Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chandra Seetharaman | 2173 | 61.80% | 10 | 23.81% |
Babu Moger | 585 | 16.64% | 9 | 21.43% |
Hannes Reinecke | 544 | 15.47% | 6 | 14.29% |
Chauhan, Vijay | 111 | 3.16% | 5 | 11.90% |
Christoph Hellwig | 88 | 2.50% | 6 | 14.29% |
Richard Weinberger | 5 | 0.14% | 1 | 2.38% |
Tejun Heo | 3 | 0.09% | 1 | 2.38% |
Paul Gortmaker | 3 | 0.09% | 1 | 2.38% |
Mike Anderson | 2 | 0.06% | 1 | 2.38% |
Phil Carmody | 1 | 0.03% | 1 | 2.38% |
Stephen Kitt | 1 | 0.03% | 1 | 2.38% |
Total | 3516 | 42 |
/* * LSI/Engenio/NetApp E-Series RDAC SCSI Device Handler * * Copyright (C) 2005 Mike Christie. All rights reserved. * Copyright (C) Chandra Seetharaman, IBM Corp. 2007 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * */ #include <scsi/scsi.h> #include <scsi/scsi_eh.h> #include <scsi/scsi_dh.h> #include <linux/workqueue.h> #include <linux/slab.h> #include <linux/module.h> #define RDAC_NAME "rdac" #define RDAC_RETRY_COUNT 5 /* * LSI mode page stuff * * These struct definitions and the forming of the * mode page were taken from the LSI RDAC 2.4 GPL'd * driver, and then converted to Linux conventions. */ #define RDAC_QUIESCENCE_TIME 20 /* * Page Codes */ #define RDAC_PAGE_CODE_REDUNDANT_CONTROLLER 0x2c /* * Controller modes definitions */ #define RDAC_MODE_TRANSFER_SPECIFIED_LUNS 0x02 /* * RDAC Options field */ #define RDAC_FORCED_QUIESENCE 0x02 #define RDAC_TIMEOUT (60 * HZ) #define RDAC_RETRIES 3 struct rdac_mode_6_hdr { u8 data_len; u8 medium_type; u8 device_params; u8 block_desc_len; }; struct rdac_mode_10_hdr { u16 data_len; u8 medium_type; u8 device_params; u16 reserved; u16 block_desc_len; }; struct rdac_mode_common { u8 controller_serial[16]; u8 alt_controller_serial[16]; u8 rdac_mode[2]; u8 alt_rdac_mode[2]; u8 quiescence_timeout; u8 rdac_options; }; struct rdac_pg_legacy { struct rdac_mode_6_hdr hdr; u8 page_code; u8 page_len; struct rdac_mode_common common; #define MODE6_MAX_LUN 32 u8 lun_table[MODE6_MAX_LUN]; u8 reserved2[32]; u8 reserved3; u8 reserved4; }; struct rdac_pg_expanded { struct rdac_mode_10_hdr hdr; u8 page_code; u8 subpage_code; u8 page_len[2]; struct rdac_mode_common common; u8 lun_table[256]; u8 reserved3; u8 reserved4; }; struct c9_inquiry { u8 peripheral_info; u8 page_code; /* 0xC9 */ u8 reserved1; u8 page_len; u8 page_id[4]; /* "vace" */ u8 avte_cvp; u8 path_prio; u8 reserved2[38]; }; #define SUBSYS_ID_LEN 16 #define SLOT_ID_LEN 2 #define ARRAY_LABEL_LEN 31 struct c4_inquiry { u8 peripheral_info; u8 page_code; /* 0xC4 */ u8 reserved1; u8 page_len; u8 page_id[4]; /* "subs" */ u8 subsys_id[SUBSYS_ID_LEN]; u8 revision[4]; u8 slot_id[SLOT_ID_LEN]; u8 reserved[2]; }; #define UNIQUE_ID_LEN 16 struct c8_inquiry { u8 peripheral_info; u8 page_code; /* 0xC8 */ u8 reserved1; u8 page_len; u8 page_id[4]; /* "edid" */ u8 reserved2[3]; u8 vol_uniq_id_len; u8 vol_uniq_id[16]; u8 vol_user_label_len; u8 vol_user_label[60]; u8 array_uniq_id_len; u8 array_unique_id[UNIQUE_ID_LEN]; u8 array_user_label_len; u8 array_user_label[60]; u8 lun[8]; }; struct rdac_controller { u8 array_id[UNIQUE_ID_LEN]; int use_ms10; struct kref kref; struct