Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sebastian Reichel | 2164 | 39.08% | 10 | 15.87% |
Lars Poeschel | 975 | 17.61% | 4 | 6.35% |
David Brownell | 786 | 14.19% | 4 | 6.35% |
Peter Korsgaard | 641 | 11.57% | 3 | 4.76% |
Phil Reid | 273 | 4.93% | 6 | 9.52% |
Robert Middleton | 211 | 3.81% | 1 | 1.59% |
Jan Kundrát | 150 | 2.71% | 4 | 6.35% |
Alexander Stein | 124 | 2.24% | 3 | 4.76% |
Marco Felsch | 41 | 0.74% | 1 | 1.59% |
Sonic Zhang | 32 | 0.58% | 1 | 1.59% |
SF Markus Elfring | 28 | 0.51% | 1 | 1.59% |
Jason Kridner | 28 | 0.51% | 1 | 1.59% |
Linus Walleij | 13 | 0.23% | 7 | 11.11% |
Daniel M. Weeks | 10 | 0.18% | 1 | 1.59% |
Ben Dooks | 10 | 0.18% | 1 | 1.59% |
Dmitry Mastykin | 8 | 0.14% | 1 | 1.59% |
Guennadi Liakhovetski | 8 | 0.14% | 1 | 1.59% |
Varka Bhadram | 6 | 0.11% | 1 | 1.59% |
Jingoo Han | 5 | 0.09% | 2 | 3.17% |
Gary Servin | 4 | 0.07% | 1 | 1.59% |
Gustavo A. R. Silva | 4 | 0.07% | 1 | 1.59% |
Tejun Heo | 3 | 0.05% | 1 | 1.59% |
Paul Gortmaker | 3 | 0.05% | 1 | 1.59% |
Thierry Reding | 3 | 0.05% | 1 | 1.59% |
SeongJae Park | 3 | 0.05% | 1 | 1.59% |
H Hartley Sweeten | 2 | 0.04% | 1 | 1.59% |
Roel Kluin | 1 | 0.02% | 1 | 1.59% |
Thomas Gleixner | 1 | 0.02% | 1 | 1.59% |
Michael Welling | 1 | 0.02% | 1 | 1.59% |
Total | 5538 | 63 |
// SPDX-License-Identifier: GPL-2.0-only /* MCP23S08 SPI/I2C GPIO driver */ #include <linux/kernel.h> #include <linux/device.h> #include <linux/mutex.h> #include <linux/module.h> #include <linux/gpio/driver.h> #include <linux/i2c.h> #include <linux/spi/spi.h> #include <linux/spi/mcp23s08.h> #include <linux/slab.h> #include <asm/byteorder.h> #include <linux/interrupt.h> #include <linux/of_device.h> #include <linux/regmap.h> #include <linux/pinctrl/pinctrl.h> #include <linux/pinctrl/pinconf.h> #include <linux/pinctrl/pinconf-generic.h> /* * MCP types supported by driver */ #define MCP_TYPE_S08 0 #define MCP_TYPE_S17 1 #define MCP_TYPE_008 2 #define MCP_TYPE_017 3 #define MCP_TYPE_S18 4 #define MCP_TYPE_018 5 #define MCP_MAX_DEV_PER_CS 8 /* Registers are all 8 bits wide. * * The mcp23s17 has twice as many bits, and can be configured to work * with either 16 bit registers or with two adjacent 8 bit banks. */ #define MCP_IODIR 0x00 /* init/reset: all ones */ #define MCP_IPOL 0x01 #define MCP_GPINTEN 0x02 #define MCP_DEFVAL 0x03 #define MCP_INTCON 0x04 #define MCP_IOCON 0x05 # define IOCON_MIRROR (1 << 6) # define IOCON_SEQOP (1 << 5) # define IOCON_HAEN (1 << 3) # define IOCON_ODR (1 << 2) # define IOCON_INTPOL (1 << 1) # define IOCON_INTCC (1) #define MCP_GPPU 0x06 #define MCP_INTF 0x07 #define MCP_INTCAP 0x08 #define MCP_GPIO 0x09 #define MCP_OLAT 0x0a struct mcp23s08; struct mcp23s08 { u8 addr; bool irq_active_high; bool reg_shift; u16 irq_rise; u16 irq_fall; int irq; bool irq_controller; int cached_gpio; /* lock protects regmap access with bypass/cache flags */ struct mutex lock; struct gpio_chip chip; struct irq_chip irq_chip; struct regmap *regmap; struct device *dev; struct pinctrl_dev *pctldev; struct pinctrl_desc pinctrl_desc; }; static const struct reg_default mcp23x08_defaults[] = { {.reg = MCP_IODIR, .def = 0xff}, {.reg = MCP_IPOL, .def = 0x00}, {.reg = MCP_GPINTEN, .def = 0x00}, {.reg = MCP_DEFVAL, .def = 0x00}, {.reg = MCP_INTCON, .def = 0x00}, {.reg = MCP_IOCON, .def = 0x00}, {.reg = MCP_GPPU, .def = 0x00}, {.reg = MCP_OLAT, .def = 0x00}, }; static const struct regmap_range mcp23x08_volatile_range = { .range_min = MCP_INTF, .range_max = MCP_GPIO, }; static const struct regmap_access_table