Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Yan-Hsuan Chuang | 6021 | 99.82% | 1 | 25.00% |
Nathan Chancellor | 6 | 0.10% | 1 | 25.00% |
Colin Ian King | 3 | 0.05% | 1 | 25.00% |
Stanislaw Gruszka | 2 | 0.03% | 1 | 25.00% |
Total | 6032 | 4 |
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* Copyright(c) 2018-2019 Realtek Corporation */ #include "main.h" #include "regd.h" #include "fw.h" #include "ps.h" #include "sec.h" #include "mac.h" #include "phy.h" #include "reg.h" #include "efuse.h" #include "debug.h" static bool rtw_fw_support_lps; unsigned int rtw_debug_mask; EXPORT_SYMBOL(rtw_debug_mask); module_param_named(support_lps, rtw_fw_support_lps, bool, 0644); module_param_named(debug_mask, rtw_debug_mask, uint, 0644); MODULE_PARM_DESC(support_lps, "Set Y to enable LPS support"); MODULE_PARM_DESC(debug_mask, "Debugging mask"); static struct ieee80211_channel rtw_channeltable_2g[] = { {.center_freq = 2412, .hw_value = 1,}, {.center_freq = 2417, .hw_value = 2,}, {.center_freq = 2422, .hw_value = 3,}, {.center_freq = 2427, .hw_value = 4,}, {.center_freq = 2432, .hw_value = 5,}, {.center_freq = 2437, .hw_value = 6,}, {.center_freq = 2442, .hw_value = 7,}, {.center_freq = 2447, .hw_value = 8,}, {.center_freq = 2452, .hw_value = 9,}, {.center_freq = 2457, .hw_value = 10,}, {.center_freq = 2462, .hw_value = 11,}, {.center_freq = 2467, .hw_value = 12,}, {.center_freq = 2472, .hw_value = 13,}, {.center_freq = 2484, .hw_value = 14,}, }; static struct ieee80211_channel rtw_channeltable_5g[] = { {.center_freq = 5180, .hw_value = 36,}, {.center_freq = 5200, .hw_value = 40,}, {.center_freq = 5220, .hw_value = 44,}, {.center_freq = 5240, .hw_value = 48,}, {.center_freq = 5260, .hw_value = 52,}, {.center_freq = 5280, .hw_value = 56,}, {.center_freq = 5300, .hw_value = 60,}, {.center_freq = 5320, .hw_value = 64,}, {.center_freq = 5500, .hw_value = 100,}, {.center_freq = 5520, .hw_value = 104,}, {.center_freq = 5540, .hw_value = 108,}, {.center_freq = 5560, .hw_value = 112,}, {.center_freq = 5580, .hw_value = 116,}, {.center_freq = 5600, .hw_value = 120,}, {.center_freq = 5620, .hw_value = 124,}, {.center_freq = 5640, .hw_value = 128,}, {.center_freq = 5660, .hw_value = 132,}, {.center_freq = 5680, .hw_value = 136,}, {.center_freq = 5700, .hw_value = 140,}, {.center_freq = 5745, .hw_value = 149,}, {.center_freq = 5765, .hw_value = 153,}, {.center_freq = 5785, .hw_value = 157,}, {.center_freq = 5805, .hw_value = 161,}, {.center_freq = 5825, .hw_value = 165, .flags = IEEE80211_CHAN_NO_HT40MINUS}, }; static struct ieee80211_rate rtw_ratetable[] = { {.bitrate = 10, .hw_value = 0x00,}, {.bitrate = 20, .hw_value = 0x01,}, {.bitrate = 55, .hw_value = 0x02,}, {.bitrate = 110, .hw_value = 0x03,}, {.bitrate = 60, .hw_value = 0x04,}, {.bitrate = 90, .hw_value = 0x05,}, {.bitrate = 120, .hw_value = 0x06,}, {.bitrate = 180, .hw_value = 0x07,}, {.bitrate = 240, .hw_value = 0x08,}, {.bitrate = 360, .hw_value = 0x09,}, {.bitrate = 480, .hw_value = 0x0a,}, {.bitrate = 540, .hw_value = 0x0b,}, }; static struct ieee80211_supported_band rtw_band_2ghz = { .band = NL80211_BAND_2GHZ, .channels = rtw_channeltable_2g, .n_channels = ARRAY_SIZE(rtw_channeltable_2g), .bitrates = rtw_ratetable, .n_bitrates = ARRAY_SIZE(rtw_ratetable), .ht_cap = {0}, .vht_cap = {0}, }; static struct ieee80211_supported_band rtw_band_5ghz = { .band = NL80211_BAND_5GHZ, .channels = rtw_channeltable_5g, .n_channels = ARRAY_SIZE(rtw_channeltable_5g), /* 5G has no CCK rates */ .bitrates = rtw_ratetable + 4, .n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4, .ht_cap = {0}, .vht_cap = {0}, }; struct rtw_watch_dog_iter_data { struct rtw_vif *rtwvif; bool active; u8 assoc_cnt; }; static void rtw_vif_watch_dog_iter(void *data, u8 *mac, struct ieee80211_vif *vif) { struct rtw_watch_dog_iter_data *iter_data = data; struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv; if (vif->type == NL80211_IFTYPE_STATION) { if (vif->bss_conf.assoc) { iter_data->assoc_cnt++; iter_data->rtwvif = rtwvif; } if (rtwvif->stats.tx_cnt > RTW_LPS_THRESHOLD || rtwvif->stats.rx_cnt > RTW_LPS_THRESHOLD) iter_data->active = true; } else { /* only STATION mode can enter lps */ iter_data->active = true; } rtwvif->stats.tx_unicast = 0; rtwvif->stats.rx_unicast = 0; rtwvif->stats.tx_cnt = 0; rtwvif->stats.rx_cnt = 0; } /* process TX/RX statistics periodically for hardware, * the information helps hardware to enhance performance */ static void rtw_watch_dog_work(struct work_struct *work) { struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, watch_dog_work.work); struct rtw_watch_dog_iter_data data = {}; if (!rtw_flag_check(rtwdev, RTW_FLAG_RUNNING)) return; ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work, RTW_WATCH_DOG_DELAY_TIME); /* reset tx/rx statictics */ rtwdev->stats.tx_unicast = 0; rtwdev->stats.rx_unicast = 0; rtwdev->stats.tx_cnt = 0; rtwdev->stats.rx_cnt = 0; /* use atomic version to avoid taking local->iflist_mtx mutex */ rtw_iterate_vifs_atomic(rtwdev, rtw_vif_watch_dog_iter, &data); /* fw supports only one station associated to enter lps, if there are * more than two stations associated to the AP, then we can not enter * lps, because fw does not handle the overlapped beacon interval */ if (rtw_fw_support_lps && data.rtwvif && !data.active && data.assoc_cnt == 1) rtw_enter_lps(rtwdev, data.rtwvif); if (rtw_flag_check(rtwdev, RTW_FLAG_SCANNING)) return; rtw_phy_dynamic_mechanism(rtwdev); rtwdev->watch_dog_cnt++; } static void rtw_c2h_work(struct work_struct *work) { struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work); struct sk_buff *skb, *tmp; skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) { skb_unlink(skb, &rtwdev->c2h_queue); rtw_fw_c2h_cmd_handle(rtwdev, skb); dev_kfree_skb_any(skb); } } void rtw_get_channel_params(struct cfg80211_chan_def *chandef, struct rtw_channel_params *chan_params) { struct ieee80211_channel *channel = chandef->chan; enum nl80211_chan_width width = chandef->width; u32 primary_freq, center_freq; u8 center_chan; u8 bandwidth = RTW_CHANNEL_WIDTH_20; u8 primary_chan_idx = 0; center_chan = channel->hw_value; primary_freq = channel->center_freq; center_freq = chandef->center_freq1; switch (width) { case NL80211_CHAN_WIDTH_20_NOHT: case NL80211_CHAN_WIDTH_20: bandwidth = RTW_CHANNEL_WIDTH_20; primary_chan_idx = 0; break; case NL80211_CHAN_WIDTH_40: bandwidth = RTW_CHANNEL_WIDTH_40; if (primary_freq > center_freq) { primary_chan_idx = 1; center_chan -= 2; } else { primary_chan_idx = 2; center_chan += 2; } break; case NL80211_CHAN_WIDTH_80: bandwidth = RTW_CHANNEL_WIDTH_80; if (primary_freq > center_freq) { if (primary_freq - center_freq == 10) { primary_chan_idx = 1; center_chan -= 2; } else { primary_chan_idx = 3; center_chan -= 6; } } else { if (center_freq - primary_freq == 10) { primary_chan_idx = 2; center_chan += 2; } else { primary_chan_idx = 4; center_chan += 6; } } break; default: center_chan = 0; break; } chan_params->center_chan = center_chan; chan_params->bandwidth = bandwidth; chan_params->primary_chan_idx = primary_chan_idx; } void rtw_set_channel(struct rtw_dev *rtwdev) { struct ieee80211_hw *hw = rtwdev->hw; struct rtw_hal *hal = &rtwdev->hal; struct rtw_chip_info *chip = rtwdev->chip; struct rtw_channel_params ch_param; u8 center_chan, bandwidth, primary_chan_idx; rtw_get_channel_params(&hw->conf.chandef, &ch_param); if (WARN(ch_param.center_chan == 0, "Invalid channel\n")) return; center_chan = ch_param.center_chan; bandwidth = ch_param.bandwidth; primary_chan_idx = ch_param.primary_chan_idx; hal->current_band_width = bandwidth; hal->current_channel = center_chan; hal->current_band_type = center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G; chip->ops->set_channel(rtwdev, center_chan, bandwidth, primary_chan_idx); rtw_phy_set_tx_power_level(rtwdev, center_chan); } static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr) { int i; for (i = 0; i < ETH_ALEN; i++) rtw_write8(rtwdev, start + i, addr[i]); } void rtw_vif_port_config(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif, u32 config) { u32 addr, mask; if (config & PORT_SET_MAC_ADDR) { addr = rtwvif->conf->mac_addr.addr; rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr); } if (config & PORT_SET_BSSID) { addr = rtwvif->conf->bssid.addr; rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid); } if (config & PORT_SET_NET_TYPE) { addr = rtwvif->conf->net_type.addr; mask = rtwvif->conf->net_type.mask; rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type); } if (config & PORT_SET_AID) { addr = rtwvif->conf->aid.addr; mask = rtwvif->conf->aid.mask; rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid); } } static u8 hw_bw_cap_to_bitamp(u8 bw_cap) { u8 bw = 0; switch (bw_cap) { case EFUSE_HW_CAP_IGNORE: case EFUSE_HW_CAP_SUPP_BW80: bw |= BIT(RTW_CHANNEL_WIDTH_80); /* fall through */ case EFUSE_HW_CAP_SUPP_BW40: bw |= BIT(RTW_CHANNEL_WIDTH_40); /* fall through */ default: bw |= BIT(RTW_CHANNEL_WIDTH_20); break; } return bw; } static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num) { struct rtw_hal *hal = &rtwdev->hal; if (hw_ant_num == EFUSE_HW_CAP_IGNORE || hw_ant_num >= hal->rf_path_num) return; switch (hw_ant_num) { case 1: hal->rf_type = RF_1T1R; hal->rf_path_num = 1; hal->antenna_tx = BB_PATH_A; hal->antenna_rx = BB_PATH_A; break; default: WARN(1, "invalid hw configuration from efuse\n"); break; } } static u64 get_vht_ra_mask(struct ieee80211_sta *sta) { u64 ra_mask = 0; u16 mcs_map = le16_to_cpu(sta->vht_cap.vht_mcs.rx_mcs_map); u8 vht_mcs_cap; int i, nss; /* 4SS, every two bits for MCS7/8/9 */ for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) { vht_mcs_cap = mcs_map & 0x3; switch (vht_mcs_cap) { case 2: /* MCS9 */ ra_mask |= 0x3ffULL << nss; break; case 1: /* MCS8 */ ra_mask |= 0x1ffULL << nss; break; case 0: /* MCS7 */ ra_mask |= 0x0ffULL << nss; break; default: break; } } return ra_mask; } static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num) { u8 rate_id = 0; switch (wireless_set) { case WIRELESS_CCK: rate_id = RTW_RATEID_B_20M; break; case WIRELESS_OFDM: rate_id = RTW_RATEID_G; break; case WIRELESS_CCK | WIRELESS_OFDM: rate_id = RTW_RATEID_BG; break; case WIRELESS_OFDM | WIRELESS_HT: if (tx_num == 1) rate_id = RTW_RATEID_GN_N1SS; else if (tx_num == 2) rate_id = RTW_RATEID_GN_N2SS; else if (tx_num == 3) rate_id = RTW_RATEID_ARFR5_N_3SS; break; case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT: if (bw_mode == RTW_CHANNEL_WIDTH_40) { if (tx_num == 1) rate_id = RTW_RATEID_BGN_40M_1SS; else if (tx_num == 2) rate_id = RTW_RATEID_BGN_40M_2SS; else if (tx_num == 3) rate_id = RTW_RATEID_ARFR5_N_3SS; else if (tx_num == 4) rate_id = RTW_RATEID_ARFR7_N_4SS; } else { if (tx_num == 1) rate_id = RTW_RATEID_BGN_20M_1SS; else if (tx_num == 2) rate_id = RTW_RATEID_BGN_20M_2SS; else if (tx_num == 3) rate_id = RTW_RATEID_ARFR5_N_3SS; else if (tx_num == 4) rate_id = RTW_RATEID_ARFR7_N_4SS; } break; case WIRELESS_OFDM | WIRELESS_VHT: if (tx_num == 1) rate_id = RTW_RATEID_ARFR1_AC_1SS; else if (tx_num == 2) rate_id = RTW_RATEID_ARFR0_AC_2SS; else if (tx_num == 3) rate_id = RTW_RATEID_ARFR4_AC_3SS; else if (tx_num == 4) rate_id = RTW_RATEID_ARFR6_AC_4SS; break; case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT: if (bw_mode >= RTW_CHANNEL_WIDTH_80) { if (tx_num == 1) rate_id = RTW_RATEID_ARFR1_AC_1SS; else if (tx_num == 2) rate_id = RTW_RATEID_ARFR0_AC_2SS; else if (tx_num == 3) rate_id = RTW_RATEID_ARFR4_AC_3SS; else if (tx_num == 4) rate_id = RTW_RATEID_ARFR6_AC_4SS; } else { if (tx_num == 1) rate_id = RTW_RATEID_ARFR2_AC_2G_1SS; else if (tx_num == 2) rate_id = RTW_RATEID_ARFR3_AC_2G_2SS; else if (tx_num == 3) rate_id = RTW_RATEID_ARFR4_AC_3SS; else if (tx_num == 4) rate_id = RTW_RATEID_ARFR6_AC_4SS; } break; default: break; } return rate_id; } #define RA_MASK_CCK_RATES 0x0000f #define RA_MASK_OFDM_RATES 0x00ff0 #define RA_MASK_HT_RATES_1SS (0xff000ULL << 0) #define RA_MASK_HT_RATES_2SS (0xff000ULL << 8) #define RA_MASK_HT_RATES_3SS (0xff000ULL << 16) #define RA_MASK_HT_RATES (RA_MASK_HT_RATES_1SS | \ RA_MASK_HT_RATES_2SS | \ RA_MASK_HT_RATES_3SS) #define RA_MASK_VHT_RATES_1SS (0x3ff000ULL << 0) #define RA_MASK_VHT_RATES_2SS (0x3ff000ULL << 10) #define RA_MASK_VHT_RATES_3SS (0x3ff000ULL << 20) #define RA_MASK_VHT_RATES (RA_MASK_VHT_RATES_1SS | \ RA_MASK_VHT_RATES_2SS | \ RA_MASK_VHT_RATES_3SS) #define RA_MASK_CCK_IN_HT 0x00005 #define RA_MASK_CCK_IN_VHT 0x00005 #define RA_MASK_OFDM_IN_VHT 0x00010 #define RA_MASK_OFDM_IN_HT_2G 0x00010 #define RA_MASK_OFDM_IN_HT_5G 0x00030 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si) { struct ieee80211_sta *sta = si->sta; struct rtw_efuse *efuse = &rtwdev->efuse; struct rtw_hal *hal = &rtwdev->hal; u8 rssi_level; u8 wireless_set; u8 bw_mode; u8 rate_id; u8 rf_type = RF_1T1R; u8 stbc_en = 0; u8 ldpc_en = 0; u8 tx_num = 1; u64 ra_mask = 0; bool is_vht_enable = false; bool is_support_sgi = false; if (sta->vht_cap.vht_supported) { is_vht_enable = true; ra_mask |= get_vht_ra_mask(sta); if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK) stbc_en = VHT_STBC_EN; if (sta->vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC) ldpc_en = VHT_LDPC_EN; if (sta->vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80) is_support_sgi = true; } else if (sta->ht_cap.ht_supported) { ra_mask |= (sta->ht_cap.mcs.rx_mask[NL80211_BAND_5GHZ] << 20) | (sta->ht_cap.mcs.rx_mask[NL80211_BAND_2GHZ] << 12); if (sta->ht_cap.cap & IEEE80211_HT_CAP_RX_STBC) stbc_en = HT_STBC_EN; if (sta->ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING) ldpc_en = HT_LDPC_EN; if (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20 || sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) is_support_sgi = true; } if (hal->current_band_type == RTW_BAND_5G) { ra_mask |= (u64)sta->supp_rates[NL80211_BAND_5GHZ] << 4; if (sta->vht_cap.vht_supported) { ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT; wireless_set = WIRELESS_OFDM | WIRELESS_VHT; } else if (sta->ht_cap.ht_supported) { ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G; wireless_set = WIRELESS_OFDM | WIRELESS_HT; } else { wireless_set = WIRELESS_OFDM; } } else if (hal->current_band_type == RTW_BAND_2G) { ra_mask |= sta->supp_rates[NL80211_BAND_2GHZ]; if (sta->vht_cap.vht_supported) { ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT | RA_MASK_OFDM_IN_VHT; wireless_set = WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT | WIRELESS_VHT; } else if (sta->ht_cap.ht_supported) { ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT | RA_MASK_OFDM_IN_HT_2G; wireless_set = WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT; } else if (sta->supp_rates[0] <= 0xf) { wireless_set = WIRELESS_CCK; } else { wireless_set = WIRELESS_CCK | WIRELESS_OFDM; } } else { rtw_err(rtwdev, "Unknown band type\n"); wireless_set = 0; } if (efuse->hw_cap.nss == 1) { ra_mask &= RA_MASK_VHT_RATES_1SS; ra_mask &= RA_MASK_HT_RATES_1SS; } switch (sta->bandwidth) { case IEEE80211_STA_RX_BW_80: bw_mode = RTW_CHANNEL_WIDTH_80; break; case IEEE80211_STA_RX_BW_40: bw_mode = RTW_CHANNEL_WIDTH_40; break; default: bw_mode = RTW_CHANNEL_WIDTH_20; break; } if (sta->vht_cap.vht_supported && ra_mask & 0xffc00000) { tx_num = 2; rf_type = RF_2T2R; } else if (sta->ht_cap.ht_supported && ra_mask & 0xfff00000) { tx_num = 2; rf_type = RF_2T2R; } rate_id = get_rate_id(wireless_set, bw_mode, tx_num); if (wireless_set != WIRELESS_CCK) { rssi_level = si->rssi_level; if (rssi_level == 0) ra_mask &= 0xffffffffffffffffULL; else if (rssi_level == 1) ra_mask &= 0xfffffffffffffff0ULL; else if (rssi_level == 2) ra_mask &= 0xffffffffffffefe0ULL; else if (rssi_level == 3) ra_mask &= 0xffffffffffffcfc0ULL; else if (rssi_level == 4) ra_mask &= 0xffffffffffff8f80ULL; else if (rssi_level >= 5) ra_mask &= 0xffffffffffff0f00ULL; } si->bw_mode = bw_mode; si->stbc_en = stbc_en; si->ldpc_en = ldpc_en; si->rf_type = rf_type; si->wireless_set = wireless_set; si->sgi_enable = is_support_sgi; si->vht_enable = is_vht_enable; si->ra_mask = ra_mask; si->rate_id = rate_id; rtw_fw_send_ra_info(rtwdev, si); } static int rtw_power_on(struct rtw_dev *rtwdev) { struct rtw_chip_info *chip = rtwdev->chip; struct rtw_fw_state *fw = &rtwdev->fw; int ret; ret = rtw_hci_setup(rtwdev); if (ret) { rtw_err(rtwdev, "failed to setup hci\n"); goto err; } /* power on MAC before firmware downloaded */ ret = rtw_mac_power_on(rtwdev); if (ret) { rtw_err(rtwdev, "failed to power on mac\n"); goto err; } wait_for_completion(&fw->completion); if (!fw->firmware) { ret = -EINVAL; rtw_err(rtwdev, "failed to load firmware\n"); goto err; } ret = rtw_download_firmware(rtwdev, fw); if (ret) { rtw_err(rtwdev, "failed to download firmware\n"); goto err_off; } /* config mac after firmware downloaded */ ret = rtw_mac_init(rtwdev); if (ret) { rtw_err(rtwdev, "failed to configure mac\n"); goto err_off; } chip->ops->phy_set_param(rtwdev); ret = rtw_hci_start(rtwdev); if (ret) { rtw_err(rtwdev, "failed to start hci\n"); goto err_off; } return 0; err_off: rtw_mac_power_off(rtwdev); err: return ret; } int rtw_core_start(struct rtw_dev *rtwdev) { int ret; ret = rtw_power_on(rtwdev); if (ret) return ret; rtw_sec_enable_sec_engine(rtwdev); /* rcr reset after powered on */ rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr); ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work, RTW_WATCH_DOG_DELAY_TIME); rtw_flag_set(rtwdev, RTW_FLAG_RUNNING); return 0; } static void rtw_power_off(struct rtw_dev *rtwdev) { rtwdev->hci.ops->stop(rtwdev); rtw_mac_power_off(rtwdev); } void rtw_core_stop(struct rtw_dev *rtwdev) { rtw_flag_clear(rtwdev, RTW_FLAG_RUNNING); rtw_flag_clear(rtwdev, RTW_FLAG_FW_RUNNING); cancel_delayed_work_sync(&rtwdev->watch_dog_work); rtw_power_off(rtwdev); } static void rtw_init_ht_cap(struct rtw_dev *rtwdev, struct ieee80211_sta_ht_cap *ht_cap) { struct rtw_efuse *efuse = &rtwdev->efuse; ht_cap->ht_supported = true; ht_cap->cap = 0; ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 | IEEE80211_HT_CAP_MAX_AMSDU | IEEE80211_HT_CAP_LDPC_CODING | (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT); if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40)) ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 | IEEE80211_HT_CAP_DSSSCCK40 | IEEE80211_HT_CAP_SGI_40; ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K; ht_cap->ampdu_density = IEEE80211_HT_MPDU_DENSITY_16; ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED; if (efuse->hw_cap.nss > 1) { ht_cap->mcs.rx_mask[0] = 0xFF; ht_cap->mcs.rx_mask[1] = 0xFF; ht_cap->mcs.rx_mask[4] = 0x01; ht_cap->mcs.rx_highest = cpu_to_le16(300); } else { ht_cap->mcs.rx_mask[0] = 0xFF; ht_cap->mcs.rx_mask[1] = 0x00; ht_cap->mcs.rx_mask[4] = 0x01; ht_cap->mcs.rx_highest = cpu_to_le16(150); } } static void rtw_init_vht_cap(struct rtw_dev *rtwdev, struct ieee80211_sta_vht_cap *vht_cap) { struct rtw_efuse *efuse = &rtwdev->efuse; u16 