Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christoph Hellwig | 6278 | 78.38% | 6 | 13.95% |
Sagi Grimberg | 606 | 7.57% | 12 | 27.91% |
Steve Wise | 590 | 7.37% | 3 | 6.98% |
Max Gurtovoy | 170 | 2.12% | 7 | 16.28% |
Parav Pandit | 108 | 1.35% | 1 | 2.33% |
Raju Rangoju | 73 | 0.91% | 1 | 2.33% |
Chaitanya Kulkarni | 58 | 0.72% | 1 | 2.33% |
Israel Rukshin | 54 | 0.67% | 4 | 9.30% |
Logan Gunthorpe | 44 | 0.55% | 1 | 2.33% |
Bart Van Assche | 16 | 0.20% | 3 | 6.98% |
Vijay Immanuel | 8 | 0.10% | 1 | 2.33% |
Jay Freyensee | 3 | 0.04% | 1 | 2.33% |
Christophe Jaillet | 1 | 0.01% | 1 | 2.33% |
Jason Gunthorpe | 1 | 0.01% | 1 | 2.33% |
Total | 8010 | 43 |
// SPDX-License-Identifier: GPL-2.0 /* * NVMe over Fabrics RDMA target. * Copyright (c) 2015-2016 HGST, a Western Digital Company. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/atomic.h> #include <linux/ctype.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/init.h> #include <linux/module.h> #include <linux/nvme.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/wait.h> #include <linux/inet.h> #include <asm/unaligned.h> #include <rdma/ib_verbs.h> #include <rdma/rdma_cm.h> #include <rdma/rw.h> #include <linux/nvme-rdma.h> #include "nvmet.h" /* * We allow at least 1 page, up to 4 SGEs, and up to 16KB of inline data */ #define NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE PAGE_SIZE #define NVMET_RDMA_MAX_INLINE_SGE 4 #define NVMET_RDMA_MAX_INLINE_DATA_SIZE max_t(int, SZ_16K, PAGE_SIZE) struct nvmet_rdma_cmd { struct ib_sge sge[NVMET_RDMA_MAX_INLINE_SGE + 1]; struct ib_cqe cqe; struct ib_recv_wr wr; struct scatterlist inline_sg[NVMET_RDMA_MAX_INLINE_SGE]; struct nvme_command *nvme_cmd; struct nvmet_rdma_queue *queue; }; enum { NVMET_RDMA_REQ_INLINE_DATA = (1 << 0), NVMET_RDMA_REQ_INVALIDATE_RKEY = (1 << 1), }; struct nvmet_rdma_rsp { struct ib_sge send_sge; struct ib_cqe send_cqe; struct ib_send_wr send_wr; struct nvmet_rdma_cmd *cmd; struct nvmet_rdma_queue *queue; struct ib_cqe read_cqe; struct rdma_rw_ctx rw; struct nvmet_req req; bool allocated; u8 n_rdma; u32 flags; u32 invalidate_rkey; struct list_head wait_list; struct list_head free_list; }; enum nvmet_rdma_queue_state { NVMET_RDMA_Q_CONNECTING, NVMET_RDMA_Q_LIVE, NVMET_RDMA_Q_DISCONNECTING, }; struct nvmet_rdma_queue { struct rdma_cm_id *cm_id; struct nvmet_port *port; struct ib_cq *cq; atomic_t sq_wr_avail; struct nvmet_rdma_device *dev; spinlock_t state_lock; enum nvmet_rdma_queue_state state; struct nvmet_cq nvme_cq; struct nvmet_sq nvme_sq; struct nvmet_rdma_rsp *rsps; struct list_head free_rsps; spinlock_t rsps_lock; struct nvmet_rdma_cmd *cmds; struct work_struct release_work; struct list_head rsp_wait_list; struct list_head rsp_wr_wait_list; spinlock_t rsp_wr_wait_lock; int idx; int host_qid; int recv_queue_size; int send_queue_size; struct list_head queue_list; }; struct nvmet_rdma_device { struct ib_device *device; struct ib_pd *pd; struct ib_srq *srq; struct nvmet_rdma_cmd *srq_cmds; size_t srq_size; struct kref ref; struct list_head entry; int inline_data_size; int inline_page_count; }; static bool nvmet_rdma_use_srq; module_param_named(use_srq, nvmet_rdma_use_srq, bool, 0444); MODULE_PARM_DESC(use_srq, "Use shared receive queue."); static DEFINE_IDA(nvmet_rdma_queue_ida); static LIST_HEAD(nvmet_rdma_queue_list); static DEFINE_MUTEX(nvmet_rdma_queue_mutex); static LIST_HEAD(device_list); static DEFINE_MUTEX(device_list_mutex); static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp); static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc); static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc); static void nvmet_rdma_qp_event(struct ib_event *event, void *priv); static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue); static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, struct nvmet_rdma_rsp *r); static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, struct nvmet_rdma_rsp *r); static const struct nvmet_fabrics_ops nvmet_rdma_ops; static int num_pages(int len) { return 1 + (((len - 1) & PAGE_MASK) >> PAGE_SHIFT); } /* XXX: really should move to a generic header sooner or later.. */ static inline u32 get_unaligned_le24(const u8 *p) { return (u32)p[0] | (u32)p[1] << 8 | (u32)p[2] << 16; } static inline bool nvmet_rdma_need_data_in(struct nvmet_rdma_rsp *rsp) { return nvme_is_write(rsp->req.cmd) && rsp->req.transfer_len && !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); } static inline bool nvmet_rdma_need_data_out(struct nvmet_rdma_rsp *rsp) { return !nvme_is_write(rsp->req.cmd) && rsp->req.transfer_len && !rsp->req.cqe->status && !