mcp23x08_volatile_table = { .yes_ranges = &mcp23x08_volatile_range, .n_yes_ranges = 1, }; static const struct regmap_range mcp23x08_precious_range = { .range_min = MCP_GPIO, .range_max = MCP_GPIO, }; static const struct regmap_access_table mcp23x08_precious_table = { .yes_ranges = &mcp23x08_precious_range, .n_yes_ranges = 1, }; static const struct regmap_config mcp23x08_regmap = { .reg_bits = 8, .val_bits = 8, .reg_stride = 1, .volatile_table = &mcp23x08_volatile_table, .precious_table = &mcp23x08_precious_table, .reg_defaults = mcp23x08_defaults, .num_reg_defaults = ARRAY_SIZE(mcp23x08_defaults), .cache_type = REGCACHE_FLAT, .max_register = MCP_OLAT, }; static const struct reg_default mcp23x16_defaults[] = { {.reg = MCP_IODIR << 1, .def = 0xffff}, {.reg = MCP_IPOL << 1, .def = 0x0000}, {.reg = MCP_GPINTEN << 1, .def = 0x0000}, {.reg = MCP_DEFVAL << 1, .def = 0x0000}, {.reg = MCP_INTCON << 1, .def = 0x0000}, {.reg = MCP_IOCON << 1, .def = 0x0000}, {.reg = MCP_GPPU << 1, .def = 0x0000}, {.reg = MCP_OLAT << 1, .def = 0x0000}, }; static const struct regmap_range mcp23x16_volatile_range = { .range_min = MCP_INTF << 1, .range_max = MCP_GPIO << 1, }; static const struct regmap_access_table mcp23x16_volatile_table = { .yes_ranges = &mcp23x16_volatile_range, .n_yes_ranges = 1, }; static const struct regmap_range mcp23x16_precious_range = { .range_min = MCP_GPIO << 1, .range_max = MCP_GPIO << 1, }; static const struct regmap_access_table mcp23x16_precious_table = { .yes_ranges = &mcp23x16_precious_range, .n_yes_ranges = 1, }; static const struct regmap_config mcp23x17_regmap = { .reg_bits = 8, .val_bits = 16, .reg_stride = 2, .max_register = MCP_OLAT << 1, .volatile_table = &mcp23x16_volatile_table, .precious_table = &mcp23x16_precious_table, .reg_defaults = mcp23x16_defaults, .num_reg_defaults = ARRAY_SIZE(mcp23x16_defaults), .cache_type = REGCACHE_FLAT, .val_format_endian = REGMAP_ENDIAN_LITTLE, }; static int mcp_read(struct mcp23s08 *mcp, unsigned int reg, unsigned int *val) { return regmap_read(mcp->regmap, reg << mcp->reg_shift, val); } static int mcp_write(struct mcp23s08 *mcp, unsigned int reg, unsigned int val) { return regmap_write(mcp->regmap, reg << mcp->reg_shift, val); } static int mcp_set_mask(struct mcp23s08 *mcp, unsigned int reg, unsigned int mask, bool enabled) { u16 val = enabled ? 0xffff : 0x0000; return regmap_update_bits(mcp->regmap, reg << mcp->reg_shift, mask, val); } static int mcp_set_bit(struct mcp23s08 *mcp, unsigned int reg, unsigned int pin, bool enabled) { u16 mask = BIT(pin); return mcp_set_mask(mcp, reg, mask, enabled); } static const struct pinctrl_pin_desc mcp23x08_pins[] = { PINCTRL_PIN(0, "gpio0"), PINCTRL_PIN(1, "gpio1"), PINCTRL_PIN(2, "gpio2"), PINCTRL_PIN(3, "gpio3"), PINCTRL_PIN(4, "gpio4"), PINCTRL_PIN(5, "gpio5"), PINCTRL_PIN(6, "gpio6"), PINCTRL_PIN(7, "gpio7"), }; static const struct pinctrl_pin_desc mcp23x17_pins[] = { PINCTRL_PIN(0, "gpio0"), PINCTRL_PIN(1, "gpio1"), PINCTRL_PIN(2, "gpio2"), PINCTRL_PIN(3, "gpio3"), PINCTRL_PIN(4, "gpio4"), PINCTRL_PIN(5, "gpio5"), PINCTRL_PIN(6, "gpio6"), PINCTRL_PIN(7, "gpio7"), PINCTRL_PIN(8, "gpio8"), PINCTRL_PIN(9, "gpio9"), PINCTRL_PIN(10, "gpio10"), PINCTRL_PIN(11, "gpio11"), PINCTRL_PIN(12, "gpio12"), PINCTRL_PIN(13, "gpio13"), PINCTRL_PIN(14, "gpio14"), PINCTRL_PIN(15, "gpio15"), }; static int mcp_pinctrl_get_groups_count(struct pinctrl_dev *pctldev) { return 0; } static const char *mcp_pinctrl_get_group_name(struct pinctrl_dev *pctldev, unsigned int group) { return NULL; } static int