with status %d\n", evt.evt.status); rc = -EAGAIN; } kfree(cmd); return rc; } int wil_wmi_tx_sring_cfg(struct wil6210_priv *wil, int ring_id) { int rc; struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); struct wil_status_ring *sring = &wil->srings[ring_id]; struct wmi_tx_status_ring_add_cmd cmd = { .ring_cfg = { .ring_size = cpu_to_le16(sring->size), }, .irq_index = WIL_TX_STATUS_IRQ_IDX }; struct { struct wmi_cmd_hdr hdr; struct wmi_tx_status_ring_cfg_done_event evt; } __packed reply = { .evt = {.status = WMI_FW_STATUS_FAILURE}, }; cmd.ring_cfg.ring_id = ring_id; cmd.ring_cfg.ring_mem_base = cpu_to_le64(sring->pa); rc = wmi_call(wil, WMI_TX_STATUS_RING_ADD_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_TX_STATUS_RING_CFG_DONE_EVENTID, &reply, sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS); if (rc) { wil_err(wil, "TX_STATUS_RING_ADD_CMD failed, rc %d\n", rc); return rc; } if (reply.evt.status != WMI_FW_STATUS_SUCCESS) { wil_err(wil, "TX_STATUS_RING_ADD_CMD failed, status %d\n", reply.evt.status); return -EINVAL; } sring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr); return 0; } int wil_wmi_cfg_def_rx_offload(struct wil6210_priv *wil, u16 max_rx_pl_per_desc) { struct net_device *ndev = wil->main_ndev; struct wil6210_vif *vif = ndev_to_vif(ndev); int rc; struct wmi_cfg_def_rx_offload_cmd cmd = { .max_msdu_size = cpu_to_le16(wil_mtu2macbuf(WIL_MAX_ETH_MTU)), .max_rx_pl_per_desc = cpu_to_le16(max_rx_pl_per_desc), .decap_trans_type = WMI_DECAP_TYPE_802_3, .l2_802_3_offload_ctrl = 0, .l3_l4_ctrl = 1 << L3_L4_CTRL_TCPIP_CHECKSUM_EN_POS, }; struct { struct wmi_cmd_hdr hdr; struct wmi_cfg_def_rx_offload_done_event evt; } __packed reply = { .evt = {.status = WMI_FW_STATUS_FAILURE}, }; rc = wmi_call(wil, WMI_CFG_DEF_RX_OFFLOAD_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_CFG_DEF_RX_OFFLOAD_DONE_EVENTID, &reply, sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS); if (rc) { wil_err(wil, "WMI_CFG_DEF_RX_OFFLOAD_CMD failed, rc %d\n", rc); return rc; } if (reply.evt.status != WMI_FW_STATUS_SUCCESS) { wil_err(wil, "WMI_CFG_DEF_RX_OFFLOAD_CMD failed, status %d\n", reply.evt.status); return -EINVAL; } return 0; } int wil_wmi_rx_sring_add(struct wil6210_priv *wil, u16 ring_id) { struct net_device *ndev = wil->main_ndev; struct wil6210_vif *vif = ndev_to_vif(ndev); struct wil_status_ring *sring = &wil->srings[ring_id]; int rc; struct wmi_rx_status_ring_add_cmd cmd = { .ring_cfg = { .ring_size = cpu_to_le16(sring->size), .ring_id = ring_id, }, .rx_msg_type = wil->use_compressed_rx_status ? WMI_RX_MSG_TYPE_COMPRESSED : WMI_RX_MSG_TYPE_EXTENDED, .irq_index = WIL_RX_STATUS_IRQ_IDX, }; struct { struct wmi_cmd_hdr hdr; struct wmi_rx_status_ring_cfg_done_event evt; } __packed reply = { .evt = {.status = WMI_FW_STATUS_FAILURE}, }; cmd.ring_cfg.ring_mem_base = cpu_to_le64(sring->pa); rc = wmi_call(wil, WMI_RX_STATUS_RING_ADD_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_RX_STATUS_RING_CFG_DONE_EVENTID, &reply, sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS); if (rc) { wil_err(wil, "RX_STATUS_RING_ADD_CMD failed, rc %d\n", rc); return rc; } if (reply.evt.status != WMI_FW_STATUS_SUCCESS) { wil_err(wil, "RX_STATUS_RING_ADD_CMD failed, status %d\n", reply.evt.status); return -EINVAL; } sring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr); return 0; } int wil_wmi_rx_desc_ring_add(struct wil6210_priv *wil, int status_ring_id) { struct net_device *ndev = wil->main_ndev; struct wil6210_vif *vif = ndev_to_vif(ndev); struct wil_ring *ring = &wil->ring_rx; int rc; struct wmi_rx_desc_ring_add_cmd cmd = { .ring_cfg = { .ring_size = cpu_to_le16(ring->size), .ring_id = WIL_RX_DESC_RING_ID, }, .status_ring_id = status_ring_id, .irq_index = WIL_RX_STATUS_IRQ_IDX, }; struct { struct wmi_cmd_hdr hdr; struct wmi_rx_desc_ring_cfg_done_event evt; } __packed reply = { .evt = {.status = WMI_FW_STATUS_FAILURE}, }; cmd.ring_cfg.ring_mem_base = cpu_to_le64(ring->pa); cmd.sw_tail_host_addr = cpu_to_le64(ring->edma_rx_swtail.pa); rc = wmi_call(wil, WMI_RX_DESC_RING_ADD_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_RX_DESC_RING_CFG_DONE_EVENTID, &reply, sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS); if (rc) { wil_err(wil, "WMI_RX_DESC_RING_ADD_CMD failed, rc %d\n", rc); return rc; } if (reply.evt.status != WMI_FW_STATUS_SUCCESS) { wil_err(wil, "WMI_RX_DESC_RING_ADD_CMD failed, status %d\n", reply.evt.status); return -EINVAL; } ring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr); return 0; } int wil_wmi_tx_desc_ring_add(struct wil6210_vif *vif, int ring_id, int cid, int tid) { struct wil6210_priv *wil = vif_to_wil(vif); int sring_id = wil->tx_sring_idx; /* there is only one TX sring */ int rc; struct wil_ring *ring = &wil->ring_tx[ring_id]; struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id]; struct wmi_tx_desc_ring_add_cmd cmd = { .ring_cfg = { .ring_size = cpu_to_le16(ring->size), .ring_id = ring_id, }, .status_ring_id = sring_id, .cid = cid, .tid = tid, .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, .max_msdu_size = cpu_to_le16(wil_mtu2macbuf(mtu_max)), .schd_params = { .priority = cpu_to_le16(0), .timeslot_us = cpu_to_le16(0xfff), } }; struct { struct wmi_cmd_hdr hdr; struct wmi_tx_desc_ring_cfg_done_event evt; } __packed reply = { .evt = {.status = WMI_FW_STATUS_FAILURE}, }; cmd.ring_cfg.ring_mem_base = cpu_to_le64(ring->pa); rc = wmi_call(wil, WMI_TX_DESC_RING_ADD_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_TX_DESC_RING_CFG_DONE_EVENTID, &reply, sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS); if (rc) { wil_err(wil, "WMI_TX_DESC_RING_ADD_CMD failed, rc %d\n", rc); return rc; } if (reply.evt.status != WMI_FW_STATUS_SUCCESS) { wil_err(wil, "WMI_TX_DESC_RING_ADD_CMD failed, status %d\n", reply.evt.status); return -EINVAL; } spin_lock_bh(&txdata->lock); ring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr); txdata->mid = vif->mid; txdata->enabled = 1; spin_unlock_bh(&txdata->lock); return 0; } int wil_wmi_bcast_desc_ring_add(struct wil6210_vif *vif, int ring_id) { struct wil6210_priv *wil = vif_to_wil(vif); struct wil_ring *ring = &wil->ring_tx[ring_id]; int rc; struct wmi_bcast_desc_ring_add_cmd cmd = { .ring_cfg = { .ring_size = cpu_to_le16(ring->size), .ring_id = ring_id, }, .status_ring_id = wil->tx_sring_idx, .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, }; struct { struct wmi_cmd_hdr hdr; struct wmi_rx_desc_ring_cfg_done_event evt; } __packed reply = { .evt = {.status = WMI_FW_STATUS_FAILURE}, }; struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id]; cmd.ring_cfg.ring_mem_base = cpu_to_le64(ring->pa); rc = wmi_call(wil, WMI_BCAST_DESC_RING_ADD_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_TX_DESC_RING_CFG_DONE_EVENTID, &reply, sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS); if (rc) { wil_err(wil, "WMI_BCAST_DESC_RING_ADD_CMD failed, rc %d\n", rc); return rc; } if (reply.evt.status != WMI_FW_STATUS_SUCCESS) { wil_err(wil, "Broadcast Tx config failed, status %d\n", reply.evt.status); return -EINVAL; } spin_lock_bh(&txdata->lock); ring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr); txdata->mid = vif->mid; txdata->enabled = 1; spin_unlock_bh(&txdata->lock); return 0; } int wmi_link_stats_cfg(struct wil6210_vif *vif, u32 type, u8 cid, u32 interval) { struct wil6210_priv *wil = vif_to_wil(vif); struct wmi_link_stats_cmd cmd = { .record_type_mask = cpu_to_le32(type), .cid = cid, .action = WMI_LINK_STATS_SNAPSHOT, .interval_msec = cpu_to_le32(interval), }; struct { struct wmi_cmd_hdr wmi; struct wmi_link_stats_config_done_event evt; } __packed reply = { .evt = {.status = WMI_FW_STATUS_FAILURE}, }; int rc; rc = wmi_call(wil, WMI_LINK_STATS_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_LINK_STATS_CONFIG_DONE_EVENTID, &reply, sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS); if (rc) { wil_err(wil, "WMI_LINK_STATS_CMDID failed, rc %d\n", rc); return rc; } if (reply.evt.status != WMI_FW_STATUS_SUCCESS) { wil_err(wil, "Link statistics config failed, status %d\n", reply.evt.status); return -EINVAL; } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1