Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jouni Malinen | 4760 | 90.72% | 4 | 9.76% |
Stephen Hemminger | 216 | 4.12% | 2 | 4.88% |
David S. Miller | 46 | 0.88% | 2 | 4.88% |
Dan J Williams | 45 | 0.86% | 1 | 2.44% |
Daniel Drake | 25 | 0.48% | 1 | 2.44% |
David Howells | 19 | 0.36% | 1 | 2.44% |
John W. Linville | 19 | 0.36% | 1 | 2.44% |
Joe Perches | 14 | 0.27% | 2 | 4.88% |
Jarod Wilson | 12 | 0.23% | 1 | 2.44% |
Al Viro | 10 | 0.19% | 1 | 2.44% |
Eric W. Biedermann | 9 | 0.17% | 1 | 2.44% |
Dave Hansen | 9 | 0.17% | 1 | 2.44% |
Martin Decky | 8 | 0.15% | 1 | 2.44% |
Neil Horman | 7 | 0.13% | 1 | 2.44% |
Arnaldo Carvalho de Melo | 7 | 0.13% | 2 | 4.88% |
Johannes Berg | 6 | 0.11% | 3 | 7.32% |
Phil Sutter | 6 | 0.11% | 1 | 2.44% |
Alexey Khoroshilov | 4 | 0.08% | 1 | 2.44% |
Jiri Pirko | 3 | 0.06% | 1 | 2.44% |
Ding Tianhong | 3 | 0.06% | 1 | 2.44% |
Wilfried Klaebe | 3 | 0.06% | 1 | 2.44% |
Adrian Bunk | 3 | 0.06% | 1 | 2.44% |
Petr Machata | 2 | 0.04% | 1 | 2.44% |
Thomas Gleixner | 2 | 0.04% | 1 | 2.44% |
Greg Kroah-Hartman | 2 | 0.04% | 1 | 2.44% |
Pavel Roskin | 1 | 0.02% | 1 | 2.44% |
Linus Torvalds | 1 | 0.02% | 1 | 2.44% |
Stefano Brivio | 1 | 0.02% | 1 | 2.44% |
Matt Renzelmann | 1 | 0.02% | 1 | 2.44% |
Wei Yongjun | 1 | 0.02% | 1 | 2.44% |
Björn Mork | 1 | 0.02% | 1 | 2.44% |
Dan Carpenter | 1 | 0.02% | 1 | 2.44% |
Total | 5247 | 41 |
// SPDX-License-Identifier: GPL-2.0-only /* * Host AP (software wireless LAN access point) driver for * Intersil Prism2/2.5/3 - hostap.o module, common routines * * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen * <j@w1.fi> * Copyright (c) 2002-2005, Jouni Malinen <j@w1.fi> */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/proc_fs.h> #include <linux/if_arp.h> #include <linux/delay.h> #include <linux/random.h> #include <linux/workqueue.h> #include <linux/kmod.h> #include <linux/rtnetlink.h> #include <linux/wireless.h> #include <linux/etherdevice.h> #include <net/net_namespace.h> #include <net/iw_handler.h> #include <net/lib80211.h> #include <linux/uaccess.h> #include "hostap_wlan.h" #include "hostap_80211.h" #include "hostap_ap.h" #include "hostap.h" MODULE_AUTHOR("Jouni Malinen"); MODULE_DESCRIPTION("Host AP common routines"); MODULE_LICENSE("GPL"); #define TX_TIMEOUT (2 * HZ) #define PRISM2_MAX_FRAME_SIZE 2304 #define PRISM2_MIN_MTU 256 /* FIX: */ #define PRISM2_MAX_MTU (PRISM2_MAX_FRAME_SIZE - (6 /* LLC */ + 8 /* WEP */)) struct net_device * hostap_add_interface(struct local_info *local, int type, int rtnl_locked, const char *prefix, const char *name) { struct net_device *dev, *mdev; struct hostap_interface *iface; int ret; dev = alloc_etherdev(sizeof(struct hostap_interface)); if (dev == NULL) return NULL; iface = netdev_priv(dev); iface->dev = dev; iface->local = local; iface->type = type; list_add(&iface->list, &local->hostap_interfaces); mdev = local->dev; eth_hw_addr_inherit(dev, mdev); dev->base_addr = mdev->base_addr; dev->irq = mdev->irq; dev->mem_start = mdev->mem_start; dev->mem_end = mdev->mem_end; hostap_setup_dev(dev, local, type); dev->needs_free_netdev = true; sprintf(dev->name, "%s%s", prefix, name); if (!rtnl_locked) rtnl_lock(); SET_NETDEV_DEV(dev, mdev->dev.parent); ret = register_netdevice(dev); if (!rtnl_locked) rtnl_unlock(); if (ret < 0) { printk(KERN_WARNING "%s: failed to add new netdevice!