Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Matias Björling | 5178 | 71.00% | 30 | 43.48% |
Javier González | 1716 | 23.53% | 16 | 23.19% |
Hannes Reinecke | 235 | 3.22% | 1 | 1.45% |
Christoph Hellwig | 106 | 1.45% | 11 | 15.94% |
Igor Konopko | 22 | 0.30% | 3 | 4.35% |
Simon A. F. Lund | 16 | 0.22% | 1 | 1.45% |
Sagi Grimberg | 5 | 0.07% | 1 | 1.45% |
Geert Uytterhoeven | 5 | 0.07% | 1 | 1.45% |
Wenwei Tao | 4 | 0.05% | 1 | 1.45% |
Chaitanya Kulkarni | 3 | 0.04% | 1 | 1.45% |
Johannes Thumshirn | 1 | 0.01% | 1 | 1.45% |
Arnd Bergmann | 1 | 0.01% | 1 | 1.45% |
Bart Van Assche | 1 | 0.01% | 1 | 1.45% |
Total | 7293 | 69 |
// SPDX-License-Identifier: GPL-2.0 /* * nvme-lightnvm.c - LightNVM NVMe device * * Copyright (C) 2014-2015 IT University of Copenhagen * Initial release: Matias Bjorling <mb@lightnvm.io> */ #include "nvme.h" #include <linux/nvme.h> #include <linux/bitops.h> #include <linux/lightnvm.h> #include <linux/vmalloc.h> #include <linux/sched/sysctl.h> #include <uapi/linux/lightnvm.h> enum nvme_nvm_admin_opcode { nvme_nvm_admin_identity = 0xe2, nvme_nvm_admin_get_bb_tbl = 0xf2, nvme_nvm_admin_set_bb_tbl = 0xf1, }; enum nvme_nvm_log_page { NVME_NVM_LOG_REPORT_CHUNK = 0xca, }; struct nvme_nvm_ph_rw { __u8 opcode; __u8 flags; __u16 command_id; __le32 nsid; __u64 rsvd2; __le64 metadata; __le64 prp1; __le64 prp2; __le64 spba; __le16 length; __le16 control; __le32 dsmgmt; __le64 resv; }; struct nvme_nvm_erase_blk { __u8 opcode; __u8 flags; __u16 command_id; __le32 nsid; __u64 rsvd[2]; __le64 prp1; __le64 prp2; __le64 spba; __le16 length; __le16 control; __le32 dsmgmt; __le64 resv; }; struct nvme_nvm_identity { __u8 opcode; __u8 flags; __u16 command_id; __le32 nsid; __u64 rsvd[2]; __le64 prp1; __le64 prp2; __u32 rsvd11[6]; }; struct nvme_nvm_getbbtbl { __u8 opcode; __u8 flags; __u16 command_id; __le32 nsid; __u64 rsvd[2]; __le64 prp1; __le64 prp2; __le64 spba; __u32 rsvd4[4]; }; struct nvme_nvm_setbbtbl { __u8 opcode; __u8 flags; __u16 command_id; __le32 nsid; __le64 rsvd[2]; __le64 prp1; __le64 prp2; __le64 spba; __le16 nlb; __u8 value; __u8 rsvd3; __u32 rsvd4[3]; }; struct nvme_nvm_command { union { struct nvme_common_command common; struct nvme_nvm_ph_rw ph_rw; struct nvme_nvm_erase_blk erase; struct nvme_nvm_identity identity; struct nvme_nvm_getbbtbl get_bb; struct nvme_nvm_setbbtbl set_bb; }; }; struct nvme_nvm_id12_grp { __u8 mtype; __u8 fmtype; __le16 res16; __u8 num_ch; __u8 num_lun; __u8 num_pln; __u8 rsvd1; __le16 num_chk; __le16 num_pg; __le16 fpg_sz; __le16 csecs; __le16 sos; __le16 rsvd2; __le32 trdt; __le32 trdm; __le32 tprt; __le32 tprm; __le32 tbet; __le32 tbem; __le32 mpos; __le32 mccap; __le16 cpar; __u8 reserved[906]; } __packed; struct nvme_nvm_id12_addrf { __u8 ch_offset; __u8 ch_len; __u8 lun_offset; __u8 lun_len; __u8 pln_offset; __u8 pln_len; __u8 blk_offset; __u8 blk_len; __u8 pg_offset; __u8 pg_len; __u8 sec_offset; __u8 sec_len; __u8 res[4]; } __packed; struct nvme_nvm_id12 { __u8 ver_id; __u8 vmnt; __u8 cgrps; __u8 res; __le32 cap; __le32 dom; struct nvme_nvm_id12_addrf ppaf; __u8 resv[228]; struct nvme_nvm_id12_grp grp; __u8 resv2[2880]; } __packed; struct nvme_nvm_bb_tbl { __u8 tblid[4]; __le16 verid; __le16 revid; __le32 rvsd1; __le32 tblks; __le32 tfact; __le32 tgrown; __le32 tdresv; __le32 thresv; __le32 rsvd2[8]; __u8 blk[0]; }; struct nvme_nvm_id20_addrf { __u8 grp_len; __u8 pu_len; __u8 chk_len; __u8 lba_len; __u8 resv[4]; }; struct nvme_nvm_id20 { __u8 mjr; __u8 mnr; __u8 resv[6]; struct nvme_nvm_id20_addrf lbaf; __le32 mccap; __u8 resv2[12]; __u8 wit; __u8 resv3[31]; /* Geometry */ __le16 num_grp; __le16 num_pu; __le32 num_chk; __le32 clba; __u8 resv4[52]; /* Write data requirements */ __le32 ws_min; __le32 ws_opt; __le32 mw_cunits; __le32 maxoc; __le32 maxocpu; __u8 resv5[44]; /* Performance related metrics */ __le32 trdt; __le32 trdm; __le32 twrt; __le32 twrm; __le32 tcrst; __le32 tcrsm; __u8 resv6[40]; /* Reserved area */ __u8 resv7[2816]; /* Vendor specific */ __u8 vs[1024]; }; struct nvme_nvm_chk_meta { __u8 state; __u8 type; __u8 wi; __u8 rsvd[5]; __le64 slba; __le64 cnlb; __le64 wp; }; /* * Check we didn't inadvertently grow the command struct */ static inline void _nvme_nvm_check_size(void) { BUILD_BUG_ON(sizeof(struct nvme_nvm_identity) != 64); BUILD_BUG_ON(sizeof(struct nvme_nvm_ph_rw) != 64); BUILD_BUG_ON(sizeof(struct nvme_nvm_erase_blk) != 64); BUILD_BUG_ON(sizeof(struct nvme_nvm_getbbtbl) != 64); BUILD_BUG_ON(sizeof(struct nvme_nvm_setbbtbl) != 64); BUILD_BUG_ON(sizeof(struct nvme_nvm_id12_grp) != 960); BUILD_BUG_ON(sizeof(struct nvme_nvm_id12_addrf) != 16); BUILD_BUG_ON(sizeof(struct nvme_nvm_id12) != NVME_IDENTIFY_DATA_SIZE); BUILD_BUG_ON(sizeof(struct nvme_nvm_bb_tbl) != 64); BUILD_BUG_ON(sizeof(struct nvme_nvm_id20_addrf) != 8); BUILD_BUG_ON(sizeof(struct nvme_nvm_id20) != NVME_IDENTIFY_DATA_SIZE); BUILD_BUG_ON(sizeof(struct nvme_nvm_chk_meta) != 32); BUILD_BUG_ON(sizeof(struct nvme_nvm_chk_meta) != sizeof(struct nvm_chk_meta)); } static void nvme_nvm_set_addr_12(struct nvm_addrf_12 *dst, struct nvme_nvm_id12_addrf *src) { dst->ch_len = src->ch_len; dst->lun_len = src->lun_len; dst->blk_len = src->blk_len; dst->pg_len = src->pg_len; dst->pln_len = src->pln_len; dst->sec_len = src->sec_len; dst->ch_offset = src->ch_offset; dst->lun_offset = src->lun_offset; dst->blk_offset = src->blk_offset; dst->pg_offset = src->pg_offset; dst->pln_offset = src->pln_offset; dst->sec_offset = src->sec_offset; dst->ch_mask = ((1ULL << dst->ch_len) - 1) << dst->ch_offset; dst->lun_mask = ((1ULL << dst->lun_len) - 1) << dst->lun_offset; dst->blk_mask = ((1ULL << dst->blk_len) - 1) << dst->blk_offset; dst->pg_mask = ((1ULL << dst->pg_len) - 1) << dst->pg_offset; dst->pln_mask = ((1ULL << dst->pln_len) - 1) << dst->pln_offset; dst->sec_mask = ((1ULL << dst->sec_len) - 1) << dst->sec_offset; } static int nvme_nvm_setup_12(struct nvme_nvm_id12 *id, struct nvm_geo *geo) { struct nvme_nvm_id12_grp *src; int sec_per_pg, sec_per_pl, pg_per_blk; if (id->cgrps != 1) return -EINVAL; src = &id->grp; if (src->mtype != 0) { pr_err("nvm: memory type not supported\n"); return -EINVAL; } /* 1.2 spec. only reports a single version id - unfold */ geo->major_ver_id = id->ver_id; geo->minor_ver_id = 2; /* Set compacted version for upper layers */ geo->version = NVM_OCSSD_SPEC_12; geo->num_ch = src->num_ch; geo->num_lun = src->num_lun; geo->all_luns = geo->num_ch * geo->num_lun; geo->num_chk = le16_to_cpu(src->num_chk); geo->csecs = le16_to_cpu(src->csecs); geo->sos = le16_to_cpu(src->sos); pg_per_blk = le16_to_cpu(src->num_pg); sec_per_pg = le16_to_cpu(src->fpg_sz) / geo->csecs; sec_per_pl = sec_per_pg * src->num_pln; geo->clba = sec_per_pl * pg_per_blk; geo->all_chunks = geo->all_luns * geo->num_chk; geo->total_secs = geo->clba * geo->all_chunks; geo->ws_min = sec_per_pg; geo->ws_opt = sec_per_pg; geo->mw_cunits = geo->ws_opt << 3; /* default to MLC safe values */ /* Do not impose values for maximum number of open blocks as it is * unspecified in 1.2. Users of 1.2 must be aware of this and eventually * specify these values through a quirk if restrictions apply. */ geo->maxoc = geo->all_luns * geo->num_chk; geo->maxocpu = geo->num_chk; geo->mccap = le32_to_cpu(src->mccap); geo->trdt = le32_to_cpu(src->trdt); geo->trdm = le32_to_cpu(src->trdm); geo->tprt = le32_to_cpu(src->tprt); geo->tprm = le32_to_cpu(src->tprm); geo->tbet = le32_to_cpu(src->tbet); geo->tbem = le32_to_cpu(src->tbem); /* 1.2 compatibility */ geo->vmnt = id->vmnt; geo->cap = le32_to_cpu(id->cap); geo->dom = le32_to_cpu(id->dom); geo->mtype = src->mtype; geo->fmtype = src->fmtype; geo->cpar = le16_to_cpu(src->cpar); geo->mpos = le32_to_cpu(src->mpos); geo->pln_mode = NVM_PLANE_SINGLE; if (geo->mpos & 0x020202) { geo->pln_mode = NVM_PLANE_DOUBLE; geo->ws_opt <<= 1; } else if (geo->mpos & 0x040404) { geo->pln_mode = NVM_PLANE_QUAD; geo->ws_opt <<= 2; } geo->num_pln = src->num_pln; geo->num_pg = le16_to_cpu(src->num_pg); geo->fpg_sz = le16_to_cpu(src->fpg_sz); nvme_nvm_set_addr_12((struct nvm_addrf_12 *)&geo->addrf, &id->ppaf); return 