mcs_map; __le16 highest; if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE && efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT) return; vht_cap->vht_supported = true; vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 | IEEE80211_VHT_CAP_RXLDPC | IEEE80211_VHT_CAP_SHORT_GI_80 | IEEE80211_VHT_CAP_TXSTBC | IEEE80211_VHT_CAP_RXSTBC_1 | IEEE80211_VHT_CAP_HTC_VHT | IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK | 0; mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 | IEEE80211_VHT_MCS_NOT_SUPPORTED << 14; if (efuse->hw_cap.nss > 1) { highest = cpu_to_le16(780); mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2; } else { highest = cpu_to_le16(390); mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2; } vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map); vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map); vht_cap->vht_mcs.rx_highest = highest; vht_cap->vht_mcs.tx_highest = highest; } static void rtw_set_supported_band(struct ieee80211_hw *hw, struct rtw_chip_info *chip) { struct rtw_dev *rtwdev = hw->priv; struct ieee80211_supported_band *sband; if (chip->band & RTW_BAND_2G) { sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL); if (!sband) goto err_out; if (chip->ht_supported) rtw_init_ht_cap(rtwdev, &sband->ht_cap); hw->wiphy->bands[NL80211_BAND_2GHZ] = sband; } if (chip->band & RTW_BAND_5G) { sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL); if (!sband) goto err_out; if (chip->ht_supported) rtw_init_ht_cap(rtwdev, &sband->ht_cap); if (chip->vht_supported) rtw_init_vht_cap(rtwdev, &sband->vht_cap); hw->wiphy->bands[NL80211_BAND_5GHZ] = sband; } return; err_out: rtw_err(rtwdev, "failed to set supported band\n"); kfree(sband); } static void rtw_unset_supported_band(struct ieee80211_hw *hw, struct rtw_chip_info *chip) { kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]); kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]); } static void rtw_load_firmware_cb(const struct firmware *firmware, void *context) { struct rtw_dev *rtwdev = context; struct rtw_fw_state *fw = &rtwdev->fw; if (!firmware) rtw_err(rtwdev, "failed to request firmware\n"); fw->firmware = firmware; complete_all(&fw->completion); } static int rtw_load_firmware(struct rtw_dev *rtwdev, const char *fw_name) { struct rtw_fw_state *fw = &rtwdev->fw; int ret; init_completion(&fw->completion); ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev, GFP_KERNEL, rtwdev, rtw_load_firmware_cb); if (ret) { rtw_err(rtwdev, "async firmware request failed\n"); return ret; } return 0; } static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev) { struct rtw_chip_info *chip = rtwdev->chip; struct rtw_hal *hal = &rtwdev->hal; struct rtw_efuse *efuse = &rtwdev->efuse; u32 wl_bt_pwr_ctrl; int ret = 0; switch (rtw_hci_type(rtwdev)) { case RTW_HCI_TYPE_PCIE: rtwdev->hci.rpwm_addr = 0x03d9; break; default: rtw_err(rtwdev, "unsupported hci type\n"); return -EINVAL; } wl_bt_pwr_ctrl = rtw_read32(rtwdev, REG_WL_BT_PWR_CTRL); if (wl_bt_pwr_ctrl & BIT_BT_FUNC_EN) rtwdev->efuse.btcoex = true; hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1); hal->fab_version = BIT_GET_VENDOR_ID(hal->chip_version) >> 2; hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version); hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1; if (hal->chip_version & BIT_RF_TYPE_ID) { hal->rf_type = RF_2T2R; hal->rf_path_num = 2; hal->antenna_tx = BB_PATH_AB; hal->antenna_rx = BB_PATH_AB; } else { hal->rf_type = RF_1T1R; hal->rf_path_num = 1; hal->antenna_tx = BB_PATH_A; hal->antenna_rx = BB_PATH_A; } if (hal->fab_version == 2) hal->fab_version = 1; else if (hal->fab_version == 1) hal->fab_version = 2; efuse->physical_size = chip->phy_efuse_size; efuse->logical_size = chip->log_efuse_size; efuse->protect_size = chip->ptct_efuse_size; /* default use ack */ rtwdev->hal.rcr |= BIT_VHT_DACK; return ret; } static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev) { struct rtw_fw_state *fw = &rtwdev->fw; int ret; ret = rtw_hci_setup(rtwdev); if (ret) { rtw_err(rtwdev, "failed to setup hci\n"); goto err; } ret = rtw_mac_power_on(rtwdev); if (ret) { rtw_err(rtwdev, "failed to power on mac\n"); goto err; } rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP); wait_for_completion(&fw->completion); if (!fw->firmware) { ret = -EINVAL; rtw_err(rtwdev, "failed to load firmware\n"); goto err; } ret = rtw_download_firmware(rtwdev, fw); if (ret) { rtw_err(rtwdev, "failed to download firmware\n"); goto err_off; } return 0; err_off: rtw_mac_power_off(rtwdev); err: return ret; } static int rtw_dump_hw_feature(struct rtw_dev *rtwdev) { struct rtw_efuse *efuse = &rtwdev->efuse; u8 hw_feature[HW_FEATURE_LEN]; u8 id; u8 bw; int i; id = rtw_read8(rtwdev, REG_C2HEVT); if (id != C2H_HW_FEATURE_REPORT) { rtw_err(rtwdev, "failed to read hw feature report\n"); return -EBUSY; } for (i = 0; i < HW_FEATURE_LEN; i++) hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i); rtw_write8(rtwdev, REG_C2HEVT, 0); bw = GET_EFUSE_HW_CAP_BW(hw_feature); efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw); efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature); efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature); efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature); efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature); rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num); if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE) efuse->hw_cap.nss = rtwdev->hal.rf_path_num; rtw_dbg(rtwdev, RTW_DBG_EFUSE, "hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n", efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl, efuse->hw_cap.ant_num, efuse->hw_cap.nss); return 0; } static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev) { rtw_hci_stop(rtwdev); rtw_mac_power_off(rtwdev); } static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev) { struct rtw_efuse *efuse = &rtwdev->efuse; int ret; mutex_lock(&rtwdev->mutex); /* power on mac to read efuse */ ret = rtw_chip_efuse_enable(rtwdev); if (ret) goto out; ret = rtw_parse_efuse_map(rtwdev); if (ret) goto out; ret = rtw_dump_hw_feature(rtwdev); if (ret) goto out; ret = rtw_check_supported_rfe(rtwdev); if (ret) goto out; if (efuse->crystal_cap == 0xff) efuse->crystal_cap = 0; if (efuse->pa_type_2g == 0xff) efuse->pa_type_2g = 0; if (efuse->pa_type_5g == 0xff) efuse->pa_type_5g = 0; if (efuse->lna_type_2g == 0xff) efuse->lna_type_2g = 0; if (efuse->lna_type_5g == 0xff) efuse->lna_type_5g = 0; if (efuse->channel_plan == 0xff) efuse->channel_plan = 0x7f; if (efuse->bt_setting & BIT(0)) efuse->share_ant = true; if (efuse->regd == 0xff) efuse->regd = 0; efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0; efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0; efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0; efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0; rtw_chip_efuse_disable(rtwdev); out: mutex_unlock(&rtwdev->mutex); return ret; } static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev) { struct rtw_hal *hal = &rtwdev->hal; const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev); if (!rfe_def) return -ENODEV; rtw_phy_setup_phy_cond(rtwdev, 0); rtw_hw_init_tx_power(hal); rtw_load_table(rtwdev, rfe_def->phy_pg_tbl); rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl); rtw_phy_tx_power_by_rate_config(hal); rtw_phy_tx_power_limit_config(hal); return 0; } int rtw_chip_info_setup(struct rtw_dev *rtwdev) { int ret; ret = rtw_chip_parameter_setup(rtwdev); if (ret) { rtw_err(rtwdev, "failed to setup