\n", dev->name); free_netdev(dev); return NULL; } printk(KERN_DEBUG "%s: registered netdevice %s\n", mdev->name, dev->name); return dev; } void hostap_remove_interface(struct net_device *dev, int rtnl_locked, int remove_from_list) { struct hostap_interface *iface; if (!dev) return; iface = netdev_priv(dev); if (remove_from_list) { list_del(&iface->list); } if (dev == iface->local->ddev) iface->local->ddev = NULL; else if (dev == iface->local->apdev) iface->local->apdev = NULL; else if (dev == iface->local->stadev) iface->local->stadev = NULL; if (rtnl_locked) unregister_netdevice(dev); else unregister_netdev(dev); /* 'dev->needs_free_netdev = true' implies device data, including * private data, will be freed when the device is removed */ } static inline int prism2_wds_special_addr(u8 *addr) { if (addr[0] || addr[1] || addr[2] || addr[3] || addr[4] || addr[5]) return 0; return 1; } int prism2_wds_add(local_info_t *local, u8 *remote_addr, int rtnl_locked) { struct net_device *dev; struct list_head *ptr; struct hostap_interface *iface, *empty, *match; empty = match = NULL; read_lock_bh(&local->iface_lock); list_for_each(ptr, &local->hostap_interfaces) { iface = list_entry(ptr, struct hostap_interface, list); if (iface->type != HOSTAP_INTERFACE_WDS) continue; if (prism2_wds_special_addr(iface->u.wds.remote_addr)) empty = iface; else if (ether_addr_equal(iface->u.wds.remote_addr, remote_addr)) { match = iface; break; } } if (!match && empty && !prism2_wds_special_addr(remote_addr)) { /* take pre-allocated entry into use */ memcpy(empty->u.wds.remote_addr, remote_addr, ETH_ALEN); read_unlock_bh(&local->iface_lock); printk(KERN_DEBUG "%s: using pre-allocated WDS netdevice %s\n", local->dev->name, empty->dev->name); return 0; } read_unlock_bh(&local->iface_lock); if (!prism2_wds_special_addr(remote_addr)) { if (match) return -EEXIST; hostap_add_sta(local->ap, remote_addr); } if (local->wds_connections >= local->wds_max_connections) return -ENOBUFS; /* verify that there is room for wds# postfix in the interface name */ if (strlen(local->dev->name) >= IFNAMSIZ - 5) { printk(KERN_DEBUG "'%s' too long base device name\n", local->dev->name); return -EINVAL; } dev = hostap_add_interface(local, HOSTAP_INTERFACE_WDS, rtnl_locked, local->ddev->name, "wds%d"); if (dev == NULL) return -ENOMEM; iface = netdev_priv(dev); memcpy(iface->u.wds.remote_addr, remote_addr, ETH_ALEN); local->wds_connections++; return 0; } int prism2_wds_del(local_info_t *local, u8 *remote_addr, int rtnl_locked, int do_not_remove) { unsigned long flags; struct list_head *ptr; struct hostap_interface *iface, *selected = NULL; write_lock_irqsave(&local->iface_lock, flags); list_for_each(ptr, &local->hostap_interfaces) { iface = list_entry(ptr, struct hostap_interface, list); if (iface->type != HOSTAP_INTERFACE_WDS) continue; if (ether_addr_equal(iface->u.wds.remote_addr, remote_addr)) { selected = iface; break; } } if (selected && !do_not_remove) list_del(&selected->list); write_unlock_irqrestore(&local->iface_lock, flags); if (selected) { if (do_not_remove) eth_zero_addr(selected->u.wds.remote_addr); else { hostap_remove_interface(selected->dev, rtnl_locked, 0); local->wds_connections--; } } return selected ? 