0; } static void nvme_nvm_set_addr_20(struct nvm_addrf *dst, struct nvme_nvm_id20_addrf *src) { dst->ch_len = src->grp_len; dst->lun_len = src->pu_len; dst->chk_len = src->chk_len; dst->sec_len = src->lba_len; dst->sec_offset = 0; dst->chk_offset = dst->sec_len; dst->lun_offset = dst->chk_offset + dst->chk_len; dst->ch_offset = dst->lun_offset + dst->lun_len; dst->ch_mask = ((1ULL << dst->ch_len) - 1) << dst->ch_offset; dst->lun_mask = ((1ULL << dst->lun_len) - 1) << dst->lun_offset; dst->chk_mask = ((1ULL << dst->chk_len) - 1) << dst->chk_offset; dst->sec_mask = ((1ULL << dst->sec_len) - 1) << dst->sec_offset; } static int nvme_nvm_setup_20(struct nvme_nvm_id20 *id, struct nvm_geo *geo) { geo->major_ver_id = id->mjr; geo->minor_ver_id = id->mnr; /* Set compacted version for upper layers */ geo->version = NVM_OCSSD_SPEC_20; geo->num_ch = le16_to_cpu(id->num_grp); geo->num_lun = le16_to_cpu(id->num_pu); geo->all_luns = geo->num_ch * geo->num_lun; geo->num_chk = le32_to_cpu(id->num_chk); geo->clba = le32_to_cpu(id->clba); geo->all_chunks = geo->all_luns * geo->num_chk; geo->total_secs = geo->clba * geo->all_chunks; geo->ws_min = le32_to_cpu(id->ws_min); geo->ws_opt = le32_to_cpu(id->ws_opt); geo->mw_cunits = le32_to_cpu(id->mw_cunits); geo->maxoc = le32_to_cpu(id->maxoc); geo->maxocpu = le32_to_cpu(id->maxocpu); geo->trdt = le32_to_cpu(id->trdt); geo->trdm = le32_to_cpu(id->trdm); geo->tprt = le32_to_cpu(id->twrt); geo->tprm = le32_to_cpu(id->twrm); geo->tbet = le32_to_cpu(id->tcrst); geo->tbem = le32_to_cpu(id->tcrsm); nvme_nvm_set_addr_20(&geo->addrf, &id->lbaf); return 0; } static int nvme_nvm_identity(struct nvm_dev *nvmdev) { struct nvme_ns *ns = nvmdev->q->queuedata; struct nvme_nvm_id12 *id; struct nvme_nvm_command c = {}; int ret; c.identity.opcode = nvme_nvm_admin_identity; c.identity.nsid = cpu_to_le32(ns->head->ns_id); id = kmalloc(sizeof(struct nvme_nvm_id12), GFP_KERNEL); if (!id) return -ENOMEM; ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, (struct nvme_command *)&c, id, sizeof(struct nvme_nvm_id12)); if (ret) { ret = -EIO; goto out; } /* * The 1.2 and 2.0 specifications share the first byte in their geometry * command to make it possible to know what version a device implements. */ switch (id->ver_id) { case 1: ret = nvme_nvm_setup_12(id, &nvmdev->geo); break; case 2: ret = nvme_nvm_setup_20((struct nvme_nvm_id20 *)id, &nvmdev->geo); break; default: dev_err(ns->ctrl->device, "OCSSD revision not supported (%d)\n", id->ver_id); ret = -EINVAL; } out: kfree(id); return ret; } static int nvme_nvm_get_bb_tbl(struct nvm_dev *nvmdev, struct ppa_addr ppa, u8 *blks) { struct request_queue *q = nvmdev->q; struct nvm_geo *geo = &nvmdev->geo; struct nvme_ns *ns = q->queuedata; struct nvme_ctrl *ctrl = ns->ctrl; struct nvme_nvm_command c = {}; struct nvme_nvm_bb_tbl *bb_tbl; int nr_blks = geo->num_chk * geo->num_pln; int tblsz = sizeof(struct nvme_nvm_bb_tbl) + nr_blks; int ret = 0; c.get_bb.opcode = nvme_nvm_admin_get_bb_tbl; c.get_bb.nsid = cpu_to_le32(ns->head->ns_id); c.get_bb.spba = cpu_to_le64(ppa.ppa); bb_tbl = kzalloc(tblsz, GFP_KERNEL); if (!bb_tbl) return -ENOMEM; ret = nvme_submit_sync_cmd(ctrl->admin_q, (struct nvme_command *)&c, bb_tbl, tblsz); if (ret) { dev_err(ctrl->device, "get bad block table failed (%d)\n", ret); ret = -EIO; goto out; } if (bb_tbl->tblid[0] != 'B' || bb_tbl->tblid[1] != 'B' || bb_tbl->tblid[2] != 'L' || bb_tbl->tblid[3] != 'T') { dev_err(ctrl->device, "bbt format mismatch\n"); ret = -EINVAL; goto out; } if (le16_to_cpu(bb_tbl->verid) != 1) { ret = -EINVAL; dev_err(ctrl->device, "bbt version not supported\n"); goto out; } if (le32_to_cpu(bb_tbl->tblks) != nr_blks) { ret = -EINVAL; dev_err(ctrl->device, "bbt unsuspected blocks returned (%u!