Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chen-Yu Tsai | 3021 | 97.26% | 3 | 30.00% |
Alexandre Belloni | 55 | 1.77% | 2 | 20.00% |
Philipp Rossak | 11 | 0.35% | 1 | 10.00% |
Axel Lin | 9 | 0.29% | 1 | 10.00% |
Kees Cook | 4 | 0.13% | 1 | 10.00% |
Jerome Brunet | 4 | 0.13% | 1 | 10.00% |
Thomas Gleixner | 2 | 0.06% | 1 | 10.00% |
Total | 3106 | 10 |
// SPDX-License-Identifier: GPL-2.0-only /* * RTC Driver for X-Powers AC100 * * Copyright (c) 2016 Chen-Yu Tsai * * Chen-Yu Tsai <wens@csie.org> */ #include <linux/bcd.h> #include <linux/clk-provider.h> #include <linux/device.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/mfd/ac100.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/rtc.h> #include <linux/types.h> /* Control register */ #define AC100_RTC_CTRL_24HOUR BIT(0) /* Clock output register bits */ #define AC100_CLKOUT_PRE_DIV_SHIFT 5 #define AC100_CLKOUT_PRE_DIV_WIDTH 3 #define AC100_CLKOUT_MUX_SHIFT 4 #define AC100_CLKOUT_MUX_WIDTH 1 #define AC100_CLKOUT_DIV_SHIFT 1 #define AC100_CLKOUT_DIV_WIDTH 3 #define AC100_CLKOUT_EN BIT(0) /* RTC */ #define AC100_RTC_SEC_MASK GENMASK(6, 0) #define AC100_RTC_MIN_MASK GENMASK(6, 0) #define AC100_RTC_HOU_MASK GENMASK(5, 0) #define AC100_RTC_WEE_MASK GENMASK(2, 0) #define AC100_RTC_DAY_MASK GENMASK(5, 0) #define AC100_RTC_MON_MASK GENMASK(4, 0) #define AC100_RTC_YEA_MASK GENMASK(7, 0) #define AC100_RTC_YEA_LEAP BIT(15) #define AC100_RTC_UPD_TRIGGER BIT(15) /* Alarm (wall clock) */ #define AC100_ALM_INT_ENABLE BIT(0) #define AC100_ALM_SEC_MASK GENMASK(6, 0) #define AC100_ALM_MIN_MASK GENMASK(6, 0) #define AC100_ALM_HOU_MASK GENMASK(5, 0) #define AC100_ALM_WEE_MASK GENMASK(2, 0) #define AC100_ALM_DAY_MASK GENMASK(5, 0) #define AC100_ALM_MON_MASK GENMASK(4, 0) #define AC100_ALM_YEA_MASK GENMASK(7, 0) #define AC100_ALM_ENABLE_FLAG BIT(15) #define AC100_ALM_UPD_TRIGGER BIT(15) /* * The year parameter passed to the driver is usually an offset relative to * the year 1900. This macro is used to convert this offset to another one * relative to the minimum year allowed by the hardware. * * The year range is 1970 - 2069. This range is selected to match Allwinner's * driver. */ #define AC100_YEAR_MIN 1970 #define AC100_YEAR_MAX 2069 #define AC100_YEAR_OFF (AC100_YEAR_MIN - 1900) struct ac100_clkout { struct clk_hw hw; struct regmap *regmap; u8 offset; }; #define to_ac100_clkout(_hw) container_of(_hw, struct ac100_clkout, hw) #define AC100_RTC_32K_NAME "ac100-rtc-32k" #define AC100_RTC_32K_RATE 32768 #define AC100_CLKOUT_NUM 3 static const char * const ac100_clkout_names[AC100_CLKOUT_NUM] = { "ac100-cko1-rtc", "ac100-cko2-rtc", "ac100-cko3-rtc", }; struct ac100_rtc_dev { struct rtc_device *rtc; struct device *dev; struct regmap *regmap; int irq; unsigned long alarm; struct clk_hw *rtc_32k_clk; struct ac100_clkout clks[AC100_CLKOUT_NUM]; struct clk_hw_onecell_data *clk_data; }; /** * Clock controls for 3 clock output pins */ static const struct clk_div_table ac100_clkout_prediv[] = { { .val = 0, .div = 1 }, { .val = 1, .div = 2 }, { .val = 2, .div = 4 }, { .val = 3, .div = 8 }, { .val = 4, .div = 16 }, { .val = 5, .div = 32 }, { .val = 6, .div = 64 }, { .val = 7, .div = 122 }, { }, }; /* Abuse the fact that one parent is 32768 Hz, and the other is 4 MHz */ static unsigned long ac100_clkout_recalc_rate(struct clk_hw *hw, unsigned long prate) { struct