0 : -ENODEV; } u16 hostap_tx_callback_register(local_info_t *local, void (*func)(struct sk_buff *, int ok, void *), void *data) { unsigned long flags; struct hostap_tx_callback_info *entry; entry = kmalloc(sizeof(*entry), GFP_KERNEL); if (entry == NULL) return 0; entry->func = func; entry->data = data; spin_lock_irqsave(&local->lock, flags); entry->idx = local->tx_callback ? local->tx_callback->idx + 1 : 1; entry->next = local->tx_callback; local->tx_callback = entry; spin_unlock_irqrestore(&local->lock, flags); return entry->idx; } int hostap_tx_callback_unregister(local_info_t *local, u16 idx) { unsigned long flags; struct hostap_tx_callback_info *cb, *prev = NULL; spin_lock_irqsave(&local->lock, flags); cb = local->tx_callback; while (cb != NULL && cb->idx != idx) { prev = cb; cb = cb->next; } if (cb) { if (prev == NULL) local->tx_callback = cb->next; else prev->next = cb->next; kfree(cb); } spin_unlock_irqrestore(&local->lock, flags); return cb ? 0 : -1; } /* val is in host byte order */ int hostap_set_word(struct net_device *dev, int rid, u16 val) { struct hostap_interface *iface; __le16 tmp = cpu_to_le16(val); iface = netdev_priv(dev); return iface->local->func->set_rid(dev, rid, &tmp, 2); } int hostap_set_string(struct net_device *dev, int rid, const char *val) { struct hostap_interface *iface; char buf[MAX_SSID_LEN + 2]; int len; iface = netdev_priv(dev); len = strlen(val); if (len > MAX_SSID_LEN) return -1; memset(buf, 0, sizeof(buf)); buf[0] = len; /* little endian 16 bit word */ memcpy(buf + 2, val, len); return iface->local->func->set_rid(dev, rid, &buf, MAX_SSID_LEN + 2); } u16 hostap_get_porttype(local_info_t *local) { if (local->iw_mode == IW_MODE_ADHOC && local->pseudo_adhoc) return HFA384X_PORTTYPE_PSEUDO_IBSS; if (local->iw_mode == IW_MODE_ADHOC) return HFA384X_PORTTYPE_IBSS; if (local->iw_mode == IW_MODE_INFRA) return HFA384X_PORTTYPE_BSS; if (local->iw_mode == IW_MODE_REPEAT) return HFA384X_PORTTYPE_WDS; if (local->iw_mode == IW_MODE_MONITOR) return HFA384X_PORTTYPE_PSEUDO_IBSS; return HFA384X_PORTTYPE_HOSTAP; } int hostap_set_encryption(local_info_t *local) { u16 val, old_val; int i, keylen, len, idx; char keybuf[WEP_KEY_LEN + 1]; enum { NONE, WEP, OTHER } encrypt_type; idx = local->crypt_info.tx_keyidx; if (local->crypt_info.crypt[idx] == NULL || local->crypt_info.crypt[idx]->ops == NULL) encrypt_type = NONE; else if (strcmp(local->crypt_info.crypt[idx]->ops->name, "WEP") == 0) encrypt_type = WEP; else encrypt_type = OTHER; if (local->func->get_rid(local->dev, HFA384X_RID_CNFWEPFLAGS, &val, 2, 1) < 0) { printk(KERN_DEBUG "Could not read current WEP flags.\n"); goto fail; } le16_to_cpus(&val); old_val = val; if (encrypt_type != NONE || local->privacy_invoked) val |= HFA384X_WEPFLAGS_PRIVACYINVOKED; else val &= ~HFA384X_WEPFLAGS_PRIVACYINVOKED; if (local->open_wep || encrypt_type == NONE || ((local->ieee_802_1x || local->wpa) && local->host_decrypt)) val &= ~HFA384X_WEPFLAGS_EXCLUDEUNENCRYPTED; else val |= HFA384X_WEPFLAGS_EXCLUDEUNENCRYPTED; if ((encrypt_type != NONE || local->privacy_invoked) && (encrypt_type == OTHER || local->host_encrypt)) val |= HFA384X_WEPFLAGS_HOSTENCRYPT; else val &= ~HFA384X_WEPFLAGS_HOSTENCRYPT; if ((encrypt_type != NONE || local->privacy_invoked) && (encrypt_type == OTHER || local->host_decrypt)) val |= HFA384X_WEPFLAGS_HOSTDECRYPT; else val &= ~HFA384X_WEPFLAGS_HOSTDECRYPT; if (val != old_val && hostap_set_word(local->dev, HFA384X_RID_CNFWEPFLAGS, val)) { printk(KERN_DEBUG "Could not write new WEP flags (0x%x)\n", val); goto fail; } if (encrypt_type != WEP) return 0; /* 104-bit support seems to require that all the keys are set to the * same keylen */ keylen = 6; /* first 5 octets */ len = local->crypt_info.crypt[idx]->ops->get_key(keybuf, sizeof(keybuf), NULL, local->crypt_info.crypt[idx]->priv); if (idx >= 0 && idx < WEP_KEYS && len > 5) keylen = WEP_KEY_LEN + 1; /* first 13 octets */ for (i = 0; i < WEP_KEYS; i++) { memset(keybuf, 