mcp_pinctrl_get_group_pins(struct pinctrl_dev *pctldev, unsigned int group, const unsigned int **pins, unsigned int *num_pins) { return -ENOTSUPP; } static const struct pinctrl_ops mcp_pinctrl_ops = { .get_groups_count = mcp_pinctrl_get_groups_count, .get_group_name = mcp_pinctrl_get_group_name, .get_group_pins = mcp_pinctrl_get_group_pins, #ifdef CONFIG_OF .dt_node_to_map = pinconf_generic_dt_node_to_map_pin, .dt_free_map = pinconf_generic_dt_free_map, #endif }; static int mcp_pinconf_get(struct pinctrl_dev *pctldev, unsigned int pin, unsigned long *config) { struct mcp23s08 *mcp = pinctrl_dev_get_drvdata(pctldev); enum pin_config_param param = pinconf_to_config_param(*config); unsigned int data, status; int ret; switch (param) { case PIN_CONFIG_BIAS_PULL_UP: ret = mcp_read(mcp, MCP_GPPU, &data); if (ret < 0) return ret; status = (data & BIT(pin)) ? 1 : 0; break; default: return -ENOTSUPP; } *config = 0; return status ? 0 : -EINVAL; } static int mcp_pinconf_set(struct pinctrl_dev *pctldev, unsigned int pin, unsigned long *configs, unsigned int num_configs) { struct mcp23s08 *mcp = pinctrl_dev_get_drvdata(pctldev); enum pin_config_param param; u32 arg; int ret = 0; int i; for (i = 0; i < num_configs; i++) { param = pinconf_to_config_param(configs[i]); arg = pinconf_to_config_argument(configs[i]); switch (param) { case PIN_CONFIG_BIAS_PULL_UP: ret = mcp_set_bit(mcp, MCP_GPPU, pin, arg); break; default: dev_dbg(mcp->dev, "Invalid config param %04x\n", param); return -ENOTSUPP; } } return ret; } static const struct pinconf_ops mcp_pinconf_ops = { .pin_config_get = mcp_pinconf_get, .pin_config_set = mcp_pinconf_set, .is_generic = true, }; /*----------------------------------------------------------------------*/ #ifdef CONFIG_SPI_MASTER static int mcp23sxx_spi_write(void *context, const void *data, size_t count) { struct mcp23s08 *mcp = context; struct spi_device *spi = to_spi_device(mcp->dev); struct spi_message m; struct spi_transfer t[2] = { { .tx_buf = &mcp->addr, .len = 1, }, { .tx_buf = data, .len = count, }, }; spi_message_init(&m); spi_message_add_tail(&t[0], &m); spi_message_add_tail(&t[1], &m); return spi_sync(spi, &m); } static int mcp23sxx_spi_gather_write(void *context, const void *reg, size_t reg_size, const void *val, size_t val_size) { struct mcp23s08 *mcp = context; struct spi_device *spi = to_spi_device(mcp->dev); struct spi_message m; struct spi_transfer t[3] = { { .tx_buf = &mcp->addr, .len = 1, }, { .tx_buf = reg, .len = reg_size, }, { .tx_buf = val, .len = val_size, }, }; spi_message_init(&m); spi_message_add_tail(&t[0], &m); spi_message_add_tail(&t[1], &m); spi_message_add_tail(&t[2], &m); return spi_sync(spi, &m); } static int mcp23sxx_spi_read(void *context, const void *reg, size_t reg_size, void *val, size_t val_size) { struct mcp23s08 *mcp = context; struct spi_device *spi = to_spi_device(mcp->dev); u8 tx[2]; if (reg_size != 1) return -EINVAL; tx[0] = mcp->addr | 0x01; tx[1] = *((u8 *) reg); return spi_write_then_read(spi, tx, sizeof(tx), val, val_size); } static const struct regmap_bus mcp23sxx_spi_regmap = { .write = mcp23sxx_spi_write, .gather_write = mcp23sxx_spi_gather_write, .read = mcp23sxx_spi_read, }; #endif /* CONFIG_SPI_MASTER */ /*----------------------------------------------------------------------*/ /* A given spi_device can represent up to eight mcp23sxx chips * sharing the same chipselect but using different addresses * (e.g. chips #0 and #3 might be populated, but not #1 or $2). * Driver data holds all the per-chip