Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Geert Uytterhoeven | 1169 | 89.30% | 2 | 16.67% |
Alexandre Belloni | 111 | 8.48% | 3 | 25.00% |
Jingoo Han | 17 | 1.30% | 3 | 25.00% |
John Stultz | 8 | 0.61% | 2 | 16.67% |
Tejun Heo | 3 | 0.23% | 1 | 8.33% |
Thomas Gleixner | 1 | 0.08% | 1 | 8.33% |
Total | 1309 | 12 |
// SPDX-License-Identifier: GPL-2.0-only /* * Ricoh RP5C01 RTC Driver * * Copyright 2009 Geert Uytterhoeven * * Based on the A3000 TOD code in arch/m68k/amiga/config.c * Copyright (C) 1993 Hamish Macdonald */ #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/rtc.h> #include <linux/slab.h> enum { RP5C01_1_SECOND = 0x0, /* MODE 00 */ RP5C01_10_SECOND = 0x1, /* MODE 00 */ RP5C01_1_MINUTE = 0x2, /* MODE 00 and MODE 01 */ RP5C01_10_MINUTE = 0x3, /* MODE 00 and MODE 01 */ RP5C01_1_HOUR = 0x4, /* MODE 00 and MODE 01 */ RP5C01_10_HOUR = 0x5, /* MODE 00 and MODE 01 */ RP5C01_DAY_OF_WEEK = 0x6, /* MODE 00 and MODE 01 */ RP5C01_1_DAY = 0x7, /* MODE 00 and MODE 01 */ RP5C01_10_DAY = 0x8, /* MODE 00 and MODE 01 */ RP5C01_1_MONTH = 0x9, /* MODE 00 */ RP5C01_10_MONTH = 0xa, /* MODE 00 */ RP5C01_1_YEAR = 0xb, /* MODE 00 */ RP5C01_10_YEAR = 0xc, /* MODE 00 */ RP5C01_12_24_SELECT = 0xa, /* MODE 01 */ RP5C01_LEAP_YEAR = 0xb, /* MODE 01 */ RP5C01_MODE = 0xd, /* all modes */ RP5C01_TEST = 0xe, /* all modes */ RP5C01_RESET = 0xf, /* all modes */ }; #define RP5C01_12_24_SELECT_12 (0 << 0) #define RP5C01_12_24_SELECT_24 (1 << 0) #define RP5C01_10_HOUR_AM (0 << 1) #define RP5C01_10_HOUR_PM (1 << 1) #define RP5C01_MODE_TIMER_EN (1 << 3) /* timer enable */ #define RP5C01_MODE_ALARM_EN (1 << 2) /* alarm enable */ #define RP5C01_MODE_MODE_MASK (3 << 0) #define RP5C01_MODE_MODE00 (0 << 0) /* time */ #define RP5C01_MODE_MODE01 (1 << 0) /* alarm, 12h/24h, leap year */ #define RP5C01_MODE_RAM_BLOCK10 (2 << 0) /* RAM 4 bits x 13 */ #define RP5C01_MODE_RAM_BLOCK11 (3 << 0) /* RAM 4 bits x 13 */ #define RP5C01_RESET_1HZ_PULSE (1 << 3) #define RP5C01_RESET_16HZ_PULSE (1 << 2) #define RP5C01_RESET_SECOND (1 << 1) /* reset divider stages for */ /* seconds or smaller units */ #define RP5C01_RESET_ALARM (1 << 0) /* reset all alarm registers */ struct rp5c01_priv { u32 __iomem *regs; struct rtc_device *rtc; spinlock_t lock; /* against concurrent RTC/NVRAM access */ }; static inline unsigned int rp5c01_read(struct rp5c01_priv *priv, unsigned int reg) { return __raw_readl(&priv->regs[reg]) & 0xf; } static inline void rp5c01_write(struct rp5c01_priv *priv, unsigned int val, unsigned int reg) { __raw_writel(val, &priv->regs[reg]); } static void rp5c01_lock(struct rp5c01_priv *priv) { rp5c01_write(priv, RP5C01_MODE_MODE00, RP5C01_MODE); } static void rp5c01_unlock(struct rp5c01_priv *priv) { rp5c01_write(priv, RP5C01_MODE_TIMER_EN | RP5C01_MODE_MODE01, RP5C01_MODE); } static int rp5c01_read_time(struct device *dev, struct rtc_time *tm) { struct rp5c01_priv *priv = dev_get_drvdata(dev); spin_lock_irq(&priv->lock); rp5c01_lock(priv); tm->tm_sec = rp5c01_read(priv, RP5C01_10_SECOND) * 10 + rp5c01_read(priv, RP5C01_1_SECOND); tm->tm_min = rp5c01_read(priv, RP5C01_10_MINUTE) * 10 + rp5c01_read(priv, RP5C01_1_MINUTE); tm->tm_hour = rp5c01_read(priv, RP5C01_10_HOUR) * 10 + rp5c01_read(priv, RP5C01_1_HOUR); tm->tm_mday = rp5c01_read(priv, RP5C01_10_DAY) * 10 + rp5c01_read(priv, RP5C01_1_DAY); tm->tm_wday = rp5c01_read(priv, RP5C01_DAY_OF_WEEK); tm->tm_mon = rp5c01_read(priv, RP5C01_10_MONTH) * 10 + rp5c01_read(priv, RP5C01_1_MONTH) - 1; tm->tm_year = rp5c01_read(priv, RP5C01_10_YEAR) * 10 + rp5c01_read(priv, RP5C01_1_YEAR); if (tm->tm_year <= 69) tm->tm_year += 100; rp5c01_unlock(priv); spin_unlock_irq(&priv->lock); return 0; } static int rp5c01_set_time(struct