ac100_clkout *clk = to_ac100_clkout(hw); unsigned int reg, div; regmap_read(clk->regmap, clk->offset, ®); /* Handle pre-divider first */ if (prate != AC100_RTC_32K_RATE) { div = (reg >> AC100_CLKOUT_PRE_DIV_SHIFT) & ((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1); prate = divider_recalc_rate(hw, prate, div, ac100_clkout_prediv, 0, AC100_CLKOUT_PRE_DIV_WIDTH); } div = (reg >> AC100_CLKOUT_DIV_SHIFT) & (BIT(AC100_CLKOUT_DIV_WIDTH) - 1); return divider_recalc_rate(hw, prate, div, NULL, CLK_DIVIDER_POWER_OF_TWO, AC100_CLKOUT_DIV_WIDTH); } static long ac100_clkout_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long prate) { unsigned long best_rate = 0, tmp_rate, tmp_prate; int i; if (prate == AC100_RTC_32K_RATE) return divider_round_rate(hw, rate, &prate, NULL, AC100_CLKOUT_DIV_WIDTH, CLK_DIVIDER_POWER_OF_TWO); for (i = 0; ac100_clkout_prediv[i].div; i++) { tmp_prate = DIV_ROUND_UP(prate, ac100_clkout_prediv[i].val); tmp_rate = divider_round_rate(hw, rate, &tmp_prate, NULL, AC100_CLKOUT_DIV_WIDTH, CLK_DIVIDER_POWER_OF_TWO); if (tmp_rate > rate) continue; if (rate - tmp_rate < best_rate - tmp_rate) best_rate = tmp_rate; } return best_rate; } static int ac100_clkout_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_hw *best_parent; unsigned long best = 0; int i, num_parents = clk_hw_get_num_parents(hw); for (i = 0; i < num_parents; i++) { struct clk_hw *parent = clk_hw_get_parent_by_index(hw, i); unsigned long tmp, prate; /* * The clock has two parents, one is a fixed clock which is * internally registered by the ac100 driver. The other parent * is a clock from the codec side of the chip, which we * properly declare and reference in the devicetree and is * not implemented in any driver right now. * If the clock core looks for the parent of that second * missing clock, it can't find one that is registered and * returns NULL. * So we end up in a situation where clk_hw_get_num_parents * returns the amount of clocks we can be parented to, but * clk_hw_get_parent_by_index will not return the orphan * clocks. * Thus we need to check if the parent exists before * we get the parent rate, so we could use the RTC * without waiting for the codec to be supported. */ if (!parent) continue; prate = clk_hw_get_rate(parent); tmp = ac100_clkout_round_rate(hw, req->rate, prate); if (tmp > req->rate) continue; if (req->rate - tmp < req->rate - best) { best = tmp; best_parent = parent; } } if (!best) return -EINVAL; req->best_parent_hw = best_parent; req->best_parent_rate = best; req->rate = best; return 0; } static int ac100_clkout_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long prate) { struct ac100_clkout *clk = to_ac100_clkout(hw); int div = 0, pre_div = 0; do { div = divider_get_val(rate * ac100_clkout_prediv[pre_div].div, prate, NULL, AC100_CLKOUT_DIV_WIDTH, CLK_DIVIDER_POWER_OF_TWO); if (div >= 0) break; } while (prate != AC100_RTC_32K_RATE && ac100_clkout_prediv[++pre_div].div); if (div < 0) return div; pre_div = ac100_clkout_prediv[pre_div].val; regmap_update_bits(clk->regmap, clk->offset, ((1 << AC100_CLKOUT_DIV_WIDTH) - 1) << AC100_CLKOUT_DIV_SHIFT | ((1 << AC100_CLKOUT_PRE_DIV_WIDTH) - 1) << AC100_CLKOUT_PRE_DIV_SHIFT, (div - 1) << AC100_CLKOUT_DIV_SHIFT | (pre_div - 1) << AC100_CLKOUT_PRE_DIV_SHIFT); return 0; } static int ac100_clkout_prepare(struct clk_hw *hw) { struct ac100_clkout *clk = to_ac100_clkout(hw); return regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN, AC100_CLKOUT_EN); } static void ac100_clkout_unprepare(struct clk_hw *hw) { struct ac100_clkout *clk = to_ac100_clkout(hw); regmap_update_bits(clk->regmap, clk->offset, AC100_CLKOUT_EN, 0); } static int ac100_clkout_is_prepared(struct clk_hw *hw) { struct ac100_clkout *clk = to_ac100_clkout(hw); unsigned int reg; regmap_read(clk->regmap, clk->offset, ®); return reg & AC100_CLKOUT_EN; } static u8 ac100_clkout_get_parent(struct clk_hw *hw) { struct ac100_clkout *clk = to_ac100_clkout(hw); unsigned int reg; regmap_read(clk->regmap, clk->offset, ®); return (reg >> AC100_CLKOUT_MUX_SHIFT) & 0x1; } static int ac100_clkout_set_parent(struct clk_hw *hw, u8 index) { struct ac100_clkout *clk = to_ac100_clkout(hw); return regmap_update_bits(clk->regmap, clk->offset, BIT(AC100_CLKOUT_MUX_SHIFT), index ? BIT(AC100_CLKOUT_MUX_SHIFT) : 0); } static const struct clk_ops ac100_clkout_ops = { .prepare = ac100_clkout_prepare, .unprepare = ac100_clkout_unprepare, .is_prepared = ac100_clkout_is_prepared, .recalc_rate = ac100_clkout_recalc_rate, .determine_rate = ac100_clkout_determine_rate, .get_parent = ac100_clkout_get_parent, .set_parent = ac100_clkout_set_parent, .set_rate = ac100_clkout_set_rate, }; static int ac100_rtc_register_clks(struct ac100_rtc_dev *chip) { struct device_node *np = chip->dev->of_node; const char *parents[2] = {AC100_RTC_32K_NAME}; int i, ret; chip->clk_data = devm_kzalloc(chip->dev, struct_size(chip->clk_data, hws, AC100_CLKOUT_NUM), GFP_KERNEL); if (!chip->clk_data) return -ENOMEM; chip->rtc_32k_clk = clk_hw_register_fixed_rate(chip->dev, AC100_RTC_32K_NAME, NULL, 0, AC100_RTC_32K_RATE); if (IS_ERR(chip->rtc_32k_clk)) { ret = PTR_ERR(chip->rtc_32k_clk); dev_err(chip->dev, "Failed to register RTC-32k clock: %d\n", ret); return ret; } parents[1] = of_clk_get_parent_name(np, 0); if (!parents[1]) { dev_err(chip->dev, "Failed to get ADDA 4M clock\n"); return -EINVAL; } for (i = 0; i < AC100_CLKOUT_NUM; i++) { struct ac100_clkout *clk = &chip->clks[i]; struct clk_init_data init = { .name = ac100_clkout_names[i], .ops = &ac100_clkout_ops, .parent_names = parents, .num_parents = ARRAY_SIZE(parents), .flags = 0, }; of_property_read_string_index(np, "clock-output-names", i, &init.name); clk->regmap = chip->regmap; clk->offset = AC100_CLKOUT_CTRL1 + i; clk->hw.init = &init; ret = devm_clk_hw_register(chip->dev, &clk->hw); if (ret) { dev_err(chip->dev, "Failed to register clk '%s': %d\n", init.name, ret); goto err_unregister_rtc_32k; } chip->clk_data->hws[i] = &clk->hw; } chip->clk_data->num = i; ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, chip->clk_data); if (ret) goto err_unregister_rtc_32k; return 0; err_unregister_rtc_32k: clk_unregister_fixed_rate(chip->rtc_32k_clk->clk); return ret; } static void ac100_rtc_unregister_clks(struct ac100_rtc_dev *chip) { of_clk_del_provider(chip->dev->of_node); clk_unregister_fixed_rate(chip->rtc_32k_clk->clk); } /** * RTC related bits */ static int ac100_rtc_get_time(struct device *dev, struct rtc_time *rtc_tm) { struct ac100_rtc_dev *chip = dev_get_drvdata(dev); struct regmap *regmap = chip->regmap; u16 reg[7]; int ret; ret = regmap_bulk_read(regmap, AC100_RTC_SEC, reg, 7); if (ret) return ret; rtc_tm->tm_sec = bcd2bin(reg[0] & AC100_RTC_SEC_MASK); rtc_tm->tm_min = bcd2bin(reg[1] & AC100_RTC_MIN_MASK); rtc_tm->tm_hour = bcd2bin(reg[2] & AC100_RTC_HOU_MASK); rtc_tm->tm_wday = bcd2bin(reg[3] & AC100_RTC_WEE_MASK); rtc_tm->tm_mday = bcd2bin(reg[4] & AC100_RTC_DAY_MASK); rtc_tm->tm_mon = bcd2bin(reg[5] & AC100_RTC_MON_MASK) - 1; rtc_tm->tm_year = bcd2bin(reg[6] & AC100_RTC_YEA_MASK) + AC100_YEAR_OFF; return 0; } static int ac100_rtc_set_time(struct device *dev, struct rtc_time *rtc_tm) { struct ac100_rtc_dev *chip = dev_get_drvdata(dev); struct regmap *regmap = chip->regmap; int year; u16 reg[8]; /* our RTC has a limited year range... */ year = rtc_tm->tm_year - AC100_YEAR_OFF; if (year < 0 || year > (AC100_YEAR_MAX - 1900)) { dev_err(dev, "rtc only supports year in range %d - %d\n", AC100_YEAR_MIN, AC100_YEAR_MAX); return -EINVAL; } /* convert to BCD */ reg[0] = bin2bcd(rtc_tm->tm_sec) & AC100_RTC_SEC_MASK; reg[1] = bin2bcd(rtc_tm->tm_min) & AC100_RTC_MIN_MASK; reg[2] = bin2bcd(rtc_tm->tm_hour) & AC100_RTC_HOU_MASK; reg[3] = bin2bcd(rtc_tm->tm_wday) & AC100_RTC_WEE_MASK; reg[4] = bin2bcd(rtc_tm->tm_mday) & AC100_RTC_DAY_MASK; reg[5] = bin2bcd(rtc_tm->tm_mon + 1) & AC100_RTC_MON_MASK; reg[6] = bin2bcd(year) & AC100_RTC_YEA_MASK; /* trigger write */ reg[7] = AC100_RTC_UPD_TRIGGER; /* Is it a leap year? */ if (is_leap_year(year + AC100_YEAR_OFF + 1900)) reg[6] |= AC100_RTC_YEA_LEAP; return regmap_bulk_write(regmap, AC100_RTC_SEC, reg, 8); } static int ac100_rtc_alarm_irq_enable(struct device *dev, unsigned int en) { struct ac100_rtc_dev *chip = dev_get_drvdata(dev); struct regmap *regmap = chip->regmap; unsigned int val; val = en ? AC100_ALM_INT_ENABLE : 0; return regmap_write(regmap, AC100_ALM_INT_ENA, val); } static int ac100_rtc_get_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct ac100_rtc_dev *chip = dev_get_drvdata(dev); struct regmap *regmap = chip->regmap; struct rtc_time *alrm_tm = &alrm->time; u16 reg[7]; unsigned int val; int ret; ret = regmap_read(regmap, AC100_ALM_INT_ENA, &val); if (ret) return ret; alrm->enabled = !!(val & AC100_ALM_INT_ENABLE); ret = regmap_bulk_read(regmap, AC100_ALM_SEC, reg, 7); if (ret) return ret; alrm_tm->tm_sec = bcd2bin(reg[0] & AC100_ALM_SEC_MASK); alrm_tm->tm_min = bcd2bin(reg[1] & AC100_ALM_MIN_MASK); alrm_tm->tm_hour = bcd2bin(reg[2] & AC100_ALM_HOU_MASK); alrm_tm->tm_wday = bcd2bin(reg[3] & AC100_ALM_WEE_MASK); alrm_tm->tm_mday = bcd2bin(reg[4] & AC100_ALM_DAY_MASK); alrm_tm->tm_mon = bcd2bin(reg[5] & AC100_ALM_MON_MASK) - 1; alrm_tm->tm_year = bcd2bin(reg[6] & AC100_ALM_YEA_MASK) + AC100_YEAR_OFF; return 0; } static int ac100_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm) { struct ac100_rtc_dev *chip = dev_get_drvdata(dev); struct regmap *regmap = chip->regmap; struct rtc_time *alrm_tm = &alrm->time; u16 reg[8]; int year; int ret; /* our alarm has a limited year range... */ year = alrm_tm->tm_year - AC100_YEAR_OFF; if (year < 0 || year > (AC100_YEAR_MAX - 1900)) { dev_err(dev, "alarm only supports year in range %d - %d\n", AC100_YEAR_MIN, AC100_YEAR_MAX); return -EINVAL; } /* convert to BCD */ reg[0] = (bin2bcd(alrm_tm->tm_sec) & AC100_ALM_SEC_MASK) | AC100_ALM_ENABLE_FLAG; reg[1] = (bin2bcd(alrm_tm->tm_min) & AC100_ALM_MIN_MASK) | AC100_ALM_ENABLE_FLAG; reg[2] = (bin2bcd(alrm_tm->tm_hour) & AC100_ALM_HOU_MASK) | AC100_ALM_ENABLE_FLAG; /* Do not enable weekday alarm */ reg[3] = bin2bcd(alrm_tm->tm_wday) & AC100_ALM_WEE_MASK; reg[4] = (bin2bcd(alrm_tm->tm_mday) & AC100_ALM_DAY_MASK) | AC100_ALM_ENABLE_FLAG; reg[5] = (bin2bcd(alrm_tm->tm_mon + 1) & AC100_ALM_MON_MASK) | AC100_ALM_ENABLE_FLAG; reg[6] = (bin2bcd(year) & AC100_ALM_YEA_MASK) | AC100_ALM_ENABLE_FLAG; /* trigger write */ reg[7] = AC100_ALM_UPD_TRIGGER; ret = regmap_bulk_write(regmap, AC100_ALM_SEC, reg, 8); if (ret) return ret; return ac100_rtc_alarm_irq_enable(dev, alrm->enabled); } static irqreturn_t ac100_rtc_irq(int irq, void *data) { struct ac100_rtc_dev *chip = data; struct regmap *regmap = chip->regmap; unsigned int val = 0; int ret; mutex_lock(&chip->rtc->ops_lock); /* read status */ ret = regmap_read(regmap, AC100_ALM_INT_STA, &val); if (ret) goto out; if (val & AC100_ALM_INT_ENABLE) { /* signal rtc framework */ rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF); /* clear status */ ret = regmap_write(regmap, AC100_ALM_INT_STA, val); if (ret) goto out; /* disable interrupt */ ret = ac100_rtc_alarm_irq_enable(chip->dev, 0); if (ret) goto out; } out: mutex_unlock(&chip->rtc->ops_lock); return IRQ_HANDLED; } static const struct rtc_class_ops ac100_rtc_ops = { .read_time = ac100_rtc_get_time, .set_time = ac100_rtc_set_time, .read_alarm = ac100_rtc_get_alarm, .set_alarm = ac100_rtc_set_alarm, .alarm_irq_enable = ac100_rtc_alarm_irq_enable, }; static int ac100_rtc_probe(struct platform_device *pdev) { struct ac100_dev *ac100 = dev_get_drvdata(pdev->dev.parent); struct ac100_rtc_dev *chip; int ret; chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL); if (!chip) return -ENOMEM; platform_set_drvdata(pdev, chip); chip->dev = &pdev->dev; chip->regmap = ac100->regmap; chip->irq = platform_get_irq(pdev, 0); if (chip->irq < 0) { dev_err(&pdev->dev, "No IRQ resource\n"); return chip->irq; } chip->rtc = devm_rtc_allocate_device(&pdev->dev); if (IS_ERR(chip->rtc)) return PTR_ERR(chip->rtc); chip->rtc->ops = &ac100_rtc_ops; ret = devm_request_threaded_irq(&pdev->dev, chip->irq, NULL, ac100_rtc_irq, IRQF_SHARED | IRQF_ONESHOT, dev_name(&pdev->dev), chip); if (ret) { dev_err(&pdev->dev, "Could not request IRQ\n"); return ret; } /* always use 24 hour mode */ regmap_write_bits(chip->regmap, AC100_RTC_CTRL, AC100_RTC_CTRL_24HOUR, AC100_RTC_CTRL_24HOUR); /* disable counter alarm interrupt */ regmap_write(chip->regmap, AC100_ALM_INT_ENA, 0); /* clear counter alarm pending interrupts */ regmap_write(chip->regmap, AC100_ALM_INT_STA, AC100_ALM_INT_ENABLE); ret = ac100_rtc_register_clks(chip); if (ret) return ret; ret = rtc_register_device(chip->rtc); if (ret) { dev_err(&pdev->dev, "unable to register device\n"); return ret; } dev_info(&pdev->dev, "RTC enabled\n"); return 0; } static int ac100_rtc_remove(struct platform_device *pdev) { struct ac100_rtc_dev *chip = platform_get_drvdata(pdev); ac100_rtc_unregister_clks(chip); return 0; } static const struct of_device_id ac100_rtc_match[] = { { .compatible = "x-powers,ac100-rtc" }, { }, }; MODULE_DEVICE_TABLE(of, ac100_rtc_match); static struct platform_driver ac100_rtc_driver = { .probe = ac100_rtc_probe, .remove = ac100_rtc_remove, .driver = { .name = "ac100-rtc", .of_match_table = of_match_ptr(ac100_rtc_match), }, }; module_platform_driver(ac100_rtc_driver); MODULE_DESCRIPTION("X-Powers AC100 RTC driver"); MODULE_AUTHOR("Chen-Yu Tsai <wens@csie.org>"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1