=%u)", le32_to_cpu(bb_tbl->tblks), nr_blks); goto out; } memcpy(blks, bb_tbl->blk, geo->num_chk * geo->num_pln); out: kfree(bb_tbl); return ret; } static int nvme_nvm_set_bb_tbl(struct nvm_dev *nvmdev, struct ppa_addr *ppas, int nr_ppas, int type) { struct nvme_ns *ns = nvmdev->q->queuedata; struct nvme_nvm_command c = {}; int ret = 0; c.set_bb.opcode = nvme_nvm_admin_set_bb_tbl; c.set_bb.nsid = cpu_to_le32(ns->head->ns_id); c.set_bb.spba = cpu_to_le64(ppas->ppa); c.set_bb.nlb = cpu_to_le16(nr_ppas - 1); c.set_bb.value = type; ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, (struct nvme_command *)&c, NULL, 0); if (ret) dev_err(ns->ctrl->device, "set bad block table failed (%d)\n", ret); return ret; } /* * Expect the lba in device format */ static int nvme_nvm_get_chk_meta(struct nvm_dev *ndev, sector_t slba, int nchks, struct nvm_chk_meta *meta) { struct nvm_geo *geo = &ndev->geo; struct nvme_ns *ns = ndev->q->queuedata; struct nvme_ctrl *ctrl = ns->ctrl; struct nvme_nvm_chk_meta *dev_meta, *dev_meta_off; struct ppa_addr ppa; size_t left = nchks * sizeof(struct nvme_nvm_chk_meta); size_t log_pos, offset, len; int i, max_len; int ret = 0; /* * limit requests to maximum 256K to avoid issuing arbitrary large * requests when the device does not specific a maximum transfer size. */ max_len = min_t(unsigned int, ctrl->max_hw_sectors << 9, 256 * 1024); dev_meta = kmalloc(max_len, GFP_KERNEL); if (!dev_meta) return -ENOMEM; /* Normalize lba address space to obtain log offset */ ppa.ppa = slba; ppa = dev_to_generic_addr(ndev, ppa); log_pos = ppa.m.chk; log_pos += ppa.m.pu * geo->num_chk; log_pos += ppa.m.grp * geo->num_lun * geo->num_chk; offset = log_pos * sizeof(struct nvme_nvm_chk_meta); while (left) { len = min_t(unsigned int, left, max_len); memset(dev_meta, 0, max_len); dev_meta_off = dev_meta; ret = nvme_get_log(ctrl, ns->head->ns_id, NVME_NVM_LOG_REPORT_CHUNK, 0, dev_meta, len, offset); if (ret) { dev_err(ctrl->device, "Get REPORT CHUNK log error\n"); break; } for (i = 0; i < len; i += sizeof(struct nvme_nvm_chk_meta)) { meta->state = dev_meta_off->state; meta->type = dev_meta_off->type; meta->wi = dev_meta_off->wi; meta->slba = le64_to_cpu(dev_meta_off->slba); meta->cnlb = le64_to_cpu(dev_meta_off->cnlb); meta->wp = le64_to_cpu(dev_meta_off->wp); meta++; dev_meta_off++; } offset += len; left -= len; } kfree(dev_meta); return ret; } static inline void nvme_nvm_rqtocmd(struct nvm_rq *rqd, struct nvme_ns *ns, struct nvme_nvm_command *c) { c->ph_rw.opcode = rqd->opcode; c->ph_rw.nsid = cpu_to_le32(ns->head->ns_id); c->ph_rw.spba = cpu_to_le64(rqd->ppa_addr.ppa); c->ph_rw.metadata = cpu_to_le64(rqd->dma_meta_list); c->ph_rw.control = cpu_to_le16(rqd->flags); c->ph_rw.length = cpu_to_le16(rqd->nr_ppas - 1); } static void nvme_nvm_end_io(struct request *rq, blk_status_t status) { struct nvm_rq *rqd = rq->end_io_data; rqd->ppa_status = le64_to_cpu(nvme_req(rq)->result.u64); rqd->error = nvme_req(rq)->status; nvm_end_io(rqd); kfree(nvme_req(rq)->cmd); blk_mq_free_request(rq); } static struct request *nvme_nvm_alloc_request(struct request_queue *q, struct nvm_rq *rqd, struct nvme_nvm_command *cmd) { struct nvme_ns *ns = q->queuedata; struct request *rq; nvme_nvm_rqtocmd(rqd, ns, cmd); rq = nvme_alloc_request(q, (struct nvme_command *)cmd, 0, NVME_QID_ANY); if (IS_ERR(rq)) return rq; rq->cmd_flags &= ~REQ_FAILFAST_DRIVER; if (rqd->bio) blk_init_request_from_bio(rq, rqd->bio); else rq->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, IOPRIO_NORM); return rq; } static int nvme_nvm_submit_io(struct nvm_dev *dev, struct nvm_rq *rqd) { struct request_queue *q = dev->q; struct nvme_nvm_command *cmd; struct request *rq; cmd = kzalloc(sizeof(struct nvme_nvm_command), GFP_KERNEL); if (!cmd) return -ENOMEM; rq = nvme_nvm_alloc_request(q, rqd, cmd); if (IS_ERR(rq)) { kfree(cmd); return PTR_ERR(rq); } rq->end_io_data = rqd; blk_execute_rq_nowait(q, NULL, rq, 0, nvme_nvm_end_io); return 0; } static int nvme_nvm_submit_io_sync(struct nvm_dev *dev, struct nvm_rq *rqd) { struct request_queue *q = dev->q; struct request *rq; struct nvme_nvm_command cmd; int ret = 0; memset(&cmd, 0, sizeof(struct nvme_nvm_command)); rq = nvme_nvm_alloc_request(q, rqd, &cmd); if (IS_ERR(rq)) return PTR_ERR(rq); /* I/Os can fail and the error is signaled