(rsp->flags & NVMET_RDMA_REQ_INLINE_DATA); } static inline struct nvmet_rdma_rsp * nvmet_rdma_get_rsp(struct nvmet_rdma_queue *queue) { struct nvmet_rdma_rsp *rsp; unsigned long flags; spin_lock_irqsave(&queue->rsps_lock, flags); rsp = list_first_entry_or_null(&queue->free_rsps, struct nvmet_rdma_rsp, free_list); if (likely(rsp)) list_del(&rsp->free_list); spin_unlock_irqrestore(&queue->rsps_lock, flags); if (unlikely(!rsp)) { int ret; rsp = kzalloc(sizeof(*rsp), GFP_KERNEL); if (unlikely(!rsp)) return NULL; ret = nvmet_rdma_alloc_rsp(queue->dev, rsp); if (unlikely(ret)) { kfree(rsp); return NULL; } rsp->allocated = true; } return rsp; } static inline void nvmet_rdma_put_rsp(struct nvmet_rdma_rsp *rsp) { unsigned long flags; if (unlikely(rsp->allocated)) { nvmet_rdma_free_rsp(rsp->queue->dev, rsp); kfree(rsp); return; } spin_lock_irqsave(&rsp->queue->rsps_lock, flags); list_add_tail(&rsp->free_list, &rsp->queue->free_rsps); spin_unlock_irqrestore(&rsp->queue->rsps_lock, flags); } static void nvmet_rdma_free_inline_pages(struct nvmet_rdma_device *ndev, struct nvmet_rdma_cmd *c) { struct scatterlist *sg; struct ib_sge *sge; int i; if (!ndev->inline_data_size) return; sg = c->inline_sg; sge = &c->sge[1]; for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { if (sge->length) ib_dma_unmap_page(ndev->device, sge->addr, sge->length, DMA_FROM_DEVICE); if (sg_page(sg)) __free_page(sg_page(sg)); } } static int nvmet_rdma_alloc_inline_pages(struct nvmet_rdma_device *ndev, struct nvmet_rdma_cmd *c) { struct scatterlist *sg; struct ib_sge *sge; struct page *pg; int len; int i; if (!ndev->inline_data_size) return 0; sg = c->inline_sg; sg_init_table(sg, ndev->inline_page_count); sge = &c->sge[1]; len = ndev->inline_data_size; for (i = 0; i < ndev->inline_page_count; i++, sg++, sge++) { pg = alloc_page(GFP_KERNEL); if (!pg) goto out_err; sg_assign_page(sg, pg); sge->addr = ib_dma_map_page(ndev->device, pg, 0, PAGE_SIZE, DMA_FROM_DEVICE); if (ib_dma_mapping_error(ndev->device, sge->addr)) goto out_err; sge->length = min_t(int, len, PAGE_SIZE); sge->lkey = ndev->pd->local_dma_lkey; len -= sge->length; } return 0; out_err: for (; i >= 0; i--, sg--, sge--) { if (sge->length) ib_dma_unmap_page(ndev->device, sge->addr, sge->length, DMA_FROM_DEVICE); if (sg_page(sg)) __free_page(sg_page(sg)); } return -ENOMEM; } static int nvmet_rdma_alloc_cmd(struct nvmet_rdma_device *ndev, struct nvmet_rdma_cmd *c, bool admin) { /* NVMe command / RDMA RECV */ c->nvme_cmd = kmalloc(sizeof(*c->nvme_cmd), GFP_KERNEL); if (!c->nvme_cmd) goto out; c->sge[0].addr = ib_dma_map_single(ndev->device, c->nvme_cmd, sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); if (ib_dma_mapping_error(ndev->device, c->sge[0].addr)) goto out_free_cmd; c->sge[0].length = sizeof(*c->nvme_cmd); c->sge[0].lkey = ndev->pd->local_dma_lkey; if (!admin && nvmet_rdma_alloc_inline_pages(ndev, c)) goto out_unmap_cmd; c->cqe.done = nvmet_rdma_recv_done; c->wr.wr_cqe = &c->cqe; c->wr.sg_list = c->sge; c->wr.num_sge = admin ? 1 : ndev->inline_page_count + 1; return 0; out_unmap_cmd: ib_dma_unmap_single(ndev->device, c->sge[0].addr, sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); out_free_cmd: kfree(c->nvme_cmd); out: return -ENOMEM; } static void nvmet_rdma_free_cmd(struct nvmet_rdma_device *ndev, struct nvmet_rdma_cmd *c, bool admin) { if (!admin) nvmet_rdma_free_inline_pages(ndev, c); ib_dma_unmap_single(ndev->device, c->sge[0].addr, sizeof(*c->nvme_cmd), DMA_FROM_DEVICE); kfree(c->nvme_cmd); } static struct nvmet_rdma_cmd * nvmet_rdma_alloc_cmds(struct nvmet_rdma_device *ndev, int nr_cmds, bool admin) { struct nvmet_rdma_cmd *cmds; int ret = -EINVAL, i; cmds = kcalloc(nr_cmds, sizeof(struct nvmet_rdma_cmd), GFP_KERNEL); if (!cmds) goto out; for (i = 0; i < nr_cmds; i++) { ret = nvmet_rdma_alloc_cmd(ndev, cmds + i, admin); if (ret) goto out_free; } return cmds; out_free: while (--i >= 0) nvmet_rdma_free_cmd(ndev, cmds + i, admin); kfree(cmds); out: return ERR_PTR(ret); } static void nvmet_rdma_free_cmds(struct nvmet_rdma_device *ndev, struct nvmet_rdma_cmd *cmds, int nr_cmds, bool admin) { int i; for (i = 0; i < nr_cmds; i++) nvmet_rdma_free_cmd(ndev, cmds + i, admin); kfree(cmds); } static int nvmet_rdma_alloc_rsp(struct nvmet_rdma_device *ndev, struct nvmet_rdma_rsp *r) { /* NVMe CQE / RDMA SEND */ r->req.cqe = kmalloc(sizeof(*r->req.cqe), GFP_KERNEL); if (!r->req.cqe) goto out; r->send_sge.addr = ib_dma_map_single(ndev->device, r->req.cqe, sizeof(*r->req.cqe), DMA_TO_DEVICE); if (ib_dma_mapping_error(ndev->device, r->send_sge.addr)) goto out_free_rsp; r->req.p2p_client = &ndev->device->dev; r->send_sge.length = sizeof(*r->req.cqe); r->send_sge.lkey = ndev->pd->local_dma_lkey; r->send_cqe.done = nvmet_rdma_send_done; r->send_wr.wr_cqe = &r->send_cqe; r->send_wr.sg_list = &r->send_sge; r->send_wr.num_sge = 1; r->send_wr.send_flags = IB_SEND_SIGNALED; /* Data In / RDMA READ */ r->read_cqe.done = nvmet_rdma_read_data_done; return 0; out_free_rsp: kfree(r->req.cqe); out: return -ENOMEM; } static void nvmet_rdma_free_rsp(struct nvmet_rdma_device *ndev, struct nvmet_rdma_rsp *r) { ib_dma_unmap_single(ndev->device, r->send_sge.addr, sizeof(*r->req.cqe), DMA_TO_DEVICE); kfree(r->req.cqe); } static int nvmet_rdma_alloc_rsps(struct nvmet_rdma_queue *queue) { struct nvmet_rdma_device *ndev = queue->dev; int nr_rsps = queue->recv_queue_size * 2; int ret = -EINVAL, i; queue->rsps = kcalloc(nr_rsps, sizeof(struct nvmet_rdma_rsp), GFP_KERNEL); if (!queue->rsps) goto