list_head node; /* list of all controllers */ union { struct rdac_pg_legacy legacy; struct rdac_pg_expanded expanded; } mode_select; u8 index; u8 array_name[ARRAY_LABEL_LEN]; struct Scsi_Host *host; spinlock_t ms_lock; int ms_queued; struct work_struct ms_work; struct scsi_device *ms_sdev; struct list_head ms_head; struct list_head dh_list; }; struct c2_inquiry { u8 peripheral_info; u8 page_code; /* 0xC2 */ u8 reserved1; u8 page_len; u8 page_id[4]; /* "swr4" */ u8 sw_version[3]; u8 sw_date[3]; u8 features_enabled; u8 max_lun_supported; u8 partitions[239]; /* Total allocation length should be 0xFF */ }; struct rdac_dh_data { struct list_head node; struct rdac_controller *ctlr; struct scsi_device *sdev; #define UNINITIALIZED_LUN (1 << 8) unsigned lun; #define RDAC_MODE 0 #define RDAC_MODE_AVT 1 #define RDAC_MODE_IOSHIP 2 unsigned char mode; #define RDAC_STATE_ACTIVE 0 #define RDAC_STATE_PASSIVE 1 unsigned char state; #define RDAC_LUN_UNOWNED 0 #define RDAC_LUN_OWNED 1 char lun_state; #define RDAC_PREFERRED 0 #define RDAC_NON_PREFERRED 1 char preferred; union { struct c2_inquiry c2; struct c4_inquiry c4; struct c8_inquiry c8; struct c9_inquiry c9; } inq; }; static const char *mode[] = { "RDAC", "AVT", "IOSHIP", }; static const char *lun_state[] = { "unowned", "owned", }; struct rdac_queue_data { struct list_head entry; struct rdac_dh_data *h; activate_complete callback_fn; void *callback_data; }; static LIST_HEAD(ctlr_list); static DEFINE_SPINLOCK(list_lock); static struct workqueue_struct *kmpath_rdacd; static void send_mode_select(struct work_struct *work); /* * module parameter to enable rdac debug logging. * 2 bits for each type of logging, only two types defined for now * Can be enhanced if required at later point */ static int rdac_logging = 1; module_param(rdac_logging, int, S_IRUGO|S_IWUSR); MODULE_PARM_DESC(rdac_logging, "A bit mask of rdac logging levels, " "Default is 1 - failover logging enabled, " "set it to 0xF to enable all the logs"); #define RDAC_LOG_FAILOVER 0 #define RDAC_LOG_SENSE 2 #define RDAC_LOG_BITS 2 #define RDAC_LOG_LEVEL(SHIFT) \ ((rdac_logging >> (SHIFT)) & ((1 << (RDAC_LOG_BITS)) - 1)) #define RDAC_LOG(SHIFT, sdev, f, arg...) \ do { \ if (unlikely(RDAC_LOG_LEVEL(SHIFT))) \ sdev_printk(KERN_INFO, sdev, RDAC_NAME ": " f "\n", ## arg); \ } while (0); static unsigned int rdac_failover_get(struct rdac_controller *ctlr, struct list_head *list, unsigned char *cdb) { struct rdac_mode_common *common; unsigned data_size; struct rdac_queue_data *qdata; u8 *lun_table; if (ctlr->use_ms10) { struct rdac_pg_expanded *rdac_pg; data_size = sizeof(struct rdac_pg_expanded); rdac_pg = &ctlr->mode_select.expanded; memset(rdac_pg, 0, data_size); common = &rdac_pg->common; rdac_pg->page_code = RDAC_PAGE_CODE_REDUNDANT_CONTROLLER + 0x40; rdac_pg->subpage_code = 0x1; rdac_pg->page_len[0] = 0x01; rdac_pg->page_len[1] = 0x28; lun_table = rdac_pg->lun_table; } else { struct rdac_pg_legacy *rdac_pg; data_size = sizeof(struct rdac_pg_legacy); rdac_pg = &ctlr->mode_select.legacy; memset(rdac_pg, 0, data_size); common = &rdac_pg->common; rdac_pg->page_code = RDAC_PAGE_CODE_REDUNDANT_CONTROLLER; rdac_pg->page_len = 0x68; lun_table = rdac_pg->lun_table; } common->rdac_mode[1] = RDAC_MODE_TRANSFER_SPECIFIED_LUNS; common->quiescence_timeout = RDAC_QUIESCENCE_TIME; common->rdac_options = RDAC_FORCED_QUIESENCE; list_for_each_entry(qdata, list, entry) { lun_table[qdata->h->lun] = 0x81; } /* Prepare the command. */ if (ctlr->use_ms10) { cdb[0] = MODE_SELECT_10; cdb[7] = data_size >> 8; cdb[8] = data_size & 0xff; } else { cdb[0] = MODE_SELECT; cdb[4] = data_size; } return data_size; } static void release_controller(struct kref *kref) { struct rdac_controller *ctlr; ctlr = container_of(kref, struct rdac_controller, kref); list_del(&ctlr->node); kfree(ctlr); } static struct rdac_controller *get_controller(int index, char *array_name, u8 *array_id, struct scsi_device *sdev) { struct rdac_controller *ctlr, *tmp; list_for_each_entry(tmp, &ctlr_list, node) { if ((memcmp(tmp->array_id, array_id, UNIQUE_ID_LEN) == 0) && (tmp->index == index) && (tmp->host == sdev->host)) { kref_get(&tmp->kref); return tmp; } } ctlr = kmalloc(sizeof(*ctlr), GFP_ATOMIC); if (!ctlr) return NULL; /* initialize fields of controller */ memcpy(ctlr->array_id, array_id, UNIQUE_ID_LEN); ctlr->index = index; ctlr->host = sdev->host; memcpy(ctlr->array_name, array_name, ARRAY_LABEL_LEN); kref_init(&ctlr->kref); ctlr->use_ms10 = -1; ctlr->ms_queued = 0; ctlr->ms_sdev = NULL; spin_lock_init(&ctlr->ms_lock); INIT_WORK(&ctlr->ms_work, send_mode_select); INIT_LIST_HEAD(&ctlr->ms_head); list_add(&ctlr->node, &ctlr_list); INIT_LIST_HEAD(&ctlr->dh_list); return ctlr; } static int get_lun_info(struct scsi_device *sdev, struct rdac_dh_data *h, char *array_name, u8 *array_id) { int err = SCSI_DH_IO, i; struct c8_inquiry *inqp = &h->inq.c8; if (!scsi_get_vpd_page(sdev, 0xC8, (unsigned char *)inqp, sizeof(struct c8_inquiry))) { if (inqp->page_code != 0xc8) return SCSI_DH_NOSYS; if (inqp->page_id[0] != 'e' || inqp->page_id[1] != 'd' || inqp->page_id[2] != 'i' || inqp->page_id[3] != 'd') return SCSI_DH_NOSYS; h->lun = inqp->lun[7]; /* Uses only the last byte */ for(i=0; i<ARRAY_LABEL_LEN-1; ++i) *(array_name+i) = inqp->array_user_label[(2*i)+1]; *(array_name+ARRAY_LABEL_LEN-1) = '\0'; memset(array_id, 0, UNIQUE_ID_LEN); memcpy(array_id, inqp->array_unique_id, inqp->array_uniq_id_len); err = SCSI_DH_OK; } return err; } static int check_ownership(struct scsi_device *sdev, struct rdac_dh_data *h) { int err = SCSI_DH_IO, access_state; struct rdac_dh_data *tmp; struct c9_inquiry *inqp = &h->inq.c9; h->state = RDAC_STATE_ACTIVE; if (!scsi_get_vpd_page(sdev, 0xC9, (unsigned char *)inqp, sizeof(struct c9_inquiry))) { /* detect the operating mode */ if ((inqp->avte_cvp >> 5) & 0x1) h->mode = RDAC_MODE_IOSHIP; /* LUN in IOSHIP mode */ else if (inqp->avte_cvp >> 7) h->mode = RDAC_MODE_AVT; /* LUN in AVT mode */ else h->mode = RDAC_MODE; /* LUN in RDAC mode */ /* Update ownership */ if (inqp->avte_cvp & 0x1) { h->lun_state = RDAC_LUN_OWNED; access_state = SCSI_ACCESS_STATE_OPTIMAL; } else { h->lun_state = RDAC_LUN_UNOWNED; if (h->mode == RDAC_MODE) { h->state = RDAC_STATE_PASSIVE; access_state = SCSI_ACCESS_STATE_STANDBY; } else access_state = SCSI_ACCESS_STATE_ACTIVE; } /* Update path prio*/ if (inqp->path_prio & 0x1) { h->preferred = RDAC_PREFERRED; access_state |= SCSI_ACCESS_STATE_PREFERRED; } else h->preferred = RDAC_NON_PREFERRED; rcu_read_lock(); list_for_each_entry_rcu(tmp, &h->ctlr->dh_list, node) { /* h->sdev should always be valid */ BUG_ON(!tmp->sdev); tmp->sdev->access_state = access_state; } rcu_read_unlock(); err = SCSI_DH_OK; } return err; } static int initialize_controller(struct scsi_device *sdev, struct rdac_dh_data *h, char *array_name, u8 *array_id) { int err = SCSI_DH_IO, index; struct c4_inquiry *inqp = &h->inq.c4; if (!scsi_get_vpd_page(sdev, 0xC4, (unsigned char *)inqp, sizeof(struct c4_inquiry))) { /* get the controller index */ if (inqp->slot_id[1] == 0x31) index = 0; else index = 1; spin_lock(&list_lock); h->ctlr = get_controller(index, array_name, array_id, sdev); if (!h->ctlr) err = SCSI_DH_RES_TEMP_UNAVAIL; else { list_add_rcu(&h->node, &h->ctlr->dh_list); h->sdev = sdev; } spin_unlock(&list_lock); err = SCSI_DH_OK; } return err; } static int set_mode_select(struct scsi_device *sdev, struct rdac_dh_data *h) { int err = SCSI_DH_IO; struct c2_inquiry *inqp = &h->inq.c2; if (!scsi_get_vpd_page(sdev, 0xC2, (unsigned char *)inqp, sizeof(struct c2_inquiry))) { /* * If more than MODE6_MAX_LUN luns are supported, use * mode select 10 */ if (inqp->max_lun_supported >= MODE6_MAX_LUN) h->ctlr->use_ms10 = 1; else h->ctlr->use_ms10 = 0; err = SCSI_DH_OK; } return err; } static int mode_select_handle_sense(struct scsi_device *sdev, struct scsi_sense_hdr *sense_hdr) { int err = SCSI_DH_IO; struct rdac_dh_data *h = sdev->handler_data; if (!scsi_sense_valid(sense_hdr)) goto done; switch (sense_hdr->sense_key) { case NO_SENSE: case ABORTED_COMMAND: case UNIT_ATTENTION: err = SCSI_DH_RETRY; break; case NOT_READY: if (sense_hdr->asc == 0x04 && sense_hdr->ascq == 0x01) /* LUN Not Ready and is in the Process of Becoming * Ready */ err = SCSI_DH_RETRY; break; case ILLEGAL_REQUEST: if (sense_hdr->asc == 0x91 && sense_hdr->ascq == 0x36) /* * Command Lock contention */ err = SCSI_DH_IMM_RETRY; break; default: break; } RDAC_LOG(RDAC_LOG_FAILOVER, sdev, "array %s, ctlr %d, " "MODE_SELECT returned with sense %02x/%02x/%02x", (char *) h->ctlr->array_name, h->ctlr->index, sense_hdr->sense_key, sense_hdr->asc, sense_hdr->ascq); done: return err; } static void send_mode_select(struct work_struct *work) { struct rdac_controller *ctlr = container_of(work, struct rdac_controller, ms_work); struct scsi_device *sdev = ctlr->ms_sdev; struct rdac_dh_data *h = sdev->handler_data; int err = SCSI_DH_OK, retry_cnt = RDAC_RETRY_COUNT; struct rdac_queue_data *tmp, *qdata; LIST_HEAD(list); unsigned char cdb[MAX_COMMAND_SIZE]; struct scsi_sense_hdr sshdr; unsigned int data_size; u64 req_flags = REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER; spin_lock(&ctlr->ms_lock); list_splice_init(&ctlr->ms_head, &list); ctlr->ms_queued = 0; ctlr->ms_sdev = NULL; spin_unlock(&ctlr->ms_lock); retry: data_size = rdac_failover_get(ctlr, &list, cdb); RDAC_LOG(RDAC_LOG_FAILOVER, sdev, "array %s, ctlr %d, " "%s MODE_SELECT command", (char *) h->ctlr->array_name, h->ctlr->index, (retry_cnt == RDAC_RETRY_COUNT) ? "queueing" : "retrying"); if (scsi_execute(sdev, cdb, DMA_TO_DEVICE, &h->ctlr->mode_select, data_size, NULL, &sshdr, RDAC_TIMEOUT * HZ, RDAC_RETRIES, req_flags, 0, NULL)) { err = mode_select_handle_sense(sdev, &sshdr); if (err == SCSI_DH_RETRY && retry_cnt--) goto retry; if (err == SCSI_DH_IMM_RETRY) goto retry; } if (err == SCSI_DH_OK) { h->state = RDAC_STATE_ACTIVE; RDAC_LOG(RDAC_LOG_FAILOVER, sdev, "array %s, ctlr %d, " "MODE_SELECT completed", (char *) h->ctlr->array_name, h->ctlr->index); } list_for_each_entry_safe(qdata, tmp, &list, entry) { list_del(&qdata->entry); if (err == SCSI_DH_OK) qdata->h->state = RDAC_STATE_ACTIVE; if (qdata->callback_fn) qdata->callback_fn(qdata->callback_data, err); kfree(qdata); } return; } static int queue_mode_select(struct scsi_device *sdev, activate_complete fn, void *data) { struct rdac_queue_data *qdata; struct rdac_controller *ctlr; qdata = kzalloc(sizeof(*qdata), GFP_KERNEL); if (!qdata) return SCSI_DH_RETRY; qdata->h = sdev->handler_data; qdata->callback_fn = fn; qdata->callback_data = data; ctlr = qdata->h->ctlr; spin_lock(&ctlr->ms_lock); list_add_tail(&qdata->entry, &ctlr->ms_head); if (!ctlr->ms_queued) { ctlr->ms_queued = 1; ctlr->ms_sdev = sdev; queue_work(kmpath_rdacd, &ctlr->ms_work); } spin_unlock(&ctlr->ms_lock); return SCSI_DH_OK; } static int rdac_activate(struct scsi_device *sdev, activate_complete fn, void *data) { struct rdac_dh_data *h = sdev->handler_data; int err = SCSI_DH_OK; int act = 0; err = check_ownership(sdev, h); if (err != SCSI_DH_OK) goto done; switch (h->mode) { case RDAC_MODE: if (h->lun_state == RDAC_LUN_UNOWNED) act = 1; break; case RDAC_MODE_IOSHIP: if ((h->lun_state == RDAC_LUN_UNOWNED) && (h->preferred == RDAC_PREFERRED)) act = 1; break; default: break; } if (act) { err = queue_mode_select(sdev, fn, data); if (err == SCSI_DH_OK) return 0; } done: if (fn) fn(data, err); return 0; } static blk_status_t rdac_prep_fn(struct scsi_device *sdev, struct request *req) { struct rdac_dh_data *h = sdev->handler_data; if (h->state != RDAC_STATE_ACTIVE) { req->rq_flags |= RQF_QUIET; return BLK_STS_IOERR; } return BLK_STS_OK; } static int rdac_check_sense(struct scsi_device *sdev, struct scsi_sense_hdr *sense_hdr) { struct rdac_dh_data *h = sdev->handler_data; RDAC_LOG(RDAC_LOG_SENSE, sdev, "array %s, ctlr %d, " "I/O returned with sense %02x/%02x/%02x", (char *) h->ctlr->array_name, h->ctlr->index, sense_hdr->sense_key, sense_hdr->asc, sense_hdr->ascq); switch (sense_hdr->sense_key) { case NOT_READY: if (sense_hdr->asc == 0x04 && sense_hdr->ascq == 0x01) /* LUN Not Ready - Logical Unit Not Ready and is in * the process of becoming ready * Just retry. */ return ADD_TO_MLQUEUE; if (sense_hdr->asc == 0x04 && sense_hdr->ascq == 0x81) /* LUN Not Ready - Storage firmware incompatible * Manual code synchonisation required. * * Nothing we can do here. Try to bypass the path. */ return SUCCESS; if (sense_hdr->asc == 0x04 && sense_hdr->ascq == 0xA1) /* LUN Not Ready - Quiescense in progress * * Just retry and wait. */ return ADD_TO_MLQUEUE; if (sense_hdr->asc == 0xA1 && sense_hdr->ascq == 0x02) /* LUN Not Ready - Quiescense in progress * or has been achieved * Just retry. */ return ADD_TO_MLQUEUE; break; case ILLEGAL_REQUEST: if (sense_hdr->asc == 0x94 && sense_hdr->ascq == 0x01) { /* Invalid Request - Current Logical Unit Ownership. * Controller is not the current owner of the LUN, * Fail the path, so that the other path be used. */ h->state = RDAC_STATE_PASSIVE; return SUCCESS; } break; case UNIT_ATTENTION: if (sense_hdr->asc == 0x29 && sense_hdr->ascq == 0x00) /* * Power On, Reset, or Bus Device Reset, just retry. */ return ADD_TO_MLQUEUE; if (sense_hdr->asc == 0x8b && sense_hdr->ascq == 0x02) /* * Quiescence in progress , just retry. */ return ADD_TO_MLQUEUE; break; } /* success just means we do not care what scsi-ml does */ return SCSI_RETURN_NOT_HANDLED; } static int rdac_bus_attach(struct scsi_device *sdev) { struct rdac_dh_data *h; int err; char array_name[ARRAY_LABEL_LEN]; char array_id[UNIQUE_ID_LEN]; h = kzalloc(sizeof(*h) , GFP_KERNEL); if (!h) return SCSI_DH_NOMEM; h->lun = UNINITIALIZED_LUN; h->state = RDAC_STATE_ACTIVE; err = get_lun_info(sdev, h, array_name, array_id); if (err != SCSI_DH_OK) goto failed; err = initialize_controller(sdev, h, array_name, array_id); if (err != SCSI_DH_OK) goto failed; err = check_ownership(sdev, h); if (err != SCSI_DH_OK) goto clean_ctlr; err = set_mode_select(sdev, h); if (err != SCSI_DH_OK) goto clean_ctlr; sdev_printk(KERN_NOTICE, sdev, "%s: LUN %d (%s) (%s)\n", RDAC_NAME, h->lun, mode[(int)h->mode], lun_state[(int)h->lun_state]); sdev->handler_data = h; return SCSI_DH_OK; clean_ctlr: spin_lock(&list_lock); kref_put(&h->ctlr->kref, release_controller); spin_unlock(&list_lock); failed: kfree(h); return err; } static void rdac_bus_detach( struct scsi_device *sdev ) { struct rdac_dh_data *h = sdev->handler_data; if (h->ctlr && h->ctlr->ms_queued) flush_workqueue(kmpath_rdacd); spin_lock(&list_lock); if (h->ctlr) { list_del_rcu(&h->node); h->sdev = NULL; kref_put(&h->ctlr->kref, release_controller); } spin_unlock(&list_lock); sdev->handler_data = NULL; kfree(h); } static struct scsi_device_handler rdac_dh = { .name = RDAC_NAME, .module = THIS_MODULE, .prep_fn = rdac_prep_fn, .check_sense = rdac_check_sense, .attach = rdac_bus_attach, .detach = rdac_bus_detach, .activate = rdac_activate, }; static int __init rdac_init(void) { int r; r = scsi_register_device_handler(&rdac_dh); if (r != 0) { printk(KERN_ERR "Failed to register scsi device handler."); goto done; } /* * Create workqueue to handle mode selects for rdac */ kmpath_rdacd = create_singlethread_workqueue("kmpath_rdacd"); if (!kmpath_rdacd) { scsi_unregister_device_handler(&rdac_dh); printk(KERN_ERR "kmpath_rdacd creation failed.\n"); r = -EINVAL; } done: return r; } static void __exit rdac_exit(void) { destroy_workqueue(kmpath_rdacd); scsi_unregister_device_handler(&rdac_dh); } module_init(rdac_init); module_exit(rdac_exit); MODULE_DESCRIPTION("Multipath LSI/Engenio/NetApp E-Series RDAC driver"); MODULE_AUTHOR("Mike Christie, Chandra Seetharaman"); MODULE_VERSION("01.00.0000.0000"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1