data. */ struct mcp23s08_driver_data { unsigned ngpio; struct mcp23s08 *mcp[8]; struct mcp23s08 chip[]; }; static int mcp23s08_direction_input(struct gpio_chip *chip, unsigned offset) { struct mcp23s08 *mcp = gpiochip_get_data(chip); int status; mutex_lock(&mcp->lock); status = mcp_set_bit(mcp, MCP_IODIR, offset, true); mutex_unlock(&mcp->lock); return status; } static int mcp23s08_get(struct gpio_chip *chip, unsigned offset) { struct mcp23s08 *mcp = gpiochip_get_data(chip); int status, ret; mutex_lock(&mcp->lock); /* REVISIT reading this clears any IRQ ... */ ret = mcp_read(mcp, MCP_GPIO, &status); if (ret < 0) status = 0; else { mcp->cached_gpio = status; status = !!(status & (1 << offset)); } mutex_unlock(&mcp->lock); return status; } static int __mcp23s08_set(struct mcp23s08 *mcp, unsigned mask, bool value) { return mcp_set_mask(mcp, MCP_OLAT, mask, value); } static void mcp23s08_set(struct gpio_chip *chip, unsigned offset, int value) { struct mcp23s08 *mcp = gpiochip_get_data(chip); unsigned mask = BIT(offset); mutex_lock(&mcp->lock); __mcp23s08_set(mcp, mask, !!value); mutex_unlock(&mcp->lock); } static int mcp23s08_direction_output(struct gpio_chip *chip, unsigned offset, int value) { struct mcp23s08 *mcp = gpiochip_get_data(chip); unsigned mask = BIT(offset); int status; mutex_lock(&mcp->lock); status = __mcp23s08_set(mcp, mask, value); if (status == 0) { status = mcp_set_mask(mcp, MCP_IODIR, mask, false); } mutex_unlock(&mcp->lock); return status; } /*----------------------------------------------------------------------*/ static irqreturn_t mcp23s08_irq(int irq, void *data) { struct mcp23s08 *mcp = data; int intcap, intcon, intf, i, gpio, gpio_orig, intcap_mask, defval; unsigned int child_irq; bool intf_set, intcap_changed, gpio_bit_changed, defval_changed, gpio_set; mutex_lock(&mcp->lock); if (mcp_read(mcp, MCP_INTF, &intf)) goto unlock; if (mcp_read(mcp, MCP_INTCAP, &intcap)) goto unlock; if (mcp_read(mcp, MCP_INTCON, &intcon)) goto unlock; if (mcp_read(mcp, MCP_DEFVAL, &defval)) goto unlock; /* This clears the interrupt(configurable on S18) */ if (mcp_read(mcp, MCP_GPIO, &gpio)) goto unlock; gpio_orig = mcp->cached_gpio; mcp->cached_gpio = gpio; mutex_unlock(&mcp->lock); if (intf == 0) { /* There is no interrupt pending */ return IRQ_HANDLED; } dev_dbg(mcp->chip.parent, "intcap 0x%04X intf 0x%04X gpio_orig 0x%04X gpio 0x%04X\n", intcap, intf, gpio_orig, gpio); for (i = 0; i < mcp->chip.ngpio; i++) { /* We must check all of the inputs on the chip, * otherwise we may not notice a change on >=2 pins. * * On at least the mcp23s17, INTCAP is only updated * one byte at a time(INTCAPA and INTCAPB are * not written to at the same time - only on a per-bank * basis). * * INTF only contains the single bit that caused the * interrupt per-bank. On the mcp23s17, there is * INTFA and INTFB. If two pins are changed on the A * side at the same time, INTF will only have one bit * set. If one pin on the A side and one pin on the B * side are changed at the same time, INTF will have * two bits set. Thus, INTF can't be the only check * to see if the input has changed. */ intf_set = intf & BIT(i); if (i < 8 && intf_set) intcap_mask = 0x00FF; else if (i >= 8 && intf_set) intcap_mask = 0xFF00; else intcap_mask = 0x00; intcap_changed = (intcap_mask & (intcap & BIT(i))) != (intcap_mask & (BIT(i) & gpio_orig)); gpio_set = BIT(i) & gpio; gpio_bit_changed = (BIT(i) & gpio_orig) != (BIT(i) & gpio); defval_changed = (BIT(i) & intcon) && ((BIT(i) & gpio) != (BIT(i) & defval)); if (((gpio_bit_changed || intcap_changed) && (BIT(i) & mcp->irq_rise) && gpio_set) || ((gpio_bit_changed || intcap_changed) && (BIT(i) & mcp->irq_fall) && !gpio_set) || defval_changed) { child_irq = irq_find_mapping(mcp->chip.irq.domain, i); handle_nested_irq(child_irq); } } return IRQ_HANDLED; unlock: mutex_unlock(&mcp->lock); return IRQ_HANDLED; } static void mcp23s08_irq_mask(struct irq_data *data) { struct gpio_chip *gc = irq_data_get_irq_chip_data(data); struct mcp23s08 *mcp = gpiochip_get_data(gc); unsigned int pos = data->hwirq; mcp_set_bit(mcp, MCP_GPINTEN, pos, false); } static void mcp23s08_irq_unmask(struct irq_data *data) { struct gpio_chip *gc = irq_data_get_irq_chip_data(data); struct mcp23s08 *mcp = gpiochip_get_data(gc); unsigned int pos = data->hwirq; mcp_set_bit(mcp, MCP_GPINTEN, pos, true); } static int mcp23s08_irq_set_type(struct irq_data *data, unsigned int type) { struct gpio_chip *gc = irq_data_get_irq_chip_data(data); struct mcp23s08 *mcp = gpiochip_get_data(gc); unsigned int pos = data->hwirq; int status = 0; if ((type & IRQ_TYPE_EDGE_BOTH) == IRQ_TYPE_EDGE_BOTH) { mcp_set_bit(mcp, MCP_INTCON, pos, false); mcp->irq_rise |= BIT(pos); mcp->irq_fall |= BIT(pos); } else if (type & IRQ_TYPE_EDGE_RISING) { mcp_set_bit(mcp, MCP_INTCON, pos, false); mcp->irq_rise |= BIT(pos); mcp->irq_fall &= ~BIT(pos); } else if (type & IRQ_TYPE_EDGE_FALLING) { mcp_set_bit(mcp, MCP_INTCON, pos, false); mcp->irq_rise &= ~BIT(pos); mcp->irq_fall |= BIT(pos); } else if (type & IRQ_TYPE_LEVEL_HIGH) { mcp_set_bit(mcp, MCP_INTCON, pos, true); mcp_set_bit(mcp, MCP_DEFVAL, pos, false); } else if (type & IRQ_TYPE_LEVEL_LOW) { mcp_set_bit(mcp, MCP_INTCON, pos, true); mcp_set_bit(mcp, MCP_DEFVAL, pos, true); } else return -EINVAL; return status; } static void mcp23s08_irq_bus_lock(struct irq_data *data) { struct gpio_chip *gc = irq_data_get_irq_chip_data(data); struct mcp23s08 *mcp = gpiochip_get_data(gc); mutex_lock(&mcp->lock); regcache_cache_only(mcp->regmap, true); } static void mcp23s08_irq_bus_unlock(struct irq_data *data) { struct gpio_chip *gc = irq_data_get_irq_chip_data(data); struct mcp23s08 *mcp = gpiochip_get_data(gc); regcache_cache_only(mcp->regmap, false); regcache_sync(mcp->regmap); mutex_unlock(&mcp->lock); } static int mcp23s08_irq_setup(struct mcp23s08 *mcp) { struct gpio_chip *chip = &mcp->chip; int err; unsigned long irqflags = IRQF_ONESHOT | IRQF_SHARED; if (mcp->irq_active_high) irqflags |= IRQF_TRIGGER_HIGH; else irqflags |= IRQF_TRIGGER_LOW; err = devm_request_threaded_irq(chip->parent, mcp->irq, NULL, mcp23s08_irq, irqflags, dev_name(chip->parent), mcp); if (err != 0) { dev_err(chip->parent, "unable to request IRQ#%d: %d\n", mcp->irq, err); return err; } return 0; } static int mcp23s08_irqchip_setup(struct mcp23s08 *mcp) { struct gpio_chip *chip = &mcp->chip; int err; err = gpiochip_irqchip_add_nested(chip, &mcp->irq_chip, 0, handle_simple_irq, IRQ_TYPE_NONE); if (err) { dev_err(chip->parent, "could not connect irqchip to gpiochip: %d\n", err); return err; } gpiochip_set_nested_irqchip(chip, &mcp->irq_chip, mcp->irq); return 0; } /*----------------------------------------------------------------------*/ static int mcp23s08_probe_one(struct mcp23s08 *mcp, struct device *dev, void *data, unsigned addr, unsigned type, unsigned int base, int cs) { int status, ret; bool mirror = false; bool open_drain = false; struct regmap_config *one_regmap_config = NULL; int raw_chip_address = (addr & ~0x40) >> 1; mutex_init(&mcp->lock); mcp->dev = dev; mcp->addr = addr; mcp->irq_active_high = false; mcp->chip.direction_input = mcp23s08_direction_input; mcp->chip.get = mcp23s08_get; mcp->chip.direction_output = mcp23s08_direction_output; mcp->chip.set = mcp23s08_set; #ifdef CONFIG_OF_GPIO mcp->chip.of_gpio_n_cells = 2; mcp->chip.of_node = dev->of_node; #endif switch (type) { #ifdef CONFIG_SPI_MASTER case MCP_TYPE_S08: case MCP_TYPE_S17: switch (type) { case MCP_TYPE_S08: one_regmap_config = devm_kmemdup(dev, &mcp23x08_regmap, sizeof(struct regmap_config), GFP_KERNEL); mcp->reg_shift = 0; mcp->chip.ngpio = 8; mcp->chip.label = devm_kasprintf(dev, GFP_KERNEL, "mcp23s08.%d", raw_chip_address); break; case MCP_TYPE_S17: one_regmap_config = devm_kmemdup(dev, &mcp23x17_regmap, sizeof(struct regmap_config), GFP_KERNEL); mcp->reg_shift = 1; mcp->chip.ngpio = 16; mcp->chip.label = devm_kasprintf(dev, GFP_KERNEL, "mcp23s17.%d", raw_chip_address); break; } if (!one_regmap_config) return -ENOMEM; one_regmap_config->name = devm_kasprintf(dev, GFP_KERNEL, "%d", raw_chip_address); mcp->regmap = devm_regmap_init(dev, &mcp23sxx_spi_regmap, mcp, one_regmap_config); break; case MCP_TYPE_S18: one_regmap_config = devm_kmemdup(dev, &mcp23x17_regmap, sizeof(struct regmap_config), GFP_KERNEL); if (!one_regmap_config) return -ENOMEM; mcp->regmap = devm_regmap_init(dev, &mcp23sxx_spi_regmap, mcp, one_regmap_config); mcp->reg_shift = 1; mcp->chip.ngpio = 16; mcp->chip.label = "mcp23s18"; break; #endif /* CONFIG_SPI_MASTER */ #if IS_ENABLED(CONFIG_I2C) case MCP_TYPE_008: mcp->regmap = devm_regmap_init_i2c(data, &mcp23x08_regmap); mcp->reg_shift = 0; mcp->chip.ngpio = 8; mcp->chip.label = "mcp23008"; break; case MCP_TYPE_017: mcp->regmap = devm_regmap_init_i2c(data, &mcp23x17_regmap); mcp->reg_shift = 1; mcp->chip.ngpio = 16; mcp->chip.label = "mcp23017"; break; case MCP_TYPE_018: mcp->regmap = devm_regmap_init_i2c(data, &mcp23x17_regmap); mcp->reg_shift = 1; mcp->chip.ngpio = 16; mcp->chip.label = "mcp23018"; break; #endif /* CONFIG_I2C */ default: dev_err(dev, "invalid device type (%d)\n", type); return -EINVAL; } if (IS_ERR(mcp->regmap)) return PTR_ERR(mcp->regmap); mcp->chip.base = base; mcp->chip.can_sleep = true; mcp->chip.parent = dev; mcp->chip.owner = THIS_MODULE; /* verify MCP_IOCON.SEQOP = 0, so sequential reads work, * and MCP_IOCON.HAEN = 1, so we work with all chips. */ ret = mcp_read(mcp, MCP_IOCON, &status); if (ret < 0) goto fail; ret = devm_gpiochip_add_data(dev, &mcp->chip, mcp); if (ret < 0) goto fail; mcp->irq_controller = device_property_read_bool(dev, "interrupt-controller"); if (mcp->irq && mcp->irq_controller) { mcp->irq_active_high = device_property_read_bool(dev, "microchip,irq-active-high"); mirror = device_property_read_bool(dev, "microchip,irq-mirror"); open_drain = device_property_read_bool(dev, "drive-open-drain"); } if ((status & IOCON_SEQOP) || !(status & IOCON_HAEN) || mirror || mcp->irq_active_high || open_drain) { /* mcp23s17 has IOCON twice, make sure they are in sync */ status &= ~(IOCON_SEQOP | (IOCON_SEQOP << 8)); status |= IOCON_HAEN | (IOCON_HAEN << 8); if (mcp->irq_active_high) status |= IOCON_INTPOL | (IOCON_INTPOL << 8); else status &= ~(IOCON_INTPOL | (IOCON_INTPOL << 8)); if (mirror) status |= IOCON_MIRROR | (IOCON_MIRROR << 8); if (open_drain) status |= IOCON_ODR | (IOCON_ODR << 8); if (type == MCP_TYPE_S18 || type == MCP_TYPE_018) status |= IOCON_INTCC | (IOCON_INTCC << 8); ret = mcp_write(mcp, MCP_IOCON, status); if (ret < 0) goto fail; } if (mcp->irq && mcp->irq_controller) { ret = mcp23s08_irqchip_setup(mcp); if (ret) goto fail; } if (one_regmap_config) { mcp->pinctrl_desc.name = devm_kasprintf(dev, GFP_KERNEL, "mcp23xxx-pinctrl.