out; for (i = 0; i < nr_rsps; i++) { struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; ret = nvmet_rdma_alloc_rsp(ndev, rsp); if (ret) goto out_free; list_add_tail(&rsp->free_list, &queue->free_rsps); } return 0; out_free: while (--i >= 0) { struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; list_del(&rsp->free_list); nvmet_rdma_free_rsp(ndev, rsp); } kfree(queue->rsps); out: return ret; } static void nvmet_rdma_free_rsps(struct nvmet_rdma_queue *queue) { struct nvmet_rdma_device *ndev = queue->dev; int i, nr_rsps = queue->recv_queue_size * 2; for (i = 0; i < nr_rsps; i++) { struct nvmet_rdma_rsp *rsp = &queue->rsps[i]; list_del(&rsp->free_list); nvmet_rdma_free_rsp(ndev, rsp); } kfree(queue->rsps); } static int nvmet_rdma_post_recv(struct nvmet_rdma_device *ndev, struct nvmet_rdma_cmd *cmd) { int ret; ib_dma_sync_single_for_device(ndev->device, cmd->sge[0].addr, cmd->sge[0].length, DMA_FROM_DEVICE); if (ndev->srq) ret = ib_post_srq_recv(ndev->srq, &cmd->wr, NULL); else ret = ib_post_recv(cmd->queue->cm_id->qp, &cmd->wr, NULL); if (unlikely(ret)) pr_err("post_recv cmd failed\n"); return ret; } static void nvmet_rdma_process_wr_wait_list(struct nvmet_rdma_queue *queue) { spin_lock(&queue->rsp_wr_wait_lock); while (!list_empty(&queue->rsp_wr_wait_list)) { struct nvmet_rdma_rsp *rsp; bool ret; rsp = list_entry(queue->rsp_wr_wait_list.next, struct nvmet_rdma_rsp, wait_list); list_del(&rsp->wait_list); spin_unlock(&queue->rsp_wr_wait_lock); ret = nvmet_rdma_execute_command(rsp); spin_lock(&queue->rsp_wr_wait_lock); if (!ret) { list_add(&rsp->wait_list, &queue->rsp_wr_wait_list); break; } } spin_unlock(&queue->rsp_wr_wait_lock); } static void nvmet_rdma_release_rsp(struct nvmet_rdma_rsp *rsp) { struct nvmet_rdma_queue *queue = rsp->queue; atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); if (rsp->n_rdma) { rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp, queue->cm_id->port_num, rsp->req.sg, rsp->req.sg_cnt, nvmet_data_dir(&rsp->req)); } if (rsp->req.sg != rsp->cmd->inline_sg) nvmet_req_free_sgl(&rsp->req); if (unlikely(!list_empty_careful(&queue->rsp_wr_wait_list))) nvmet_rdma_process_wr_wait_list(queue); nvmet_rdma_put_rsp(rsp); } static void nvmet_rdma_error_comp(struct nvmet_rdma_queue *queue) { if (queue->nvme_sq.ctrl) { nvmet_ctrl_fatal_error(queue->nvme_sq.ctrl); } else { /* * we didn't setup the controller yet in case * of admin connect error, just disconnect and * cleanup the queue */ nvmet_rdma_queue_disconnect(queue); } } static void nvmet_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) { struct nvmet_rdma_rsp *rsp = container_of(wc->wr_cqe, struct nvmet_rdma_rsp, send_cqe); struct nvmet_rdma_queue *queue = cq->cq_context; nvmet_rdma_release_rsp(rsp); if (unlikely(wc->status != IB_WC_SUCCESS && wc->status != IB_WC_WR_FLUSH_ERR)) { pr_err("SEND for CQE 0x%p failed with status %s (%d).\n", wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); nvmet_rdma_error_comp(queue); } } static void nvmet_rdma_queue_response(struct nvmet_req *req) { struct nvmet_rdma_rsp *rsp = container_of(req, struct nvmet_rdma_rsp, req); struct rdma_cm_id *cm_id = rsp->queue->cm_id; struct ib_send_wr *first_wr; if (rsp->flags & NVMET_RDMA_REQ_INVALIDATE_RKEY) { rsp->send_wr.opcode = IB_WR_SEND_WITH_INV; rsp->send_wr.ex.invalidate_rkey = rsp->invalidate_rkey; } else { rsp->send_wr.opcode = IB_WR_SEND; } if (nvmet_rdma_need_data_out(rsp)) first_wr = rdma_rw_ctx_wrs(&rsp->rw, cm_id->qp, cm_id->port_num, NULL, &rsp->send_wr); else first_wr = &rsp->send_wr; nvmet_rdma_post_recv(rsp->queue->dev, rsp->cmd); ib_dma_sync_single_for_device(rsp->queue->dev->device, rsp->send_sge.addr, rsp->send_sge.length, DMA_TO_DEVICE); if (unlikely(ib_post_send(cm_id->qp, first_wr, NULL))) { pr_err("sending cmd response failed\n"); nvmet_rdma_release_rsp(rsp); } } static void nvmet_rdma_read_data_done(struct ib_cq *cq, struct ib_wc *wc) { struct nvmet_rdma_rsp *rsp = container_of(wc->wr_cqe, struct nvmet_rdma_rsp, read_cqe); struct nvmet_rdma_queue *queue = cq->cq_context; WARN_ON(rsp->n_rdma <= 0); atomic_add(rsp->n_rdma, &queue->sq_wr_avail); rdma_rw_ctx_destroy(&rsp->rw, queue->cm_id->qp, queue->cm_id->port_num, rsp->req.sg, rsp->req.sg_cnt, nvmet_data_dir(&rsp->req)); rsp->n_rdma = 0; if (unlikely(wc->status != IB_WC_SUCCESS)) { nvmet_req_uninit(&rsp->req); nvmet_rdma_release_rsp(rsp); if (wc->status != IB_WC_WR_FLUSH_ERR) { pr_info("RDMA READ for CQE 0x%p failed with status %s (%d).\n", wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); nvmet_rdma_error_comp(queue); } return; } nvmet_req_execute(&rsp->req); } static void nvmet_rdma_use_inline_sg(struct nvmet_rdma_rsp *rsp, u32 len, u64 off) { int sg_count = num_pages(len); struct scatterlist *sg; int i; sg = rsp->cmd->inline_sg; for (i = 0; i < sg_count; i++, sg++) { if (i < sg_count - 1) sg_unmark_end(sg); else sg_mark_end(sg); sg->offset = off; sg->length = min_t(int, len, PAGE_SIZE - off); len -= sg->length; if (!i) off = 0; } rsp->req.sg = rsp->cmd->inline_sg; rsp->req.sg_cnt = sg_count; } static u16 nvmet_rdma_map_sgl_inline(struct nvmet_rdma_rsp *rsp) { struct nvme_sgl_desc *sgl = &rsp->req.cmd->common.dptr.sgl; u64 off = le64_to_cpu(sgl->addr); u32 len = le32_to_cpu(sgl->length); if (!nvme_is_write(rsp->req.cmd)) { rsp->req.error_loc = offsetof(struct nvme_common_command, opcode); return NVME_SC_INVALID_FIELD | NVME_SC_DNR; } if (off + len > rsp->queue->dev->inline_data_size) { pr_err("invalid inline data offset!