Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Timur Tabi | 1213 | 40.43% | 7 | 17.07% |
Li Yang | 868 | 28.93% | 1 | 2.44% |
Haiying Wang | 290 | 9.67% | 2 | 4.88% |
Anton Vorontsov | 216 | 7.20% | 8 | 19.51% |
Dave Liu | 182 | 6.07% | 1 | 2.44% |
Zhao Qiang | 93 | 3.10% | 4 | 9.76% |
Valentin Longchamp | 72 | 2.40% | 2 | 4.88% |
Kokoris, Ioannis | 16 | 0.53% | 1 | 2.44% |
Rickard Strandqvist | 9 | 0.30% | 1 | 2.44% |
Nicu Ioan Petru | 8 | 0.27% | 1 | 2.44% |
Grant C. Likely | 7 | 0.23% | 3 | 7.32% |
Joakim Tjernlund | 6 | 0.20% | 1 | 2.44% |
Rob Herring | 5 | 0.17% | 1 | 2.44% |
Julia Lawall | 5 | 0.17% | 1 | 2.44% |
Thomas Gleixner | 2 | 0.07% | 1 | 2.44% |
Geliang Tang | 2 | 0.07% | 1 | 2.44% |
Chuck Meade | 2 | 0.07% | 1 | 2.44% |
Paul Bolle | 1 | 0.03% | 1 | 2.44% |
Andy Fleming | 1 | 0.03% | 1 | 2.44% |
Stephen Rothwell | 1 | 0.03% | 1 | 2.44% |
Christophe Leroy | 1 | 0.03% | 1 | 2.44% |
Total | 3000 | 41 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2006-2010 Freescale Semiconductor, Inc. All rights reserved. * * Authors: Shlomi Gridish <gridish@freescale.com> * Li Yang <leoli@freescale.com> * Based on cpm2_common.c from Dan Malek (dmalek@jlc.net) * * Description: * General Purpose functions for the global management of the * QUICC Engine (QE). */ #include <linux/errno.h> #include <linux/sched.h> #include <linux/kernel.h> #include <linux/param.h> #include <linux/string.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/delay.h> #include <linux/ioport.h> #include <linux/crc32.h> #include <linux/mod_devicetable.h> #include <linux/of_platform.h> #include <asm/irq.h> #include <asm/page.h> #include <asm/pgtable.h> #include <soc/fsl/qe/immap_qe.h> #include <soc/fsl/qe/qe.h> #include <asm/prom.h> #include <asm/rheap.h> static void qe_snums_init(void); static int qe_sdma_init(void); static DEFINE_SPINLOCK(qe_lock); DEFINE_SPINLOCK(cmxgcr_lock); EXPORT_SYMBOL(cmxgcr_lock); /* QE snum state */ enum qe_snum_state { QE_SNUM_STATE_USED, QE_SNUM_STATE_FREE }; /* QE snum */ struct qe_snum { u8 num; enum qe_snum_state state; }; /* We allocate this here because it is used almost exclusively for * the communication processor devices. */ struct qe_immap __iomem *qe_immr; EXPORT_SYMBOL(qe_immr); static struct qe_snum snums[QE_NUM_OF_SNUM]; /* Dynamically allocated SNUMs */ static unsigned int qe_num_of_snum; static phys_addr_t qebase = -1; static phys_addr_t get_qe_base(void) { struct device_node *qe; int ret; struct resource res; if (qebase != -1) return qebase; qe = of_find_compatible_node(NULL, NULL, "fsl,qe"); if (!qe) { qe = of_find_node_by_type(NULL, "qe"); if (!qe) return qebase; } ret = of_address_to_resource(qe, 0, &res); if (!ret) qebase = res.start; of_node_put(qe); return qebase; } void qe_reset(void) { if (qe_immr == NULL) qe_immr = ioremap(get_qe_base(), QE_IMMAP_SIZE); qe_snums_init(); qe_issue_cmd(QE_RESET, QE_CR_SUBBLOCK_INVALID, QE_CR_PROTOCOL_UNSPECIFIED, 0); /* Reclaim the MURAM memory for our use. */ qe_muram_init(); if (qe_sdma_init()) panic("sdma init failed!"); } int