%d", raw_chip_address); if (!mcp->pinctrl_desc.name) return -ENOMEM; } else { mcp->pinctrl_desc.name = "mcp23xxx-pinctrl"; } mcp->pinctrl_desc.pctlops = &mcp_pinctrl_ops; mcp->pinctrl_desc.confops = &mcp_pinconf_ops; mcp->pinctrl_desc.npins = mcp->chip.ngpio; if (mcp->pinctrl_desc.npins == 8) mcp->pinctrl_desc.pins = mcp23x08_pins; else if (mcp->pinctrl_desc.npins == 16) mcp->pinctrl_desc.pins = mcp23x17_pins; mcp->pinctrl_desc.owner = THIS_MODULE; mcp->pctldev = devm_pinctrl_register(dev, &mcp->pinctrl_desc, mcp); if (IS_ERR(mcp->pctldev)) { ret = PTR_ERR(mcp->pctldev); goto fail; } if (mcp->irq) ret = mcp23s08_irq_setup(mcp); fail: if (ret < 0) dev_dbg(dev, "can't setup chip %d, --> %d\n", addr, ret); return ret; } /*----------------------------------------------------------------------*/ #ifdef CONFIG_OF #ifdef CONFIG_SPI_MASTER static const struct of_device_id mcp23s08_spi_of_match[] = { { .compatible = "microchip,mcp23s08", .data = (void *) MCP_TYPE_S08, }, { .compatible = "microchip,mcp23s17", .data = (void *) MCP_TYPE_S17, }, { .compatible = "microchip,mcp23s18", .data = (void *) MCP_TYPE_S18, }, /* NOTE: The use of the mcp prefix is deprecated and will be removed. */ { .compatible = "mcp,mcp23s08", .data = (void *) MCP_TYPE_S08, }, { .compatible = "mcp,mcp23s17", .data = (void *) MCP_TYPE_S17, }, { }, }; MODULE_DEVICE_TABLE(of, mcp23s08_spi_of_match); #endif #if IS_ENABLED(CONFIG_I2C) static const struct of_device_id mcp23s08_i2c_of_match[] = { { .compatible = "microchip,mcp23008", .data = (void *) MCP_TYPE_008, }, { .compatible = "microchip,mcp23017", .data = (void *) MCP_TYPE_017, }, { .compatible = "microchip,mcp23018", .data = (void *) MCP_TYPE_018, }, /* NOTE: The use of the mcp prefix is deprecated and will be removed. */ { .compatible = "mcp,mcp23008", .data = (void *) MCP_TYPE_008, }, { .compatible = "mcp,mcp23017", .data = (void *) MCP_TYPE_017, }, { }, }; MODULE_DEVICE_TABLE(of, mcp23s08_i2c_of_match); #endif #endif /* CONFIG_OF */ #if IS_ENABLED(CONFIG_I2C) static int mcp230xx_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct mcp23s08_platform_data *pdata, local_pdata; struct mcp23s08 *mcp; int status; pdata = dev_get_platdata(&client->dev); if (!pdata) { pdata = &local_pdata; pdata->base = -1; } mcp = devm_kzalloc(&client->dev, sizeof(*mcp), GFP_KERNEL); if (!mcp) return -ENOMEM; mcp->irq = client->irq; mcp->irq_chip.name = dev_name(&client->dev); mcp->irq_chip.irq_mask = mcp23s08_irq_mask; mcp->irq_chip.irq_unmask = mcp23s08_irq_unmask; mcp->irq_chip.irq_set_type = mcp23s08_irq_set_type; mcp->irq_chip.irq_bus_lock = mcp23s08_irq_bus_lock; mcp->irq_chip.irq_bus_sync_unlock = mcp23s08_irq_bus_unlock; status = mcp23s08_probe_one(mcp, &client->dev, client, client->addr, id->driver_data, pdata->base, 0); if (status) return status; i2c_set_clientdata(client, mcp); return 0; } static const struct i2c_device_id mcp230xx_id[] = { { "mcp23008", MCP_TYPE_008 }, { "mcp23017", MCP_TYPE_017 }, { "mcp23018", MCP_TYPE_018 }, { }, }; MODULE_DEVICE_TABLE(i2c, mcp230xx_id); static struct i2c_driver mcp230xx_driver = { .driver = { .name = "mcp230xx", .of_match_table = of_match_ptr(mcp23s08_i2c_of_match), }, .probe = mcp230xx_probe, .id_table = mcp230xx_id, }; static int __init mcp23s08_i2c_init(void) { return i2c_add_driver(&mcp230xx_driver); } static void mcp23s08_i2c_exit(void) { i2c_del_driver(&mcp230xx_driver); } #else