\n"); return NVME_SC_SGL_INVALID_OFFSET | NVME_SC_DNR; } /* no data command? */ if (!len) return 0; nvmet_rdma_use_inline_sg(rsp, len, off); rsp->flags |= NVMET_RDMA_REQ_INLINE_DATA; rsp->req.transfer_len += len; return 0; } static u16 nvmet_rdma_map_sgl_keyed(struct nvmet_rdma_rsp *rsp, struct nvme_keyed_sgl_desc *sgl, bool invalidate) { struct rdma_cm_id *cm_id = rsp->queue->cm_id; u64 addr = le64_to_cpu(sgl->addr); u32 key = get_unaligned_le32(sgl->key); int ret; rsp->req.transfer_len = get_unaligned_le24(sgl->length); /* no data command? */ if (!rsp->req.transfer_len) return 0; ret = nvmet_req_alloc_sgl(&rsp->req); if (ret < 0) goto error_out; ret = rdma_rw_ctx_init(&rsp->rw, cm_id->qp, cm_id->port_num, rsp->req.sg, rsp->req.sg_cnt, 0, addr, key, nvmet_data_dir(&rsp->req)); if (ret < 0) goto error_out; rsp->n_rdma += ret; if (invalidate) { rsp->invalidate_rkey = key; rsp->flags |= NVMET_RDMA_REQ_INVALIDATE_RKEY; } return 0; error_out: rsp->req.transfer_len = 0; return NVME_SC_INTERNAL; } static u16 nvmet_rdma_map_sgl(struct nvmet_rdma_rsp *rsp) { struct nvme_keyed_sgl_desc *sgl = &rsp->req.cmd->common.dptr.ksgl; switch (sgl->type >> 4) { case NVME_SGL_FMT_DATA_DESC: switch (sgl->type & 0xf) { case NVME_SGL_FMT_OFFSET: return nvmet_rdma_map_sgl_inline(rsp); default: pr_err("invalid SGL subtype: %#x\n", sgl->type); rsp->req.error_loc = offsetof(struct nvme_common_command, dptr); return NVME_SC_INVALID_FIELD | NVME_SC_DNR; } case NVME_KEY_SGL_FMT_DATA_DESC: switch (sgl->type & 0xf) { case NVME_SGL_FMT_ADDRESS | NVME_SGL_FMT_INVALIDATE: return nvmet_rdma_map_sgl_keyed(rsp, sgl, true); case NVME_SGL_FMT_ADDRESS: return nvmet_rdma_map_sgl_keyed(rsp, sgl, false); default: pr_err("invalid SGL subtype: %#x\n", sgl->type); rsp->req.error_loc = offsetof(struct nvme_common_command, dptr); return NVME_SC_INVALID_FIELD | NVME_SC_DNR; } default: pr_err("invalid SGL type: %#x\n", sgl->type); rsp->req.error_loc = offsetof(struct nvme_common_command, dptr); return NVME_SC_SGL_INVALID_TYPE | NVME_SC_DNR; } } static bool nvmet_rdma_execute_command(struct nvmet_rdma_rsp *rsp) { struct nvmet_rdma_queue *queue = rsp->queue; if (unlikely(atomic_sub_return(1 + rsp->n_rdma, &queue->sq_wr_avail) < 0)) { pr_debug("IB send queue full (needed %d): queue %u cntlid %u\n", 1 + rsp->n_rdma, queue->idx, queue->nvme_sq.ctrl->cntlid); atomic_add(1 + rsp->n_rdma, &queue->sq_wr_avail); return false; } if (nvmet_rdma_need_data_in(rsp)) { if (rdma_rw_ctx_post(&rsp->rw, queue->cm_id->qp, queue->cm_id->port_num, &rsp->read_cqe, NULL)) nvmet_req_complete(&rsp->req, NVME_SC_DATA_XFER_ERROR); } else { nvmet_req_execute(&rsp->req); } return true; } static void nvmet_rdma_handle_command(struct nvmet_rdma_queue *queue, struct nvmet_rdma_rsp *cmd) { u16 status; ib_dma_sync_single_for_cpu(queue->dev->device, cmd->cmd->sge[0].addr, cmd->cmd->sge[0].length, DMA_FROM_DEVICE); ib_dma_sync_single_for_cpu(queue->dev->device, cmd->send_sge.addr, cmd->send_sge.length, DMA_TO_DEVICE); if (!nvmet_req_init(&cmd->req, &queue->nvme_cq, &queue->nvme_sq, &nvmet_rdma_ops)) return; status = nvmet_rdma_map_sgl(cmd); if (status) goto out_err; if (unlikely(!nvmet_rdma_execute_command(cmd))) { spin_lock(&queue->rsp_wr_wait_lock); list_add_tail(&cmd->wait_list, &queue->rsp_wr_wait_list); spin_unlock(&queue->rsp_wr_wait_lock); } return; out_err: nvmet_req_complete(&cmd->req, status); } static void nvmet_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) { struct nvmet_rdma_cmd *cmd = container_of(wc->wr_cqe, struct nvmet_rdma_cmd, cqe); struct nvmet_rdma_queue *queue = cq->cq_context; struct nvmet_rdma_rsp *rsp; if (unlikely(wc->status != IB_WC_SUCCESS)) { if (wc->status != IB_WC_WR_FLUSH_ERR) { pr_err("RECV for CQE 0x%p failed with status %s (%d)\n", wc->wr_cqe, ib_wc_status_msg(wc->status), wc->status); nvmet_rdma_error_comp(queue); } return; } if (unlikely(wc->byte_len < sizeof(struct nvme_command))) { pr_err("Ctrl Fatal Error: capsule size less than 64 bytes\n"); nvmet_rdma_error_comp(queue); return; } cmd->queue = queue; rsp = nvmet_rdma_get_rsp(queue); if (unlikely(!rsp)) { /* * we get here only under memory pressure, * silently drop and have the host retry * as we can't even fail it. */ nvmet_rdma_post_recv(queue->dev, cmd); return; } rsp->queue = queue; rsp->cmd = cmd; rsp->flags = 0; rsp->req.cmd = cmd->nvme_cmd; rsp->req.port = queue->port; rsp->n_rdma = 0; if (unlikely(queue->state != NVMET_RDMA_Q_LIVE)) { unsigned long flags; spin_lock_irqsave(&queue->state_lock, flags); if (queue->state == NVMET_RDMA_Q_CONNECTING) list_add_tail(&rsp->wait_list, &queue->rsp_wait_list); else