qe_issue_cmd(u32 cmd, u32 device, u8 mcn_protocol, u32 cmd_input) { unsigned long flags; u8 mcn_shift = 0, dev_shift = 0; u32 ret; spin_lock_irqsave(&qe_lock, flags); if (cmd == QE_RESET) { out_be32(&qe_immr->cp.cecr, (u32) (cmd | QE_CR_FLG)); } else { if (cmd == QE_ASSIGN_PAGE) { /* Here device is the SNUM, not sub-block */ dev_shift = QE_CR_SNUM_SHIFT; } else if (cmd == QE_ASSIGN_RISC) { /* Here device is the SNUM, and mcnProtocol is * e_QeCmdRiscAssignment value */ dev_shift = QE_CR_SNUM_SHIFT; mcn_shift = QE_CR_MCN_RISC_ASSIGN_SHIFT; } else { if (device == QE_CR_SUBBLOCK_USB) mcn_shift = QE_CR_MCN_USB_SHIFT; else mcn_shift = QE_CR_MCN_NORMAL_SHIFT; } out_be32(&qe_immr->cp.cecdr, cmd_input); out_be32(&qe_immr->cp.cecr, (cmd | QE_CR_FLG | ((u32) device << dev_shift) | (u32) mcn_protocol << mcn_shift)); } /* wait for the QE_CR_FLG to clear */ ret = spin_event_timeout((in_be32(&qe_immr->cp.cecr) & QE_CR_FLG) == 0, 100, 0); /* On timeout (e.g. failure), the expression will be false (ret == 0), otherwise it will be true (ret == 1). */ spin_unlock_irqrestore(&qe_lock, flags); return ret == 1; } EXPORT_SYMBOL(qe_issue_cmd); /* Set a baud rate generator. This needs lots of work. There are * 16 BRGs, which can be connected to the QE channels or output * as clocks. The BRGs are in two different block of internal * memory mapped space. * The BRG clock is the QE clock divided by 2. * It was set up long ago during the initial boot phase and is * is given to us. * Baud rate clocks are zero-based in the driver code (as that maps * to port numbers). Documentation uses 1-based numbering. */ static unsigned int brg_clk = 0; #define CLK_GRAN (1000) #define CLK_GRAN_LIMIT (5) unsigned int qe_get_brg_clk(void) { struct device_node *qe; int size; const u32 *prop; unsigned int mod; if (brg_clk) return brg_clk; qe = of_find_compatible_node(NULL, NULL, "fsl,qe"); if (!qe) { qe = of_find_node_by_type(NULL, "qe"); if (!qe) return brg_clk; } prop = of_get_property(qe, "brg-frequency", &size); if (prop && size == sizeof(*prop)) brg_clk = *prop; of_node_put(qe); /* round this if near to a multiple of CLK_GRAN */ mod = brg_clk % CLK_GRAN; if (mod) { if (mod < CLK_GRAN_LIMIT) brg_clk -= mod; else if (mod > (CLK_GRAN - CLK_GRAN_LIMIT)) brg_clk += CLK_GRAN - mod; } return brg_clk; } EXPORT_SYMBOL(qe_get_brg_clk); #define PVR_VER_836x 0x8083 #define PVR_VER_832x 0x8084 /* Program the BRG to the given sampling rate and multiplier * * @brg: the BRG, QE_BRG1 - QE_BRG16 * @rate: the desired sampling rate * @multiplier: corresponds to the value programmed in GUMR_L[RDCR] or * GUMR_L[TDCR]. E.g., if this BRG is the RX clock, and GUMR_L[RDCR]=01, * then 'multiplier' should be 8. */ int qe_setbrg(enum qe_clock brg, unsigned int rate, unsigned int multiplier) { u32 divisor, tempval; u32 div16 = 0; if ((brg < QE_BRG1) || (brg > QE_BRG16)) return -EINVAL; divisor = qe_get_brg_clk() / (rate * multiplier); if (divisor > QE_BRGC_DIVISOR_MAX + 1) { div16 = QE_BRGC_DIV16; divisor /= 16; } /* Errata QE_General4, which affects some MPC832x and MPC836x SOCs, says