through rqd. Callers must * handle the error accordingly. */ blk_execute_rq(q, NULL, rq, 0); if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) ret = -EINTR; rqd->ppa_status = le64_to_cpu(nvme_req(rq)->result.u64); rqd->error = nvme_req(rq)->status; blk_mq_free_request(rq); return ret; } static void *nvme_nvm_create_dma_pool(struct nvm_dev *nvmdev, char *name, int size) { struct nvme_ns *ns = nvmdev->q->queuedata; return dma_pool_create(name, ns->ctrl->dev, size, PAGE_SIZE, 0); } static void nvme_nvm_destroy_dma_pool(void *pool) { struct dma_pool *dma_pool = pool; dma_pool_destroy(dma_pool); } static void *nvme_nvm_dev_dma_alloc(struct nvm_dev *dev, void *pool, gfp_t mem_flags, dma_addr_t *dma_handler) { return dma_pool_alloc(pool, mem_flags, dma_handler); } static void nvme_nvm_dev_dma_free(void *pool, void *addr, dma_addr_t dma_handler) { dma_pool_free(pool, addr, dma_handler); } static struct nvm_dev_ops nvme_nvm_dev_ops = { .identity = nvme_nvm_identity, .get_bb_tbl = nvme_nvm_get_bb_tbl, .set_bb_tbl = nvme_nvm_set_bb_tbl, .get_chk_meta = nvme_nvm_get_chk_meta, .submit_io = nvme_nvm_submit_io, .submit_io_sync = nvme_nvm_submit_io_sync, .create_dma_pool = nvme_nvm_create_dma_pool, .destroy_dma_pool = nvme_nvm_destroy_dma_pool, .dev_dma_alloc = nvme_nvm_dev_dma_alloc, .dev_dma_free = nvme_nvm_dev_dma_free, }; static int nvme_nvm_submit_user_cmd(struct request_queue *q, struct nvme_ns *ns, struct nvme_nvm_command *vcmd, void __user *ubuf, unsigned int bufflen, void __user *meta_buf, unsigned int meta_len, void __user *ppa_buf, unsigned int ppa_len, u32 *result, u64 *status, unsigned int timeout) { bool write = nvme_is_write((struct nvme_command *)vcmd); struct nvm_dev *dev = ns->ndev; struct gendisk *disk = ns->disk; struct request *rq; struct bio *bio = NULL; __le64 *ppa_list = NULL; dma_addr_t ppa_dma; __le64 *metadata = NULL; dma_addr_t metadata_dma; DECLARE_COMPLETION_ONSTACK(wait); int ret = 0; rq = nvme_alloc_request(q, (struct nvme_command *)vcmd, 0, NVME_QID_ANY); if (IS_ERR(rq)) { ret = -ENOMEM; goto err_cmd; } rq->timeout = timeout ? timeout : ADMIN_TIMEOUT; if (ppa_buf && ppa_len) { ppa_list = dma_pool_alloc(dev->dma_pool, GFP_KERNEL, &ppa_dma); if (!ppa_list) { ret = -ENOMEM; goto err_rq; } if (copy_from_user(ppa_list, (void __user *)ppa_buf, sizeof(u64) * (ppa_len + 1))) { ret = -EFAULT; goto err_ppa; } vcmd->ph_rw.spba = cpu_to_le64(ppa_dma); } else { vcmd->ph_rw.spba = cpu_to_le64((uintptr_t)ppa_buf); } if (ubuf && bufflen) { ret = blk_rq_map_user(q, rq, NULL, ubuf, bufflen, GFP_KERNEL); if (ret) goto err_ppa; bio = rq->bio; if (meta_buf && meta_len) { metadata = dma_pool_alloc(dev->dma_pool, GFP_KERNEL, &metadata_dma); if (!metadata) { ret = -ENOMEM; goto err_map; } if (write) { if (copy_from_user(metadata, (void __user *)meta_buf, meta_len)) { ret = -EFAULT; goto err_meta; } } vcmd->ph_rw.metadata = cpu_to_le64(metadata_dma); } bio->bi_disk = disk; } blk_execute_rq(q, NULL, rq, 0); if (nvme_req(rq)->flags & NVME_REQ_CANCELLED) ret = -EINTR; else if (nvme_req(rq)->status & 0x7ff) ret = -EIO; if (result) *result = nvme_req(rq)->status & 0x7ff; if (status) *status = le64_to_cpu(nvme_req(rq)->result.u64); if (metadata && !ret && !write) { if (copy_to_user(meta_buf, (void *)metadata, meta_len)) ret = -EFAULT; } err_meta: if (meta_buf && meta_len) dma_pool_free(dev->dma_pool, metadata, metadata_dma); err_map: if (bio) blk_rq_unmap_user(bio); err_ppa: if (ppa_buf && ppa_len) dma_pool_free(dev->dma_pool, ppa_list, ppa_dma); err_rq: blk_mq_free_request(rq); err_cmd: return ret; } static int nvme_nvm_submit_vio(struct nvme_ns *ns, struct nvm_user_vio __user *uvio) { struct nvm_user_vio vio; struct nvme_nvm_command c; unsigned int length; int ret; if (copy_from_user(&vio, uvio, sizeof(vio))) return -EFAULT; if (vio.flags) return -EINVAL; memset(&c, 0, sizeof(c)); c.ph_rw.opcode = vio.opcode; c.ph_rw.nsid = cpu_to_le32(ns->head->ns_id); c.ph_rw.control = cpu_to_le16(vio.control); c.ph_rw.length = cpu_to_le16(vio.nppas); length = (vio.nppas + 