nvmet_rdma_put_rsp(rsp); spin_unlock_irqrestore(&queue->state_lock, flags); return; } nvmet_rdma_handle_command(queue, rsp); } static void nvmet_rdma_destroy_srq(struct nvmet_rdma_device *ndev) { if (!ndev->srq) return; nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false); ib_destroy_srq(ndev->srq); } static int nvmet_rdma_init_srq(struct nvmet_rdma_device *ndev) { struct ib_srq_init_attr srq_attr = { NULL, }; struct ib_srq *srq; size_t srq_size; int ret, i; srq_size = 4095; /* XXX: tune */ srq_attr.attr.max_wr = srq_size; srq_attr.attr.max_sge = 1 + ndev->inline_page_count; srq_attr.attr.srq_limit = 0; srq_attr.srq_type = IB_SRQT_BASIC; srq = ib_create_srq(ndev->pd, &srq_attr); if (IS_ERR(srq)) { /* * If SRQs aren't supported we just go ahead and use normal * non-shared receive queues. */ pr_info("SRQ requested but not supported.\n"); return 0; } ndev->srq_cmds = nvmet_rdma_alloc_cmds(ndev, srq_size, false); if (IS_ERR(ndev->srq_cmds)) { ret = PTR_ERR(ndev->srq_cmds); goto out_destroy_srq; } ndev->srq = srq; ndev->srq_size = srq_size; for (i = 0; i < srq_size; i++) { ret = nvmet_rdma_post_recv(ndev, &ndev->srq_cmds[i]); if (ret) goto out_free_cmds; } return 0; out_free_cmds: nvmet_rdma_free_cmds(ndev, ndev->srq_cmds, ndev->srq_size, false); out_destroy_srq: ib_destroy_srq(srq); return ret; } static void nvmet_rdma_free_dev(struct kref *ref) { struct nvmet_rdma_device *ndev = container_of(ref, struct nvmet_rdma_device, ref); mutex_lock(&device_list_mutex); list_del(&ndev->entry); mutex_unlock(&device_list_mutex); nvmet_rdma_destroy_srq(ndev); ib_dealloc_pd(ndev->pd); kfree(ndev); } static struct nvmet_rdma_device * nvmet_rdma_find_get_device(struct rdma_cm_id *cm_id) { struct nvmet_port *port = cm_id->context; struct nvmet_rdma_device *ndev; int inline_page_count; int inline_sge_count; int ret; mutex_lock(&device_list_mutex); list_for_each_entry(ndev, &device_list, entry) { if (ndev->device->node_guid == cm_id->device->node_guid && kref_get_unless_zero(&ndev->ref)) goto out_unlock; } ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); if (!ndev) goto out_err; inline_page_count = num_pages(port->inline_data_size); inline_sge_count = max(cm_id->device->attrs.max_sge_rd, cm_id->device->attrs.max_recv_sge) - 1; if (inline_page_count > inline_sge_count) { pr_warn("inline_data_size %d cannot be supported by device %s. Reducing to %lu.\n", port->inline_data_size, cm_id->device->name, inline_sge_count * PAGE_SIZE); port->inline_data_size = inline_sge_count * PAGE_SIZE; inline_page_count = inline_sge_count; } ndev->inline_data_size = port->inline_data_size; ndev->inline_page_count = inline_page_count; ndev->device = cm_id->device; kref_init(&ndev->ref); ndev->pd = ib_alloc_pd(ndev->device, 0); if (IS_ERR(ndev->pd)) goto out_free_dev; if (nvmet_rdma_use_srq) { ret = nvmet_rdma_init_srq(ndev); if (ret) goto out_free_pd; } list_add(&ndev->entry, &device_list); out_unlock: mutex_unlock(&device_list_mutex); pr_debug("added %s.\n", ndev->device->name); return ndev; out_free_pd: ib_dealloc_pd(ndev->pd); out_free_dev: kfree(ndev); out_err: mutex_unlock(&device_list_mutex); return NULL; } static int nvmet_rdma_create_queue_ib(struct nvmet_rdma_queue *queue) { struct ib_qp_init_attr qp_attr; struct nvmet_rdma_device *ndev = queue->dev; int comp_vector, nr_cqe, ret, i; /* * Spread the io queues across completion vectors, * but still keep all admin queues on vector 0. */ comp_vector = !queue->host_qid ? 0 : queue->idx % ndev->device->num_comp_vectors; /* * Reserve CQ slots for RECV + RDMA_READ/RDMA_WRITE + RDMA_SEND. */ nr_cqe = queue->recv_queue_size + 2 * queue->send_queue_size; queue->cq = ib_alloc_cq(ndev->device, queue, nr_cqe + 1, comp_vector, IB_POLL_WORKQUEUE); if (IS_ERR(queue->cq)) { ret = PTR_ERR(queue->cq); pr_err("failed to create CQ cqe= %d ret= %d\n", nr_cqe + 1, ret); goto out; } memset(&qp_attr, 0, sizeof(qp_attr)); qp_attr.qp_context = queue; qp_attr.event_handler = nvmet_rdma_qp_event; qp_attr.send_cq = queue->cq; qp_attr.recv_cq = queue->cq; qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR; qp_attr.qp_type = IB_QPT_RC; /* +1 for drain */ qp_attr.cap.max_send_wr = queue->send_queue_size + 1; qp_attr.cap.max_rdma_ctxs = queue->send_queue_size; qp_attr.cap.max_send_sge = max(ndev->device->attrs.max_sge_rd, ndev->device->attrs.max_send_sge); if (ndev->srq) { qp_attr.srq = ndev->srq; } else { /* +1 for drain */ qp_attr.cap.max_recv_wr = 1 + queue->recv_queue_size; qp_attr.cap.max_recv_sge = 1 + ndev->inline_page_count; } ret = rdma_create_qp(queue->cm_id, ndev->pd, &qp_attr); if (ret) { pr_err("failed to create_qp ret= %d\n", ret); goto err_destroy_cq; } atomic_set(&queue->sq_wr_avail, qp_attr.cap.max_send_wr); pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", __func__, queue->cq->cqe, qp_attr.cap.max_send_sge, qp_attr.cap.max_send_wr, queue->cm_id); if (!ndev->srq) { for (i = 0; i < queue->recv_queue_size; i++) { queue->cmds[i].queue = queue; ret = nvmet_rdma_post_recv(ndev, &queue->cmds[i]); if (ret) goto err_destroy_qp; } } out: return ret; err_destroy_qp: rdma_destroy_qp(queue->cm_id); err_destroy_cq: ib_free_cq(queue->cq); goto out; } static void nvmet_rdma_destroy_queue_ib(struct nvmet_rdma_queue *queue) { struct ib_qp *qp = queue->cm_id->qp; ib_drain_qp(qp); rdma_destroy_id(queue->cm_id); ib_destroy_qp(qp); ib_free_cq(queue->cq); } static void nvmet_rdma_free_queue(struct nvmet_rdma_queue *queue) { pr_debug("freeing queue %d\n", queue->idx); nvmet_sq_destroy(&queue->nvme_sq); nvmet_rdma_destroy_queue_ib(queue); if (!queue->dev->srq) { nvmet_rdma_free_cmds(queue->dev, queue->cmds, queue->recv_queue_size, !queue->host_qid); } nvmet_rdma_free_rsps(queue); ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx); kfree(queue); } static void nvmet_rdma_release_queue_work(struct work_struct *w) { struct nvmet_rdma_queue *queue = container_of(w, struct nvmet_rdma_queue, release_work); struct nvmet_rdma_device *dev = queue->dev; nvmet_rdma_free_queue(queue); kref_put(&dev->ref, nvmet_rdma_free_dev); } static int nvmet_rdma_parse_cm_connect_req(struct rdma_conn_param *conn, struct nvmet_rdma_queue *queue) { struct nvme_rdma_cm_req *req; req = (struct nvme_rdma_cm_req *)conn->private_data; if (!req || conn->private_data_len == 0) return NVME_RDMA_CM_INVALID_LEN; if (le16_to_cpu(req->recfmt) != NVME_RDMA_CM_FMT_1_0) return NVME_RDMA_CM_INVALID_RECFMT; queue->host_qid = le16_to_cpu(req->qid); /* * req->hsqsize corresponds to our recv queue size plus 1 * req->hrqsize corresponds to our send queue size */ queue->recv_queue_size = le16_to_cpu(req->hsqsize) + 1; queue->send_queue_size = le16_to_cpu(req->hrqsize); if (!queue->host_qid && queue->recv_queue_size > NVME_AQ_DEPTH) return NVME_RDMA_CM_INVALID_HSQSIZE; /* XXX: Should we enforce some kind of max for IO queues? */ return 0; } static int nvmet_rdma_cm_reject(struct rdma_cm_id *cm_id, enum nvme_rdma_cm_status status) { struct nvme_rdma_cm_rej rej; pr_debug("rejecting connect request: status %d (%s)\n", status, nvme_rdma_cm_msg(status)); rej.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); rej.sts = cpu_to_le16(status); return rdma_reject(cm_id, (void *)&rej, sizeof(rej)); } static struct nvmet_rdma_queue * nvmet_rdma_alloc_queue(struct nvmet_rdma_device *ndev, struct rdma_cm_id *cm_id, struct rdma_cm_event *event) { struct nvmet_rdma_queue *queue; int ret; queue = kzalloc(sizeof(*queue), GFP_KERNEL); if (!queue) { ret = NVME_RDMA_CM_NO_RSC; goto out_reject; } ret = nvmet_sq_init(&queue->nvme_sq); if (ret) { ret = NVME_RDMA_CM_NO_RSC; goto out_free_queue; } ret = nvmet_rdma_parse_cm_connect_req(&event->param.conn, queue); if (ret) goto out_destroy_sq; /* * Schedules the actual release because calling rdma_destroy_id from * inside a CM callback would trigger a deadlock. (great API design..) */ INIT_WORK(&queue->release_work, nvmet_rdma_release_queue_work); queue->dev = ndev; queue->cm_id = cm_id; spin_lock_init(&queue->state_lock); queue->state = NVMET_RDMA_Q_CONNECTING; INIT_LIST_HEAD(&queue->rsp_wait_list); INIT_LIST_HEAD(&queue->rsp_wr_wait_list); spin_lock_init(&queue->rsp_wr_wait_lock); INIT_LIST_HEAD(&queue->free_rsps); spin_lock_init(&queue->rsps_lock); INIT_LIST_HEAD(&queue->queue_list); queue->idx = ida_simple_get(&nvmet_rdma_queue_ida, 0, 0, GFP_KERNEL); if (queue->idx < 0) { ret = NVME_RDMA_CM_NO_RSC; goto out_destroy_sq; } ret = nvmet_rdma_alloc_rsps(queue); if (ret) { ret = NVME_RDMA_CM_NO_RSC; goto out_ida_remove; } if (!ndev->srq) { queue->cmds = nvmet_rdma_alloc_cmds(ndev, queue->recv_queue_size, !queue->host_qid); if (IS_ERR(queue->cmds)) { ret = NVME_RDMA_CM_NO_RSC; goto out_free_responses; } } ret = nvmet_rdma_create_queue_ib(queue); if (ret) { pr_err("%s: creating RDMA queue failed (%d).\n", __func__, ret); ret = NVME_RDMA_CM_NO_RSC; goto out_free_cmds; } return queue; out_free_cmds: if (!ndev->srq) { nvmet_rdma_free_cmds(queue->dev, queue->cmds, queue->recv_queue_size, !queue->host_qid); } out_free_responses: nvmet_rdma_free_rsps(queue); out_ida_remove: ida_simple_remove(&nvmet_rdma_queue_ida, queue->idx); out_destroy_sq: nvmet_sq_destroy(&queue->nvme_sq); out_free_queue: kfree(queue); out_reject: nvmet_rdma_cm_reject(cm_id, ret); return NULL; } static void nvmet_rdma_qp_event(struct ib_event *event, void *priv) { struct nvmet_rdma_queue *queue = priv; switch (event->event) { case IB_EVENT_COMM_EST: rdma_notify(queue->cm_id, event->event); break; default: pr_err("received IB QP event: %s (%d)\n", ib_event_msg(event->event), event->event); break; } } static int nvmet_rdma_cm_accept(struct rdma_cm_id *cm_id, struct nvmet_rdma_queue *queue, struct rdma_conn_param *p) { struct rdma_conn_param param = { }; struct nvme_rdma_cm_rep priv = { }; int ret = -ENOMEM; param.rnr_retry_count = 7; param.flow_control = 1; param.initiator_depth = min_t(u8, p->initiator_depth, queue->dev->device->attrs.max_qp_init_rd_atom); param.private_data = &priv; param.private_data_len = sizeof(priv); priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); priv.crqsize = cpu_to_le16(queue->recv_queue_size); ret = rdma_accept(cm_id, ¶m); if (ret) pr_err("rdma_accept failed (error code = %d)\n", ret); return ret; } static int nvmet_rdma_queue_connect(struct rdma_cm_id *cm_id, struct rdma_cm_event *event) { struct nvmet_rdma_device *ndev; struct nvmet_rdma_queue *queue; int ret = -EINVAL; ndev = nvmet_rdma_find_get_device(cm_id); if (!ndev) { nvmet_rdma_cm_reject(cm_id, NVME_RDMA_CM_NO_RSC); return -ECONNREFUSED; } queue = nvmet_rdma_alloc_queue(ndev, cm_id, event); if (!queue) { ret = -ENOMEM; goto put_device; } queue->port = cm_id->context; if (queue->host_qid == 0) { /* Let inflight controller teardown complete */ flush_scheduled_work(); } ret = nvmet_rdma_cm_accept(cm_id, queue, &event->param.conn); if (ret) { schedule_work(&queue->release_work); /* Destroying rdma_cm id is not needed here */ return 0; } mutex_lock(&nvmet_rdma_queue_mutex); list_add_tail(&queue->queue_list, &nvmet_rdma_queue_list); mutex_unlock(&nvmet_rdma_queue_mutex); return 0; put_device: kref_put(&ndev->ref, nvmet_rdma_free_dev); return ret; } static void nvmet_rdma_queue_established(struct nvmet_rdma_queue *queue) { unsigned long flags; spin_lock_irqsave(&queue->state_lock, flags); if (queue->state != NVMET_RDMA_Q_CONNECTING) { pr_warn("trying to establish a connected queue\n"); goto out_unlock; } queue->state = NVMET_RDMA_Q_LIVE; while (!list_empty(&queue->rsp_wait_list)) { struct nvmet_rdma_rsp *cmd; cmd = list_first_entry(&queue->rsp_wait_list, struct nvmet_rdma_rsp, wait_list); list_del(&cmd->wait_list); spin_unlock_irqrestore(&queue->state_lock, flags); nvmet_rdma_handle_command(queue, cmd); spin_lock_irqsave(&queue->state_lock, flags); } out_unlock: spin_unlock_irqrestore(&queue->state_lock, flags); } static void __nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) { bool disconnect = false; unsigned long flags; pr_debug("cm_id= %p queue->state= %d\n", queue->cm_id, queue->state); spin_lock_irqsave(&queue->state_lock, flags); switch (queue->state) { case NVMET_RDMA_Q_CONNECTING: case NVMET_RDMA_Q_LIVE: queue->state = NVMET_RDMA_Q_DISCONNECTING; disconnect = true; break; case NVMET_RDMA_Q_DISCONNECTING: break; } spin_unlock_irqrestore(&queue->state_lock, flags); if (disconnect) { rdma_disconnect(queue->cm_id); schedule_work(&queue->release_work); } } static void nvmet_rdma_queue_disconnect(struct nvmet_rdma_queue *queue) { bool disconnect = false; mutex_lock(&nvmet_rdma_queue_mutex); if (!list_empty(&queue->queue_list)) { list_del_init(&queue->queue_list); disconnect = true; } mutex_unlock(&nvmet_rdma_queue_mutex); if (disconnect) __nvmet_rdma_queue_disconnect(queue); } static void nvmet_rdma_queue_connect_fail(struct rdma_cm_id *cm_id, struct nvmet_rdma_queue *queue) { WARN_ON_ONCE(queue->state != NVMET_RDMA_Q_CONNECTING); mutex_lock(&nvmet_rdma_queue_mutex); if (!list_empty(&queue->queue_list)) list_del_init(&queue->queue_list); mutex_unlock(&nvmet_rdma_queue_mutex); pr_err("failed to connect queue %d\n", queue->idx); schedule_work(&queue->release_work); } /** * nvme_rdma_device_removal() - Handle RDMA device removal * @cm_id: rdma_cm id, used for nvmet port * @queue: nvmet rdma queue (cm id qp_context) * * DEVICE_REMOVAL event notifies us that the RDMA device is about * to unplug. Note that this event can be generated on a normal * queue cm_id and/or a device bound listener cm_id (where in this * case queue will be null). * * We registered an ib_client to handle device removal for queues, * so we only need to handle the listening port cm_ids. In this case * we nullify the priv to prevent double cm_id destruction and destroying * the cm_id implicitely by returning a non-zero rc to the callout. */ static int nvmet_rdma_device_removal(struct rdma_cm_id *cm_id, struct nvmet_rdma_queue *queue) { struct nvmet_port *port; if (queue) { /* * This is a queue cm_id. we have registered * an ib_client to handle queues removal * so don't interfear and just return. */ return 0; } port = cm_id->context; /* * This is a listener cm_id. Make sure that * future remove_port won't invoke a double * cm_id destroy. use atomic xchg to make sure * we don't compete with remove_port. */ if (xchg(&port->priv, NULL) != cm_id) return 0; /* * We need to return 1 so that the core will destroy * it's own ID. What a great API design.. */ return 1; } static int nvmet_rdma_cm_handler(struct rdma_cm_id *cm_id, struct rdma_cm_event *event) { struct nvmet_rdma_queue *queue = NULL; int ret = 0; if (cm_id->qp) queue = cm_id->qp->qp_context; pr_debug("%s (%d): status %d id %p\n", rdma_event_msg(event->event), event->event, event->status, cm_id); switch (event->event) { case RDMA_CM_EVENT_CONNECT_REQUEST: ret = nvmet_rdma_queue_connect(cm_id, event); break; case RDMA_CM_EVENT_ESTABLISHED: nvmet_rdma_queue_established(queue); break; case RDMA_CM_EVENT_ADDR_CHANGE: case RDMA_CM_EVENT_DISCONNECTED: case RDMA_CM_EVENT_TIMEWAIT_EXIT: nvmet_rdma_queue_disconnect(queue); break; case RDMA_CM_EVENT_DEVICE_REMOVAL: ret = nvmet_rdma_device_removal(cm_id, queue); break; case RDMA_CM_EVENT_REJECTED: pr_debug("Connection rejected: %s\n", rdma_reject_msg(cm_id, event->status)); /* FALLTHROUGH */ case RDMA_CM_EVENT_UNREACHABLE: case RDMA_CM_EVENT_CONNECT_ERROR: nvmet_rdma_queue_connect_fail(cm_id, queue); break; default: pr_err("received unrecognized RDMA CM event %d\n", event->event); break; } return ret; } static void nvmet_rdma_delete_ctrl(struct nvmet_ctrl *ctrl) { struct nvmet_rdma_queue *queue; restart: mutex_lock(&nvmet_rdma_queue_mutex); list_for_each_entry(queue, &nvmet_rdma_queue_list, queue_list) { if (queue->nvme_sq.ctrl == ctrl) { list_del_init(&queue->queue_list); mutex_unlock(&nvmet_rdma_queue_mutex); __nvmet_rdma_queue_disconnect(queue); goto restart; } } mutex_unlock(&nvmet_rdma_queue_mutex); } static int nvmet_rdma_add_port(struct nvmet_port *port) { struct rdma_cm_id *cm_id; struct sockaddr_storage addr = { }; __kernel_sa_family_t af; int ret; switch (port->disc_addr.adrfam) { case NVMF_ADDR_FAMILY_IP4: af = AF_INET; break; case NVMF_ADDR_FAMILY_IP6: af = AF_INET6; break; default: pr_err("address family %d not supported\n", port->disc_addr.adrfam); return -EINVAL; } if (port->inline_data_size < 0) { port->inline_data_size = NVMET_RDMA_DEFAULT_INLINE_DATA_SIZE; } else if (port->inline_data_size > NVMET_RDMA_MAX_INLINE_DATA_SIZE) { pr_warn("inline_data_size %u is too large, reducing to %u\n", port->inline_data_size, NVMET_RDMA_MAX_INLINE_DATA_SIZE); port->inline_data_size = NVMET_RDMA_MAX_INLINE_DATA_SIZE; } ret = inet_pton_with_scope(&init_net, af, port->disc_addr.traddr, port->disc_addr.trsvcid, &addr); if (ret) { pr_err("malformed ip/port passed: %s:%s\n", port->disc_addr.traddr, port->disc_addr.trsvcid); return ret; } cm_id = rdma_create_id(&init_net, nvmet_rdma_cm_handler, port, RDMA_PS_TCP, IB_QPT_RC); if (IS_ERR(cm_id)) { pr_err("CM ID creation failed\n"); return PTR_ERR(cm_id); } /* * Allow both IPv4 and IPv6 sockets to bind a single port * at the same time. */ ret = rdma_set_afonly(cm_id, 1); if (ret) { pr_err("rdma_set_afonly failed (%d)\n", ret); goto out_destroy_id; } ret = rdma_bind_addr(cm_id, (struct sockaddr *)&addr); if (ret) { pr_err("binding CM ID to %pISpcs failed (%d)\n", (struct sockaddr *)&addr, ret); goto out_destroy_id; } ret = rdma_listen(cm_id, 128); if (ret) { pr_err("listening to %pISpcs failed (%d)\n", (struct sockaddr *)&addr, ret); goto out_destroy_id; } pr_info("enabling port %d (%pISpcs)\n", le16_to_cpu(port->disc_addr.portid), (struct sockaddr *)&addr); port->priv = cm_id; return 0; out_destroy_id: rdma_destroy_id(cm_id); return ret; } static void nvmet_rdma_remove_port(struct nvmet_port *port) { struct rdma_cm_id *cm_id = xchg(&port->priv, NULL); if (cm_id) rdma_destroy_id(cm_id); } static void nvmet_rdma_disc_port_addr(struct nvmet_req *req, struct nvmet_port *port, char *traddr) { struct rdma_cm_id *cm_id = port->priv; if (inet_addr_is_any((struct sockaddr *)&cm_id->route.addr.src_addr)) { struct nvmet_rdma_rsp *rsp = container_of(req, struct nvmet_rdma_rsp, req); struct rdma_cm_id *req_cm_id = rsp->queue->cm_id; struct sockaddr *addr = (void *)&req_cm_id->route.addr.src_addr; sprintf(traddr, "%pISc", addr); } else { memcpy(traddr, port->disc_addr.traddr, NVMF_TRADDR_SIZE); } } static const struct nvmet_fabrics_ops nvmet_rdma_ops = { .owner = THIS_MODULE, .type = NVMF_TRTYPE_RDMA, .msdbd = 1, .has_keyed_sgls = 1, .add_port = nvmet_rdma_add_port, .remove_port = nvmet_rdma_remove_port, .queue_response = nvmet_rdma_queue_response, .delete_ctrl = nvmet_rdma_delete_ctrl, .disc_traddr = nvmet_rdma_disc_port_addr, }; static void nvmet_rdma_remove_one(struct ib_device *ib_device, void *client_data) { struct nvmet_rdma_queue *queue, *tmp; struct nvmet_rdma_device *ndev; bool found = false; mutex_lock(&device_list_mutex); list_for_each_entry(ndev, &device_list, entry) { if (ndev->device == ib_device) { found = true; break; } } mutex_unlock(&device_list_mutex); if (!found) return; /* * IB Device that is used by nvmet controllers is being removed, * delete all queues using this device. */ mutex_lock(&nvmet_rdma_queue_mutex); list_for_each_entry_safe(queue, tmp, &nvmet_rdma_queue_list, queue_list) { if (queue->dev->device != ib_device) continue; pr_info("Removing queue %d\n", queue->idx); list_del_init(&queue->queue_list); __nvmet_rdma_queue_disconnect(queue); } mutex_unlock(&nvmet_rdma_queue_mutex); flush_scheduled_work(); } static struct ib_client nvmet_rdma_ib_client = { .name = "nvmet_rdma", .remove = nvmet_rdma_remove_one }; static int __init nvmet_rdma_init(void) { int ret; ret = ib_register_client(&nvmet_rdma_ib_client); if (ret) return ret; ret = nvmet_register_transport(&nvmet_rdma_ops); if (ret) goto err_ib_client; return 0; err_ib_client: ib_unregister_client(&nvmet_rdma_ib_client); return ret; } static void __exit nvmet_rdma_exit(void) { nvmet_unregister_transport(&nvmet_rdma_ops); ib_unregister_client(&nvmet_rdma_ib_client); WARN_ON_ONCE(!list_empty(&nvmet_rdma_queue_list)); ida_destroy(&nvmet_rdma_queue_ida); } module_init(nvmet_rdma_init); module_exit(nvmet_rdma_exit); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("nvmet-transport-1"); /* 1 == NVMF_TRTYPE_RDMA */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1