chip parameters\n"); goto err_out; } ret = rtw_chip_efuse_info_setup(rtwdev); if (ret) { rtw_err(rtwdev, "failed to setup chip efuse info\n"); goto err_out; } ret = rtw_chip_board_info_setup(rtwdev); if (ret) { rtw_err(rtwdev, "failed to setup chip board info\n"); goto err_out; } return 0; err_out: return ret; } EXPORT_SYMBOL(rtw_chip_info_setup); int rtw_core_init(struct rtw_dev *rtwdev) { int ret; INIT_LIST_HEAD(&rtwdev->rsvd_page_list); timer_setup(&rtwdev->tx_report.purge_timer, rtw_tx_report_purge_timer, 0); INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work); INIT_DELAYED_WORK(&rtwdev->lps_work, rtw_lps_work); INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work); skb_queue_head_init(&rtwdev->c2h_queue); skb_queue_head_init(&rtwdev->tx_report.queue); spin_lock_init(&rtwdev->dm_lock); spin_lock_init(&rtwdev->rf_lock); spin_lock_init(&rtwdev->h2c.lock); spin_lock_init(&rtwdev->tx_report.q_lock); mutex_init(&rtwdev->mutex); mutex_init(&rtwdev->hal.tx_power_mutex); rtwdev->sec.total_cam_num = 32; rtwdev->hal.current_channel = 1; set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map); mutex_lock(&rtwdev->mutex); rtw_add_rsvd_page(rtwdev, RSVD_BEACON, false); mutex_unlock(&rtwdev->mutex); /* default rx filter setting */ rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS | BIT_AB | BIT_AM | BIT_APM; ret = rtw_load_firmware(rtwdev, rtwdev->chip->fw_name); if (ret) { rtw_warn(rtwdev, "no firmware loaded\n"); return ret; } return 0; } EXPORT_SYMBOL(rtw_core_init); void rtw_core_deinit(struct rtw_dev *rtwdev) { struct rtw_fw_state *fw = &rtwdev->fw; struct rtw_rsvd_page *rsvd_pkt, *tmp; unsigned long flags; if (fw->firmware) release_firmware(fw->firmware); spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags); skb_queue_purge(&rtwdev->tx_report.queue); spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags); list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list, list) { list_del(&rsvd_pkt->list); kfree(rsvd_pkt); } mutex_destroy(&rtwdev->mutex); mutex_destroy(&rtwdev->hal.tx_power_mutex); } EXPORT_SYMBOL(rtw_core_deinit); int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw) { int max_tx_headroom = 0; int ret; /* TODO: USB & SDIO may need extra room? */ max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz; hw->extra_tx_headroom = max_tx_headroom; hw->queues = IEEE80211_NUM_ACS; hw->sta_data_size = sizeof(struct rtw_sta_info); hw->vif_data_size = sizeof(struct rtw_vif); ieee80211_hw_set(hw, SIGNAL_DBM); ieee80211_hw_set(hw, RX_INCLUDES_FCS); ieee80211_hw_set(hw, AMPDU_AGGREGATION); ieee80211_hw_set(hw, MFP_CAPABLE); ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS); ieee80211_hw_set(hw, SUPPORTS_PS); ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS); hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP) | BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_MESH_POINT); hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS | WIPHY_FLAG_TDLS_EXTERNAL_SETUP; rtw_set_supported_band(hw, rtwdev->chip); SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr); rtw_regd_init(rtwdev, rtw_regd_notifier); ret = ieee80211_register_hw(hw); if (ret) { rtw_err(rtwdev, "failed to register hw\n"); return ret; } if (regulatory_hint(hw->wiphy, rtwdev->regd.alpha2)) rtw_err(rtwdev, "regulatory_hint fail\n"); rtw_debugfs_init(rtwdev); return 0; } EXPORT_SYMBOL(rtw_register_hw); void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw) { struct rtw_chip_info *chip = rtwdev->chip; ieee80211_unregister_hw(hw); rtw_unset_supported_band(hw, chip); } EXPORT_SYMBOL(rtw_unregister_hw); MODULE_AUTHOR("Realtek Corporation"); MODULE_DESCRIPTION("Realtek 802.11ac wireless core module"); MODULE_LICENSE("Dual BSD/GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1