0, sizeof(keybuf)); if (local->crypt_info.crypt[i]) { (void) local->crypt_info.crypt[i]->ops->get_key( keybuf, sizeof(keybuf), NULL, local->crypt_info.crypt[i]->priv); } if (local->func->set_rid(local->dev, HFA384X_RID_CNFDEFAULTKEY0 + i, keybuf, keylen)) { printk(KERN_DEBUG "Could not set key %d (len=%d)\n", i, keylen); goto fail; } } if (hostap_set_word(local->dev, HFA384X_RID_CNFWEPDEFAULTKEYID, idx)) { printk(KERN_DEBUG "Could not set default keyid %d\n", idx); goto fail; } return 0; fail: printk(KERN_DEBUG "%s: encryption setup failed\n", local->dev->name); return -1; } int hostap_set_antsel(local_info_t *local) { u16 val; int ret = 0; if (local->antsel_tx != HOSTAP_ANTSEL_DO_NOT_TOUCH && local->func->cmd(local->dev, HFA384X_CMDCODE_READMIF, HFA386X_CR_TX_CONFIGURE, NULL, &val) == 0) { val &= ~(BIT(2) | BIT(1)); switch (local->antsel_tx) { case HOSTAP_ANTSEL_DIVERSITY: val |= BIT(1); break; case HOSTAP_ANTSEL_LOW: break; case HOSTAP_ANTSEL_HIGH: val |= BIT(2); break; } if (local->func->cmd(local->dev, HFA384X_CMDCODE_WRITEMIF, HFA386X_CR_TX_CONFIGURE, &val, NULL)) { printk(KERN_INFO "%s: setting TX AntSel failed\n", local->dev->name); ret = -1; } } if (local->antsel_rx != HOSTAP_ANTSEL_DO_NOT_TOUCH && local->func->cmd(local->dev, HFA384X_CMDCODE_READMIF, HFA386X_CR_RX_CONFIGURE, NULL, &val) == 0) { val &= ~(BIT(1) | BIT(0)); switch (local->antsel_rx) { case HOSTAP_ANTSEL_DIVERSITY: break; case HOSTAP_ANTSEL_LOW: val |= BIT(0); break; case HOSTAP_ANTSEL_HIGH: val |= BIT(0) | BIT(1); break; } if (local->func->cmd(local->dev, HFA384X_CMDCODE_WRITEMIF, HFA386X_CR_RX_CONFIGURE, &val, NULL)) { printk(KERN_INFO "%s: setting RX AntSel failed\n", local->dev->name); ret = -1; } } return ret; } int hostap_set_roaming(local_info_t *local) { u16 val; switch (local->host_roaming) { case 1: val = HFA384X_ROAMING_HOST; break; case 2: val = HFA384X_ROAMING_DISABLED; break; case 0: default: val = HFA384X_ROAMING_FIRMWARE; break; } return hostap_set_word(local->dev, HFA384X_RID_CNFROAMINGMODE, val); } int hostap_set_auth_algs(local_info_t *local) { int val = local->auth_algs; /* At least STA f/w v0.6.2 seems to have issues with cnfAuthentication * set to include both Open and Shared Key flags. It tries to use * Shared Key authentication in that case even if WEP keys are not * configured.. STA f/w v0.7.6 is able to handle such configuration, * but it is unknown when this was fixed between 0.6.2 .. 0.7.6. */ if (local->sta_fw_ver < PRISM2_FW_VER(0,7,0) && val != PRISM2_AUTH_OPEN && val != PRISM2_AUTH_SHARED_KEY) val = PRISM2_AUTH_OPEN; if (hostap_set_word(local->dev, HFA384X_RID_CNFAUTHENTICATION, val)) { printk(KERN_INFO "%s: cnfAuthentication setting to 0x%x " "failed\n", local->dev->name, local->auth_algs); return -EINVAL; } return 0; } void hostap_dump_rx_header(const char *name, const struct hfa384x_rx_frame *rx) { u16 status, fc; status = __le16_to_cpu(rx->status); printk(KERN_DEBUG "%s: RX status=0x%04x (port=%d, type=%d, " "fcserr=%d) silence=%d signal=%d rate=%d rxflow=%d; " "jiffies=%ld\n", name, status, (status >> 8) & 0x07, status >> 13, status & 1, rx->silence, rx->signal, rx->rate, rx->rxflow, jiffies); fc = __le16_to_cpu(rx->frame_control); printk(KERN_DEBUG " FC=0x%04x (type=%d:%d) dur=0x%04x seq=0x%04x " "data_len=%d%s%s\n", fc, (fc & IEEE80211_FCTL_FTYPE) >> 2, (fc & IEEE80211_FCTL_STYPE) >> 4, __le16_to_cpu(rx->duration_id), __le16_to_cpu(rx->seq_ctrl), __le16_to_cpu(rx->data_len), fc & IEEE80211_FCTL_TODS ? " [ToDS]" : "", fc & IEEE80211_FCTL_FROMDS ? " [FromDS]" : ""); printk(KERN_DEBUG " A1=%pM A2=%pM A3=%pM A4=%pM\n", rx->addr1, rx->addr2, rx->addr3, rx->addr4); printk(KERN_DEBUG " dst=%pM src=%pM len=%d\n", rx->dst_addr, rx->src_addr, __be16_to_cpu(rx->len)); } void hostap_dump_tx_header(const char *name, const struct hfa384x_tx_frame *tx) { u16 fc; printk(KERN_DEBUG "%s: TX status=0x%04x retry_count=%d tx_rate=%d " "tx_control=0x%04x; jiffies=%ld\n", name, __le16_to_cpu(tx->status), tx->retry_count, tx->tx_rate, __le16_to_cpu(tx->tx_control), jiffies); fc = __le16_to_cpu(tx->frame_control); printk(KERN_DEBUG " FC=0x%04x (type=%d:%d) dur=0x%04x seq=0x%04x " "data_len=%d%s%s\n", fc, (fc & IEEE80211_FCTL_FTYPE) >> 2, (fc & IEEE80211_FCTL_STYPE) >> 4, __le16_to_cpu(tx->duration_id), __le16_to_cpu(tx->seq_ctrl), __le16_to_cpu(tx->data_len), fc & IEEE80211_FCTL_TODS ? " [ToDS]" : "", fc & IEEE80211_FCTL_FROMDS ? " [FromDS]" : ""); printk(KERN_DEBUG " A1=%pM A2=%pM A3=%pM A4=%pM\n", tx->addr1, tx->addr2, tx->addr3, tx->addr4); printk(KERN_DEBUG " dst=%pM src=%pM len=%d\n", tx->dst_addr, tx->src_addr, __be16_to_cpu(tx->len)); } static int hostap_80211_header_parse(const struct sk_buff *skb, unsigned char *haddr) { memcpy(haddr, skb_mac_header(skb) + 10, ETH_ALEN); /* addr2 */ return ETH_ALEN; } int hostap_80211_get_hdrlen(__le16 fc) { if (ieee80211_is_data(fc) && ieee80211_has_a4 (fc)) return 30; /* Addr4 */ else if (ieee80211_is_cts(fc) || ieee80211_is_ack(fc)) return 10; else if (ieee80211_is_ctl(fc)) return 16; return 24; } static int prism2_close(struct net_device *dev) { struct hostap_interface *iface; local_info_t *local; PDEBUG(DEBUG_FLOW, "%s: prism2_close\n", dev->name); iface = netdev_priv(dev); local = iface->local; if (dev == local->ddev) { prism2_sta_deauth(local, WLAN_REASON_DEAUTH_LEAVING); } #ifndef PRISM2_NO_KERNEL_IEEE80211_MGMT if (!local->hostapd && dev == local->dev && (!local->func->card_present || local->func->card_present(local)) && local->hw_ready && local->ap && local->iw_mode == IW_MODE_MASTER) hostap_deauth_all_stas(dev, local->ap, 1); #endif /* PRISM2_NO_KERNEL_IEEE80211_MGMT */ if (dev == local->dev) { local->func->hw_shutdown(dev, HOSTAP_HW_ENABLE_CMDCOMPL); } if (netif_running(dev)) { netif_stop_queue(dev); netif_device_detach(dev); } cancel_work_sync(&local->reset_queue); cancel_work_sync(&local->set_multicast_list_queue); cancel_work_sync(&local->set_tim_queue); #ifndef PRISM2_NO_STATION_MODES cancel_work_sync(&local->info_queue); #endif cancel_work_sync(&local->comms_qual_update); module_put(local->hw_module); local->num_dev_open--; if (dev != local->dev && local->dev->flags & IFF_UP && local->master_dev_auto_open && local->num_dev_open == 1) { /* Close master radio interface automatically if it was also * opened automatically and we are now closing the last * remaining non-master device. */ dev_close(local->dev); } return 0; } static int prism2_open(struct net_device *dev) { struct hostap_interface *iface; local_info_t *local; PDEBUG(DEBUG_FLOW, "%s: prism2_open\n", dev->name); iface = netdev_priv(dev); local = iface->local; if (local->no_pri) { printk(KERN_DEBUG "%s: could not set interface UP - no PRI " "f/w\n", dev->name); return -ENODEV; } if ((local->func->card_present && !local->func->card_present(local)) || local->hw_downloading) return -ENODEV; if (!try_module_get(local->hw_module)) return -ENODEV; local->num_dev_open++; if (!local->dev_enabled && local->func->hw_enable(dev, 1)) { printk(KERN_WARNING "%s: could not enable MAC port\n", dev->name); prism2_close(dev); return -ENODEV; } if (!local->dev_enabled) prism2_callback(local, PRISM2_CALLBACK_ENABLE); local->dev_enabled = 1; if (dev != local->dev && !