static int __init mcp23s08_i2c_init(void) { return 0; } static void mcp23s08_i2c_exit(void) { } #endif /* CONFIG_I2C */ /*----------------------------------------------------------------------*/ #ifdef CONFIG_SPI_MASTER static int mcp23s08_probe(struct spi_device *spi) { struct mcp23s08_platform_data *pdata, local_pdata; unsigned addr; int chips = 0; struct mcp23s08_driver_data *data; int status, type; unsigned ngpio = 0; const struct of_device_id *match; match = of_match_device(of_match_ptr(mcp23s08_spi_of_match), &spi->dev); if (match) type = (int)(uintptr_t)match->data; else type = spi_get_device_id(spi)->driver_data; pdata = dev_get_platdata(&spi->dev); if (!pdata) { pdata = &local_pdata; pdata->base = -1; status = device_property_read_u32(&spi->dev, "microchip,spi-present-mask", &pdata->spi_present_mask); if (status) { status = device_property_read_u32(&spi->dev, "mcp,spi-present-mask", &pdata->spi_present_mask); if (status) { dev_err(&spi->dev, "missing spi-present-mask"); return -ENODEV; } } } if (!pdata->spi_present_mask || pdata->spi_present_mask > 0xff) { dev_err(&spi->dev, "invalid spi-present-mask"); return -ENODEV; } for (addr = 0; addr < MCP_MAX_DEV_PER_CS; addr++) { if (pdata->spi_present_mask & BIT(addr)) chips++; } if (!chips) return -ENODEV; data = devm_kzalloc(&spi->dev, struct_size(data, chip, chips), GFP_KERNEL); if (!data) return -ENOMEM; spi_set_drvdata(spi, data); for (addr = 0; addr < MCP_MAX_DEV_PER_CS; addr++) { if (!(pdata->spi_present_mask & BIT(addr))) continue; chips--; data->mcp[addr] = &data->chip[chips]; data->mcp[addr]->irq = spi->irq; data->mcp[addr]->irq_chip.name = dev_name(&spi->dev); data->mcp[addr]->irq_chip.irq_mask = mcp23s08_irq_mask; data->mcp[addr]->irq_chip.irq_unmask = mcp23s08_irq_unmask; data->mcp[addr]->irq_chip.irq_set_type = mcp23s08_irq_set_type; data->mcp[addr]->irq_chip.irq_bus_lock = mcp23s08_irq_bus_lock; data->mcp[addr]->irq_chip.irq_bus_sync_unlock = mcp23s08_irq_bus_unlock; status = mcp23s08_probe_one(data->mcp[addr], &spi->dev, spi, 0x40 | (addr << 1), type, pdata->base, addr); if (status < 0) return status; if (pdata->base != -1) pdata->base += data->mcp[addr]->chip.ngpio; ngpio += data->mcp[addr]->chip.ngpio; } data->ngpio = ngpio; return 0; } static const struct spi_device_id mcp23s08_ids[] = { { "mcp23s08", MCP_TYPE_S08 }, { "mcp23s17", MCP_TYPE_S17 }, { "mcp23s18", MCP_TYPE_S18 }, { }, }; MODULE_DEVICE_TABLE(spi, mcp23s08_ids); static struct spi_driver mcp23s08_driver = { .probe = mcp23s08_probe, .id_table = mcp23s08_ids, .driver = { .name = "mcp23s08", .of_match_table = of_match_ptr(mcp23s08_spi_of_match), }, }; static int __init mcp23s08_spi_init(void) { return spi_register_driver(&mcp23s08_driver); } static void mcp23s08_spi_exit(void) { spi_unregister_driver(&mcp23s08_driver); } #else static int __init mcp23s08_spi_init(void) { return 0; } static void mcp23s08_spi_exit(void) { } #endif /* CONFIG_SPI_MASTER */ /*----------------------------------------------------------------------*/ static int __init mcp23s08_init(void) { int ret; ret = mcp23s08_spi_init(); if (ret) goto spi_fail; ret = mcp23s08_i2c_init(); if (ret) goto i2c_fail; return 0; i2c_fail: mcp23s08_spi_exit(); spi_fail: return ret; } /* register after spi/i2c postcore initcall and before * subsys initcalls that may rely on these GPIOs */ subsys_initcall(mcp23s08_init); static void __exit mcp23s08_exit(void) { mcp23s08_spi_exit(); mcp23s08_i2c_exit(); } module_exit(mcp23s08_exit); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1