1) << ns->lba_shift; ret = nvme_nvm_submit_user_cmd(ns->queue, ns, &c, (void __user *)(uintptr_t)vio.addr, length, (void __user *)(uintptr_t)vio.metadata, vio.metadata_len, (void __user *)(uintptr_t)vio.ppa_list, vio.nppas, &vio.result, &vio.status, 0); if (ret && copy_to_user(uvio, &vio, sizeof(vio))) return -EFAULT; return ret; } static int nvme_nvm_user_vcmd(struct nvme_ns *ns, int admin, struct nvm_passthru_vio __user *uvcmd) { struct nvm_passthru_vio vcmd; struct nvme_nvm_command c; struct request_queue *q; unsigned int timeout = 0; int ret; if (copy_from_user(&vcmd, uvcmd, sizeof(vcmd))) return -EFAULT; if ((vcmd.opcode != 0xF2) && (!capable(CAP_SYS_ADMIN))) return -EACCES; if (vcmd.flags) return -EINVAL; memset(&c, 0, sizeof(c)); c.common.opcode = vcmd.opcode; c.common.nsid = cpu_to_le32(ns->head->ns_id); c.common.cdw2[0] = cpu_to_le32(vcmd.cdw2); c.common.cdw2[1] = cpu_to_le32(vcmd.cdw3); /* cdw11-12 */ c.ph_rw.length = cpu_to_le16(vcmd.nppas); c.ph_rw.control = cpu_to_le16(vcmd.control); c.common.cdw13 = cpu_to_le32(vcmd.cdw13); c.common.cdw14 = cpu_to_le32(vcmd.cdw14); c.common.cdw15 = cpu_to_le32(vcmd.cdw15); if (vcmd.timeout_ms) timeout = msecs_to_jiffies(vcmd.timeout_ms); q = admin ? ns->ctrl->admin_q : ns->queue; ret = nvme_nvm_submit_user_cmd(q, ns, (struct nvme_nvm_command *)&c, (void __user *)(uintptr_t)vcmd.addr, vcmd.data_len, (void __user *)(uintptr_t)vcmd.metadata, vcmd.metadata_len, (void __user *)(uintptr_t)vcmd.ppa_list, vcmd.nppas, &vcmd.result, &vcmd.status, timeout); if (ret && copy_to_user(uvcmd, &vcmd, sizeof(vcmd))) return -EFAULT; return ret; } int nvme_nvm_ioctl(struct nvme_ns *ns, unsigned int cmd, unsigned long arg) { switch (cmd) { case NVME_NVM_IOCTL_ADMIN_VIO: return nvme_nvm_user_vcmd(ns, 1, (void __user *)arg); case NVME_NVM_IOCTL_IO_VIO: return nvme_nvm_user_vcmd(ns, 0, (void __user *)arg); case NVME_NVM_IOCTL_SUBMIT_VIO: return nvme_nvm_submit_vio(ns, (void __user *)arg); default: return -ENOTTY; } } int nvme_nvm_register(struct nvme_ns *ns, char *disk_name, int node) { struct request_queue *q = ns->queue; struct nvm_dev *dev; struct nvm_geo *geo; _nvme_nvm_check_size(); dev = nvm_alloc_dev(node); if (!dev) return -ENOMEM; /* Note that csecs and sos will be overridden if it is a 1.2 drive. */ geo = &dev->geo; geo->csecs = 1 << ns->lba_shift; geo->sos = ns->ms; geo->ext = ns->ext; geo->mdts = ns->ctrl->max_hw_sectors; dev->q = q; memcpy(dev->name, disk_name, DISK_NAME_LEN); dev->ops = &nvme_nvm_dev_ops; dev->private_data = ns; ns->ndev = dev; return nvm_register(dev); } void nvme_nvm_unregister(struct nvme_ns *ns) { nvm_unregister(ns->ndev); } static ssize_t nvm_dev_attr_show(struct device *dev, struct device_attribute *dattr, char *page) { struct nvme_ns *ns = nvme_get_ns_from_dev(dev); struct nvm_dev *ndev = ns->ndev; struct nvm_geo *geo = &ndev->geo; struct attribute *attr; if (!ndev) return 0; attr = &dattr->attr; if (strcmp(attr->name, "version") == 0) { if (geo->major_ver_id == 1) return scnprintf(page, PAGE_SIZE, "%u\n", geo->major_ver_id); else return scnprintf(page, PAGE_SIZE, "%u.%u\n", geo->major_ver_id, geo->minor_ver_id); } else if (strcmp(attr->name, "capabilities") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->cap); } else if (strcmp(attr->name, "read_typ") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->trdt); } else if (strcmp(attr->name, "read_max") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->trdm); } else { return scnprintf(page, PAGE_SIZE, "Unhandled attr(%s) in `%s`\n", attr->name, __func__); } } static ssize_t nvm_dev_attr_show_ppaf(struct nvm_addrf_12 *ppaf, char *page) { return scnprintf(page, PAGE_SIZE, "0x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", ppaf->ch_offset, ppaf->ch_len, ppaf->lun_offset, ppaf->lun_len, ppaf->pln_offset, ppaf->pln_len, ppaf->blk_offset, ppaf->blk_len, ppaf->pg_offset, ppaf->pg_len, ppaf->sec_offset, ppaf->sec_len); } static ssize_t nvm_dev_attr_show_12(struct device *dev, struct device_attribute *dattr, char *page) { struct nvme_ns *ns = nvme_get_ns_from_dev(dev); struct nvm_dev *ndev = ns->ndev; struct nvm_geo *geo = &ndev->geo; struct attribute *attr; if (!ndev) return 0; attr = &dattr->attr; if (strcmp(attr->name, "vendor_opcode") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->vmnt); } else if (strcmp(attr->name, "device_mode") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->dom); /* kept for compatibility */ } else if (strcmp(attr->name, "media_manager") == 0) { return scnprintf(page, PAGE_SIZE, "%s\n", "gennvm"); } else if (strcmp(attr->name, "ppa_format") == 0) { return nvm_dev_attr_show_ppaf((void *)&geo->addrf, page); } else if (strcmp(attr->name, "media_type") == 0) { /* u8 */ return scnprintf(page, PAGE_SIZE, "%u\n", geo->mtype); } else if (strcmp(attr->name, "flash_media_type") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->fmtype); } else if (strcmp(attr->name, "num_channels") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->num_ch); } else if (strcmp(attr->name, "num_luns") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->num_lun); } else if (strcmp(attr->name, "num_planes") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->num_pln); } else if (strcmp(attr->name, "num_blocks") == 0) { /* u16 */ return scnprintf(page, PAGE_SIZE, "%u\n", geo->num_chk); } else if (strcmp(attr->name, "num_pages") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->num_pg); } else if (strcmp(attr->name, "page_size") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->fpg_sz); } else if (strcmp(attr->name, "hw_sector_size") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->csecs); } else if (strcmp(attr->name, "oob_sector_size") == 0) {/* u32 */ return scnprintf(page, PAGE_SIZE, "%u\n", geo->sos); } else if (strcmp(attr->name, "prog_typ") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->tprt); } else if (strcmp(attr->name, "prog_max") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->tprm); } else if (strcmp(attr->name, "erase_typ") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->tbet); } else if (strcmp(attr->name, "erase_max") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->tbem); } else if (strcmp(attr->name, "multiplane_modes") == 0) { return scnprintf(page, PAGE_SIZE, "0x%08x\n", geo->mpos); } else if (strcmp(attr->name, "media_capabilities") == 0) { return scnprintf(page, PAGE_SIZE, "0x%08x\n", geo->mccap); } else if (strcmp(attr->name, "max_phys_secs") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", NVM_MAX_VLBA); } else { return scnprintf(page, PAGE_SIZE, "Unhandled attr(%s) in `%s`\n", attr->name, __func__); } } static ssize_t nvm_dev_attr_show_20(struct device *dev, struct device_attribute *dattr, char *page) { struct nvme_ns *ns = nvme_get_ns_from_dev(dev); struct nvm_dev *ndev = ns->ndev; struct nvm_geo *geo = &ndev->geo; struct attribute *attr; if (!ndev) return 0; attr = &dattr->attr; if (strcmp(attr->name, "groups") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->num_ch); } else if (strcmp(attr->name, "punits") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->num_lun); } else if (strcmp(attr->name, "chunks") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->num_chk); } else if (strcmp(attr->name, "clba") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->clba); } else if (strcmp(attr->name, "ws_min") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->ws_min); } else if (strcmp(attr->name, "ws_opt") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->ws_opt); } else if (strcmp(attr->name, "maxoc") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->maxoc); } else if (strcmp(attr->name, "maxocpu") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->maxocpu); } else if (strcmp(attr->name, "mw_cunits") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->mw_cunits); } else if (strcmp(attr->name, "write_typ") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->tprt); } else if (strcmp(attr->name, "write_max") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->tprm); } else if (strcmp(attr->name, "reset_typ") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->tbet); } else if (strcmp(attr->name, "reset_max") == 0) { return scnprintf(page, PAGE_SIZE, "%u\n", geo->tbem); } else { return scnprintf(page, PAGE_SIZE, "Unhandled attr(%s) in `%s`\n", attr->name, __func__); } } #define NVM_DEV_ATTR_RO(_name) \ DEVICE_ATTR(_name, S_IRUGO, nvm_dev_attr_show, NULL) #define NVM_DEV_ATTR_12_RO(_name) \ DEVICE_ATTR(_name, S_IRUGO, nvm_dev_attr_show_12, NULL) #define NVM_DEV_ATTR_20_RO(_name) \ DEVICE_ATTR(_name, S_IRUGO, nvm_dev_attr_show_20, NULL) /* general attributes */ static NVM_DEV_ATTR_RO(version); static NVM_DEV_ATTR_RO(capabilities); static NVM_DEV_ATTR_RO(read_typ); static NVM_DEV_ATTR_RO(read_max); /* 1.2 values */ static NVM_DEV_ATTR_12_RO(vendor_opcode); static NVM_DEV_ATTR_12_RO(device_mode); static NVM_DEV_ATTR_12_RO(ppa_format); static NVM_DEV_ATTR_12_RO(media_manager); static NVM_DEV_ATTR_12_RO(media_type); static NVM_DEV_ATTR_12_RO(flash_media_type); static NVM_DEV_ATTR_12_RO(num_channels); static NVM_DEV_ATTR_12_RO(num_luns); static NVM_DEV_ATTR_12_RO(num_planes); static NVM_DEV_ATTR_12_RO(num_blocks); static NVM_DEV_ATTR_12_RO(num_pages); static NVM_DEV_ATTR_12_RO(page_size); static NVM_DEV_ATTR_12_RO(hw_sector_size); static NVM_DEV_ATTR_12_RO(oob_sector_size); static NVM_DEV_ATTR_12_RO(prog_typ); static NVM_DEV_ATTR_12_RO(prog_max); static NVM_DEV_ATTR_12_RO(erase_typ); static NVM_DEV_ATTR_12_RO(erase_max); static NVM_DEV_ATTR_12_RO(multiplane_modes); static NVM_DEV_ATTR_12_RO(media_capabilities); static NVM_DEV_ATTR_12_RO(max_phys_secs); /* 2.0 values */ static NVM_DEV_ATTR_20_RO(groups); static NVM_DEV_ATTR_20_RO(punits); static NVM_DEV_ATTR_20_RO(chunks); static NVM_DEV_ATTR_20_RO(clba); static NVM_DEV_ATTR_20_RO(ws_min); static NVM_DEV_ATTR_20_RO(ws_opt); static NVM_DEV_ATTR_20_RO(maxoc); static NVM_DEV_ATTR_20_RO(maxocpu); static NVM_DEV_ATTR_20_RO(mw_cunits); static NVM_DEV_ATTR_20_RO(write_typ); static NVM_DEV_ATTR_20_RO(write_max); static NVM_DEV_ATTR_20_RO(reset_typ); static NVM_DEV_ATTR_20_RO(reset_max); static struct attribute *nvm_dev_attrs[] = { /* version agnostic attrs */ &dev_attr_version.attr, &dev_attr_capabilities.attr, &dev_attr_read_typ.attr, &dev_attr_read_max.attr, /* 1.2 attrs */ &dev_attr_vendor_opcode.attr, &dev_attr_device_mode.attr, &dev_attr_media_manager.attr, &dev_attr_ppa_format.attr, &dev_attr_media_type.attr, &dev_attr_flash_media_type.attr, &dev_attr_num_channels.attr, &dev_attr_num_luns.attr, &dev_attr_num_planes.attr, &dev_attr_num_blocks.attr, &dev_attr_num_pages.attr, &dev_attr_page_size.attr, &dev_attr_hw_sector_size.attr, &dev_attr_oob_sector_size.attr, &dev_attr_prog_typ.attr, &dev_attr_prog_max.attr, &dev_attr_erase_typ.attr, &dev_attr_erase_max.attr, &dev_attr_multiplane_modes.attr, &dev_attr_media_capabilities.attr, &dev_attr_max_phys_secs.attr, /* 2.0 attrs */ &dev_attr_groups.attr, &dev_attr_punits.attr, &dev_attr_chunks.attr, &dev_attr_clba.attr, &dev_attr_ws_min.attr, &dev_attr_ws_opt.attr, &dev_attr_maxoc.attr, &dev_attr_maxocpu.attr, &dev_attr_mw_cunits.attr, &dev_attr_write_typ.attr, &dev_attr_write_max.attr, &dev_attr_reset_typ.attr, &dev_attr_reset_max.attr, NULL, }; static umode_t nvm_dev_attrs_visible(struct kobject *kobj, struct attribute *attr, int index) { struct device *dev = container_of(kobj, struct device, kobj); struct gendisk *disk = dev_to_disk(dev); struct nvme_ns *ns = disk->private_data; struct nvm_dev *ndev = ns->ndev; struct device_attribute *dev_attr = container_of(attr, typeof(*dev_attr), attr); if (!ndev) return 0; if (dev_attr->show == nvm_dev_attr_show) return attr->mode; switch (ndev->geo.major_ver_id) { case 1: if (dev_attr->show == nvm_dev_attr_show_12) return attr->mode; break; case 2: if (dev_attr->show == nvm_dev_attr_show_20) return attr->mode; break; } return 0; } const struct attribute_group nvme_nvm_attr_group = { .name = "lightnvm", .attrs = nvm_dev_attrs, .is_visible = nvm_dev_attrs_visible, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1