(local->dev->flags & IFF_UP)) { /* Master radio interface is needed for all operation, so open * it automatically when any virtual net_device is opened. */ local->master_dev_auto_open = 1; dev_open(local->dev, NULL); } netif_device_attach(dev); netif_start_queue(dev); return 0; } static int prism2_set_mac_address(struct net_device *dev, void *p) { struct hostap_interface *iface; local_info_t *local; struct list_head *ptr; struct sockaddr *addr = p; iface = netdev_priv(dev); local = iface->local; if (local->func->set_rid(dev, HFA384X_RID_CNFOWNMACADDR, addr->sa_data, ETH_ALEN) < 0 || local->func->reset_port(dev)) return -EINVAL; read_lock_bh(&local->iface_lock); list_for_each(ptr, &local->hostap_interfaces) { iface = list_entry(ptr, struct hostap_interface, list); memcpy(iface->dev->dev_addr, addr->sa_data, ETH_ALEN); } memcpy(local->dev->dev_addr, addr->sa_data, ETH_ALEN); read_unlock_bh(&local->iface_lock); return 0; } /* TODO: to be further implemented as soon as Prism2 fully supports * GroupAddresses and correct documentation is available */ void hostap_set_multicast_list_queue(struct work_struct *work) { local_info_t *local = container_of(work, local_info_t, set_multicast_list_queue); struct net_device *dev = local->dev; if (hostap_set_word(dev, HFA384X_RID_PROMISCUOUSMODE, local->is_promisc)) { printk(KERN_INFO "%s: %sabling promiscuous mode failed\n", dev->name, local->is_promisc ? "en" : "dis"); } } static void hostap_set_multicast_list(struct net_device *dev) { #if 0 /* FIX: promiscuous mode seems to be causing a lot of problems with * some station firmware versions (FCSErr frames, invalid MACPort, etc. * corrupted incoming frames). This code is now commented out while the * problems are investigated. */ struct hostap_interface *iface; local_info_t *local; iface = netdev_priv(dev); local = iface->local; if ((dev->flags & IFF_ALLMULTI) || (dev->flags & IFF_PROMISC)) { local->is_promisc = 1; } else { local->is_promisc = 0; } schedule_work(&local->set_multicast_list_queue); #endif } static void prism2_tx_timeout(struct net_device *dev) { struct hostap_interface *iface; local_info_t *local; struct hfa384x_regs regs; iface = netdev_priv(dev); local = iface->local; printk(KERN_WARNING "%s Tx timed out! Resetting card\n", dev->name); netif_stop_queue(local->dev); local->func->read_regs(dev, ®s); printk(KERN_DEBUG "%s: CMD=%04x EVSTAT=%04x " "OFFSET0=%04x OFFSET1=%04x SWSUPPORT0=%04x\n", dev->name, regs.cmd, regs.evstat, regs.offset0, regs.offset1, regs.swsupport0); local->func->schedule_reset(local); } const struct header_ops hostap_80211_ops = { .create = eth_header, .cache = eth_header_cache, .cache_update = eth_header_cache_update, .parse = hostap_80211_header_parse, }; EXPORT_SYMBOL(hostap_80211_ops); static const struct net_device_ops hostap_netdev_ops = { .ndo_start_xmit = hostap_data_start_xmit, .ndo_open = prism2_open, .ndo_stop = prism2_close, .ndo_do_ioctl = hostap_ioctl, .ndo_set_mac_address = prism2_set_mac_address, .ndo_set_rx_mode = hostap_set_multicast_list, .ndo_tx_timeout = prism2_tx_timeout, .ndo_validate_addr = eth_validate_addr, }; static const struct net_device_ops hostap_mgmt_netdev_ops = { .ndo_start_xmit = hostap_mgmt_start_xmit, .ndo_open = prism2_open, .ndo_stop = prism2_close, .ndo_do_ioctl = hostap_ioctl, .ndo_set_mac_address = prism2_set_mac_address, .ndo_set_rx_mode = hostap_set_multicast_list, .ndo_tx_timeout = prism2_tx_timeout, .ndo_validate_addr = eth_validate_addr, }; static const struct net_device_ops hostap_master_ops = { .ndo_start_xmit = hostap_master_start_xmit, .ndo_open = prism2_open, .ndo_stop = prism2_close, .ndo_do_ioctl = hostap_ioctl, .ndo_set_mac_address = prism2_set_mac_address, .ndo_set_rx_mode = hostap_set_multicast_list, .ndo_tx_timeout = prism2_tx_timeout, .ndo_validate_addr = eth_validate_addr, }; void hostap_setup_dev(struct net_device *dev, local_info_t *local, int type) { struct hostap_interface *iface; iface = netdev_priv(dev); ether_setup(dev); dev->min_mtu = PRISM2_MIN_MTU; dev->max_mtu = PRISM2_MAX_MTU; dev->priv_flags &= ~IFF_TX_SKB_SHARING; /* kernel callbacks */ if (iface) { /* Currently, we point to the proper spy_data only on * the main_dev. This could be fixed. Jean II */ iface->wireless_data.spy_data = &iface->spy_data; dev->wireless_data = &iface->wireless_data; } dev->wireless_handlers = &hostap_iw_handler_def; dev->watchdog_timeo = TX_TIMEOUT; switch(type) { case HOSTAP_INTERFACE_AP: dev->priv_flags |= IFF_NO_QUEUE; /* use main radio device queue */ dev->netdev_ops = &hostap_mgmt_netdev_ops; dev->type = ARPHRD_IEEE80211; dev->header_ops = &hostap_80211_ops; break; case HOSTAP_INTERFACE_MASTER: dev->netdev_ops = &hostap_master_ops; break; default: dev->priv_flags |= IFF_NO_QUEUE; /* use main radio device queue */ dev->netdev_ops = &hostap_netdev_ops; } dev->mtu = local->mtu; dev->ethtool_ops = &prism2_ethtool_ops; } static int hostap_enable_hostapd(local_info_t *local, int rtnl_locked) { struct net_device *dev = local->dev; if (local->apdev) return -EEXIST; printk(KERN_DEBUG "%s: enabling hostapd mode\n", dev->name); local->apdev = hostap_add_interface(local, HOSTAP_INTERFACE_AP, rtnl_locked, local->ddev->name, "ap"); if (local->apdev == NULL) return -ENOMEM; return 0; } static int hostap_disable_hostapd(local_info_t *local, int rtnl_locked) { struct net_device *dev = local->dev; printk(KERN_DEBUG "%s: disabling hostapd mode\n", dev->name); hostap_remove_interface(local->apdev, rtnl_locked, 1); local->apdev = NULL; return 0; } static int hostap_enable_hostapd_sta(local_info_t *local, int rtnl_locked) { struct net_device *dev = local->dev; if (local->stadev) return -EEXIST; printk(KERN_DEBUG "%s: enabling hostapd STA mode\n", dev->name); local->stadev = hostap_add_interface(local, HOSTAP_INTERFACE_STA, rtnl_locked, local->ddev->name, "sta"); if (local->stadev == NULL) return -ENOMEM; return 0; } static int hostap_disable_hostapd_sta(local_info_t *local, int rtnl_locked) { struct net_device *dev = local->dev; printk(KERN_DEBUG "%s: disabling hostapd mode\n", dev->name); hostap_remove_interface(local->stadev, rtnl_locked, 1); local->stadev = NULL; return 0; } int hostap_set_hostapd(local_info_t *local, int val, int rtnl_locked) { int ret; if (val < 0 || val > 1) return -EINVAL; if (local->hostapd == val) return 0; if (val) { ret = hostap_enable_hostapd(local, rtnl_locked); if (ret == 0) local->hostapd = 1; } else { local->hostapd = 0; ret = hostap_disable_hostapd(local, rtnl_locked); if (ret != 0) local->hostapd = 1; } return ret; } int hostap_set_hostapd_sta(local_info_t *local, int val, int rtnl_locked) { int ret; if (val < 0 || val > 1) return -EINVAL; if (local->hostapd_sta == val) return 0; if (val) { ret = hostap_enable_hostapd_sta(local, rtnl_locked); if (ret == 0) local->hostapd_sta = 1; } else { local->hostapd_sta = 0; ret = hostap_disable_hostapd_sta(local, rtnl_locked); if (ret != 0) local->hostapd_sta = 1; } return ret; } int prism2_update_comms_qual(struct net_device *dev) { struct hostap_interface *iface; local_info_t *local; int ret = 0; struct hfa384x_comms_quality sq; iface = netdev_priv(dev); local = iface->local; if (!local->sta_fw_ver) ret = -1; else if (local->sta_fw_ver >= PRISM2_FW_VER(1,3,1)) { if (local->func->get_rid(local->dev, HFA384X_RID_DBMCOMMSQUALITY, &sq, sizeof(sq), 1) >= 0) { local->comms_qual = (s16) le16_to_cpu(sq.comm_qual); local->avg_signal = (s16) le16_to_cpu(sq.signal_level); local->avg_noise = (s16) le16_to_cpu(sq.noise_level); local->last_comms_qual_update = jiffies; } else ret = -1; } else { if (local->func->get_rid(local->dev, HFA384X_RID_COMMSQUALITY, &sq, sizeof(sq), 1) >= 0) { local->comms_qual = le16_to_cpu(sq.comm_qual); local->avg_signal = HFA384X_LEVEL_TO_dBm( le16_to_cpu(sq.signal_level)); local->avg_noise = HFA384X_LEVEL_TO_dBm( le16_to_cpu(sq.noise_level)); local->last_comms_qual_update = jiffies; } else ret = -1; } return ret; } int prism2_sta_send_mgmt(local_info_t *local, u8 *dst, u16 stype, u8 *body, size_t bodylen) { struct sk_buff *skb; struct hostap_ieee80211_mgmt *mgmt; struct hostap_skb_tx_data *meta; struct net_device *dev = local->dev; skb = dev_alloc_skb(IEEE80211_MGMT_HDR_LEN + bodylen); if (skb == NULL) return -ENOMEM; mgmt = skb_put_zero(skb, IEEE80211_MGMT_HDR_LEN); mgmt->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | stype); memcpy(mgmt->da, dst, ETH_ALEN); memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN); memcpy(mgmt->bssid, dst, ETH_ALEN); if (body) skb_put_data(skb, body, bodylen); meta = (struct hostap_skb_tx_data *) skb->cb; memset(meta, 0, sizeof(*meta)); meta->magic = HOSTAP_SKB_TX_DATA_MAGIC; meta->iface = netdev_priv(dev); skb->dev = dev; skb_reset_mac_header(skb); skb_reset_network_header(skb); dev_queue_xmit(skb); return 0; } int prism2_sta_deauth(local_info_t *local, u16 reason) { union iwreq_data wrqu; int ret; __le16 val = cpu_to_le16(reason); if (local->iw_mode != IW_MODE_INFRA || is_zero_ether_addr(local->bssid) || ether_addr_equal(local->bssid, "\x44\x44\x44\x44\x44\x44")) return 0; ret = prism2_sta_send_mgmt(local, local->bssid, IEEE80211_STYPE_DEAUTH, (u8 *) &val, 2); eth_zero_addr(wrqu.ap_addr.sa_data); wireless_send_event(local->dev, SIOCGIWAP, &wrqu, NULL); return ret; } struct proc_dir_entry *hostap_proc; static int __init hostap_init(void) { if (init_net.proc_net != NULL) { hostap_proc = proc_mkdir("hostap", init_net.proc_net); if (!hostap_proc) printk(KERN_WARNING "Failed to mkdir " "/proc/net/hostap\n"); } else hostap_proc = NULL; return 0; } static void __exit hostap_exit(void) { if (hostap_proc != NULL) { hostap_proc = NULL; remove_proc_entry("hostap", init_net.proc_net); } } EXPORT_SYMBOL(hostap_set_word); EXPORT_SYMBOL(hostap_set_string); EXPORT_SYMBOL(hostap_get_porttype); EXPORT_SYMBOL(hostap_set_encryption); EXPORT_SYMBOL(hostap_set_antsel); EXPORT_SYMBOL(hostap_set_roaming); EXPORT_SYMBOL(hostap_set_auth_algs); EXPORT_SYMBOL(hostap_dump_rx_header); EXPORT_SYMBOL(hostap_dump_tx_header); EXPORT_SYMBOL(hostap_80211_get_hdrlen); EXPORT_SYMBOL(hostap_setup_dev); EXPORT_SYMBOL(hostap_set_multicast_list_queue); EXPORT_SYMBOL(hostap_set_hostapd); EXPORT_SYMBOL(hostap_set_hostapd_sta); EXPORT_SYMBOL(hostap_add_interface); EXPORT_SYMBOL(hostap_remove_interface); EXPORT_SYMBOL(prism2_update_comms_qual); module_init(hostap_init); module_exit(hostap_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1