device *dev, struct rtc_time *tm) { struct rp5c01_priv *priv = dev_get_drvdata(dev); spin_lock_irq(&priv->lock); rp5c01_lock(priv); rp5c01_write(priv, tm->tm_sec / 10, RP5C01_10_SECOND); rp5c01_write(priv, tm->tm_sec % 10, RP5C01_1_SECOND); rp5c01_write(priv, tm->tm_min / 10, RP5C01_10_MINUTE); rp5c01_write(priv, tm->tm_min % 10, RP5C01_1_MINUTE); rp5c01_write(priv, tm->tm_hour / 10, RP5C01_10_HOUR); rp5c01_write(priv, tm->tm_hour % 10, RP5C01_1_HOUR); rp5c01_write(priv, tm->tm_mday / 10, RP5C01_10_DAY); rp5c01_write(priv, tm->tm_mday % 10, RP5C01_1_DAY); if (tm->tm_wday != -1) rp5c01_write(priv, tm->tm_wday, RP5C01_DAY_OF_WEEK); rp5c01_write(priv, (tm->tm_mon + 1) / 10, RP5C01_10_MONTH); rp5c01_write(priv, (tm->tm_mon + 1) % 10, RP5C01_1_MONTH); if (tm->tm_year >= 100) tm->tm_year -= 100; rp5c01_write(priv, tm->tm_year / 10, RP5C01_10_YEAR); rp5c01_write(priv, tm->tm_year % 10, RP5C01_1_YEAR); rp5c01_unlock(priv); spin_unlock_irq(&priv->lock); return 0; } static const struct rtc_class_ops rp5c01_rtc_ops = { .read_time = rp5c01_read_time, .set_time = rp5c01_set_time, }; /* * The NVRAM is organized as 2 blocks of 13 nibbles of 4 bits. * We provide access to them like AmigaOS does: the high nibble of each 8-bit * byte is stored in BLOCK10, the low nibble in BLOCK11. */ static int rp5c01_nvram_read(void *_priv, unsigned int pos, void *val, size_t bytes) { struct rp5c01_priv *priv = _priv; u8 *buf = val; spin_lock_irq(&priv->lock); for (; bytes; bytes--) { u8 data; rp5c01_write(priv, RP5C01_MODE_TIMER_EN | RP5C01_MODE_RAM_BLOCK10, RP5C01_MODE); data = rp5c01_read(priv, pos) << 4; rp5c01_write(priv, RP5C01_MODE_TIMER_EN | RP5C01_MODE_RAM_BLOCK11, RP5C01_MODE); data |= rp5c01_read(priv, pos++); rp5c01_write(priv, RP5C01_MODE_TIMER_EN | RP5C01_MODE_MODE01, RP5C01_MODE); *buf++ = data; } spin_unlock_irq(&priv->lock); return 0; } static int rp5c01_nvram_write(void *_priv, unsigned int pos, void *val, size_t bytes) { struct rp5c01_priv *priv = _priv; u8 *buf = val; spin_lock_irq(&priv->lock); for (; bytes; bytes--) { u8 data = *buf++; rp5c01_write(priv, RP5C01_MODE_TIMER_EN | RP5C01_MODE_RAM_BLOCK10, RP5C01_MODE); rp5c01_write(priv, data >> 4, pos); rp5c01_write(priv, RP5C01_MODE_TIMER_EN | RP5C01_MODE_RAM_BLOCK11, RP5C01_MODE); rp5c01_write(priv, data & 0xf, pos++); rp5c01_write(priv, RP5C01_MODE_TIMER_EN | RP5C01_MODE_MODE01, RP5C01_MODE); } spin_unlock_irq(&priv->lock); return 0; } static int __init rp5c01_rtc_probe(struct platform_device *dev) { struct resource *res; struct rp5c01_priv *priv; struct rtc_device *rtc; int error; struct nvmem_config nvmem_cfg = { .name = "rp5c01_nvram", .word_size = 1, .stride = 1, .size = RP5C01_MODE, .reg_read = rp5c01_nvram_read, .reg_write = rp5c01_nvram_write, }; res = platform_get_resource(dev, IORESOURCE_MEM, 0); if (!res) return -ENODEV; priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->regs = devm_ioremap(&dev->dev, res->start, resource_size(res)); if (!priv->regs) return -ENOMEM; spin_lock_init(&priv->lock); platform_set_drvdata(dev, priv); rtc = devm_rtc_allocate_device(&dev->dev); if (IS_ERR(rtc)) return PTR_ERR(rtc); rtc->ops = &rp5c01_rtc_ops; rtc->nvram_old_abi = true; priv->rtc = rtc; nvmem_cfg.priv = priv; error = rtc_nvmem_register(rtc, &nvmem_cfg); if (error) return error; return rtc_register_device(rtc); } static struct platform_driver rp5c01_rtc_driver = { .driver = { .name = "rtc-rp5c01", }, }; module_platform_driver_probe(rp5c01_rtc_driver, rp5c01_rtc_probe); MODULE_AUTHOR("Geert Uytterhoeven <geert@linux-m68k.org>"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Ricoh RP5C01 RTC driver"); MODULE_ALIAS("platform:rtc-rp5c01");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1