Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mika Westerberg | 480 | 35.90% | 4 | 19.05% |
Hans de Goede | 463 | 34.63% | 5 | 23.81% |
Ilkka Koskinen | 163 | 12.19% | 1 | 4.76% |
Andy Shevchenko | 133 | 9.95% | 4 | 19.05% |
Qipeng Zha | 50 | 3.74% | 2 | 9.52% |
Alan Cox | 33 | 2.47% | 1 | 4.76% |
Thierry Reding | 7 | 0.52% | 2 | 9.52% |
Dan O'Donovan | 6 | 0.45% | 1 | 4.76% |
Thomas Gleixner | 2 | 0.15% | 1 | 4.76% |
Total | 1337 | 21 |
// SPDX-License-Identifier: GPL-2.0-only /* * Intel Low Power Subsystem PWM controller driver * * Copyright (C) 2014, Intel Corporation * Author: Mika Westerberg <mika.westerberg@linux.intel.com> * Author: Chew Kean Ho <kean.ho.chew@intel.com> * Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com> * Author: Chew Chiau Ee <chiau.ee.chew@intel.com> * Author: Alan Cox <alan@linux.intel.com> */ #include <linux/delay.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/pm_runtime.h> #include <linux/time.h> #include "pwm-lpss.h" #define PWM 0x00000000 #define PWM_ENABLE BIT(31) #define PWM_SW_UPDATE BIT(30) #define PWM_BASE_UNIT_SHIFT 8 #define PWM_ON_TIME_DIV_MASK 0x000000ff /* Size of each PWM register space if multiple */ #define PWM_SIZE 0x400 static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip) { return container_of(chip, struct pwm_lpss_chip, chip); } static inline u32 pwm_lpss_read(const struct pwm_device *pwm) { struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip); return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM); } static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value) { struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip); writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM); } static int pwm_lpss_wait_for_update(struct pwm_device *pwm) { struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip); const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM; const unsigned int ms = 500 * USEC_PER_MSEC; u32 val; int err; /* * PWM Configuration register has SW_UPDATE bit that is set when a new * configuration is written to the register. The bit is automatically * cleared at the start of the next output cycle by the IP block. * * If one writes a new configuration to the register while it still has * the bit enabled, PWM may freeze. That is, while one can still write * to the register, it won't have an effect. Thus, we try to sleep long * enough that the bit gets cleared and make sure the bit is not * enabled while we update the configuration. */ err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms); if (err) dev_err(pwm->chip->dev, "PWM_SW_UPDATE was not cleared\n"); return err; } static inline int pwm_lpss_is_updating(struct pwm_device *pwm) { return (pwm_lpss_read(pwm) & PWM_SW_UPDATE) ? -EBUSY : 0; } static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm, int duty_ns, int period_ns) { unsigned long long on_time_div; unsigned long c = lpwm->info->clk_rate, base_unit_range; unsigned long long base_unit, freq = NSEC_PER_SEC; u32 orig_ctrl, ctrl; do_div(freq, period_ns); /* * The equation is: * base_unit = round(base_unit_range * freq / c) */ base_unit_range = BIT(lpwm->info->base_unit_bits) - 1; freq *= base_unit_range; base_unit = DIV_ROUND_CLOSEST_ULL(freq, c); on_time_div = 255ULL * duty_ns; do_div(on_time_div, period_ns); on_time_div = 255ULL - on_time_div; orig_ctrl = ctrl = pwm_lpss_read(pwm); ctrl &= ~PWM_ON_TIME_DIV_MASK; ctrl &= ~(base_unit_range << PWM_BASE_UNIT_SHIFT); base_unit &= base_unit_range; ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT; ctrl |= on_time_div; if (orig_ctrl != ctrl) { pwm_lpss_write(pwm, ctrl); pwm_lpss_write(pwm, ctrl | PWM_SW_UPDATE); } } static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond) { if (cond) pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE); } static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct pwm_lpss_chip *lpwm = to_lpwm(chip); int ret; if (state->enabled) { if (!pwm_is_enabled(pwm)) { pm_runtime_get_sync(chip->dev); ret = pwm_lpss_is_updating(pwm); if (ret) { pm_runtime_put(chip->dev); return ret; } pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period); pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false); ret = pwm_lpss_wait_for_update(pwm); if (ret) { pm_runtime_put(chip->dev); return ret; } pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true); } else { ret = pwm_lpss_is_updating(pwm); if (ret) return ret; pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period); return pwm_lpss_wait_for_update(pwm); } } else if (pwm_is_enabled(pwm)) { pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE); pm_runtime_put(chip->dev); } return 0; } /* This function gets called once from pwmchip_add to get the initial state */ static void pwm_lpss_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct pwm_lpss_chip *lpwm = to_lpwm(chip); unsigned long base_unit_range; unsigned long long base_unit, freq, on_time_div; u32 ctrl; base_unit_range = BIT(lpwm->info->base_unit_bits); ctrl = pwm_lpss_read(pwm); on_time_div = 255 - (ctrl & PWM_ON_TIME_DIV_MASK); base_unit = (ctrl >> PWM_BASE_UNIT_SHIFT) & (base_unit_range - 1); freq = base_unit * lpwm->info->clk_rate; do_div(freq, base_unit_range); if (freq == 0) state->period = NSEC_PER_SEC; else state->period = NSEC_PER_SEC / (unsigned long)freq; on_time_div *= state->period; do_div(on_time_div, 255); state->duty_cycle = on_time_div; state->polarity = PWM_POLARITY_NORMAL; state->enabled = !!(ctrl & PWM_ENABLE); if (state->enabled) pm_runtime_get(chip->dev); } static const struct pwm_ops pwm_lpss_ops = { .apply = pwm_lpss_apply, .get_state = pwm_lpss_get_state, .owner = THIS_MODULE, }; struct pwm_lpss_chip *pwm_lpss_probe(struct device *dev, struct resource *r, const struct pwm_lpss_boardinfo *info) { struct pwm_lpss_chip *lpwm; unsigned long c; int ret; if (WARN_ON(info->npwm > MAX_PWMS)) return ERR_PTR(-ENODEV); lpwm = devm_kzalloc(dev, sizeof(*lpwm), GFP_KERNEL); if (!lpwm) return ERR_PTR(-ENOMEM); lpwm->regs = devm_ioremap_resource(dev, r); if (IS_ERR(lpwm->regs)) return ERR_CAST(lpwm->regs); lpwm->info = info; c = lpwm->info->clk_rate; if (!c) return ERR_PTR(-EINVAL); lpwm->chip.dev = dev; lpwm->chip.ops = &pwm_lpss_ops; lpwm->chip.base = -1; lpwm->chip.npwm = info->npwm; ret = pwmchip_add(&lpwm->chip); if (ret) { dev_err(dev, "failed to add PWM chip: %d\n", ret); return ERR_PTR(ret); } return lpwm; } EXPORT_SYMBOL_GPL(pwm_lpss_probe); int pwm_lpss_remove(struct pwm_lpss_chip *lpwm) { int i; for (i = 0; i < lpwm->info->npwm; i++) { if (pwm_is_enabled(&lpwm->chip.pwms[i])) pm_runtime_put(lpwm->chip.dev); } return pwmchip_remove(&lpwm->chip); } EXPORT_SYMBOL_GPL(pwm_lpss_remove); int pwm_lpss_suspend(struct device *dev) { struct pwm_lpss_chip *lpwm = dev_get_drvdata(dev); int i; for (i = 0; i < lpwm->info->npwm; i++) lpwm->saved_ctrl[i] = readl(lpwm->regs + i * PWM_SIZE + PWM); return 0; } EXPORT_SYMBOL_GPL(pwm_lpss_suspend); int pwm_lpss_resume(struct device *dev) { struct pwm_lpss_chip *lpwm = dev_get_drvdata(dev); int i; for (i = 0; i < lpwm->info->npwm; i++) writel(lpwm->saved_ctrl[i], lpwm->regs + i * PWM_SIZE + PWM); return 0; } EXPORT_SYMBOL_GPL(pwm_lpss_resume); MODULE_DESCRIPTION("PWM driver for Intel LPSS"); MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1