that the BRG divisor must be even if you're not using divide-by-16 mode. */ if (pvr_version_is(PVR_VER_836x) || pvr_version_is(PVR_VER_832x)) if (!div16 && (divisor & 1) && (divisor > 3)) divisor++; tempval = ((divisor - 1) << QE_BRGC_DIVISOR_SHIFT) | QE_BRGC_ENABLE | div16; out_be32(&qe_immr->brg.brgc[brg - QE_BRG1], tempval); return 0; } EXPORT_SYMBOL(qe_setbrg); /* Convert a string to a QE clock source enum * * This function takes a string, typically from a property in the device * tree, and returns the corresponding "enum qe_clock" value. */ enum qe_clock qe_clock_source(const char *source) { unsigned int i; if (strcasecmp(source, "none") == 0) return QE_CLK_NONE; if (strcmp(source, "tsync_pin") == 0) return QE_TSYNC_PIN; if (strcmp(source, "rsync_pin") == 0) return QE_RSYNC_PIN; if (strncasecmp(source, "brg", 3) == 0) { i = simple_strtoul(source + 3, NULL, 10); if ((i >= 1) && (i <= 16)) return (QE_BRG1 - 1) + i; else return QE_CLK_DUMMY; } if (strncasecmp(source, "clk", 3) == 0) { i = simple_strtoul(source + 3, NULL, 10); if ((i >= 1) && (i <= 24)) return (QE_CLK1 - 1) + i; else return QE_CLK_DUMMY; } return QE_CLK_DUMMY; } EXPORT_SYMBOL(qe_clock_source); /* Initialize SNUMs (thread serial numbers) according to * QE Module Control chapter, SNUM table */ static void qe_snums_init(void) { int i; static const u8 snum_init_76[] = { 0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D, 0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89, 0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9, 0xD8, 0xD9, 0xE8, 0xE9, 0x44, 0x45, 0x4C, 0x4D, 0x54, 0x55, 0x5C, 0x5D, 0x64, 0x65, 0x6C, 0x6D, 0x74, 0x75, 0x7C, 0x7D, 0x84, 0x85, 0x8C, 0x8D, 0x94, 0x95, 0x9C, 0x9D, 0xA4, 0xA5, 0xAC, 0xAD, 0xB4, 0xB5, 0xBC, 0xBD, 0xC4, 0xC5, 0xCC, 0xCD, 0xD4, 0xD5, 0xDC, 0xDD, 0xE4, 0xE5, 0xEC, 0xED, 0xF4, 0xF5, 0xFC, 0xFD, }; static const u8 snum_init_46[] = { 0x04, 0x05, 0x0C, 0x0D, 0x14, 0x15, 0x1C, 0x1D, 0x24, 0x25, 0x2C, 0x2D, 0x34, 0x35, 0x88, 0x89, 0x98, 0x99, 0xA8, 0xA9, 0xB8, 0xB9, 0xC8, 0xC9, 0xD8, 0xD9, 0xE8, 0xE9, 0x08, 0x09, 0x18, 0x19, 0x28, 0x29, 0x38, 0x39, 0x48, 0x49, 0x58, 0x59, 0x68, 0x69, 0x78, 0x79, 0x80, 0x81, }; static const u8 *snum_init; qe_num_of_snum = qe_get_num_of_snums(); if (qe_num_of_snum == 76) snum_init = snum_init_76; else snum_init = snum_init_46; for (i = 0; i < qe_num_of_snum; i++) { snums[i].num = snum_init[i]; snums[i].state = QE_SNUM_STATE_FREE; } } int qe_get_snum(void) { unsigned long flags; int snum = -EBUSY; int i; spin_lock_irqsave(&qe_lock, flags); for (i = 0; i < qe_num_of_snum; i++) { if (snums[i].state == QE_SNUM_STATE_FREE) { snums[i].state = QE_SNUM_STATE_USED; snum = snums[i].num; break; } } spin_unlock_irqrestore(&qe_lock, flags); return snum; } EXPORT_SYMBOL(qe_get_snum); void qe_put_snum(u8 snum) { int i; for (i = 0; i < qe_num_of_snum; i++) { if (snums[i].num == snum) { snums[i].state = QE_SNUM_STATE_FREE; break; } } } EXPORT_SYMBOL(qe_put_snum); static int qe_sdma_init(void) { struct sdma __iomem *sdma = &qe_immr->sdma; static unsigned long sdma_buf_offset = (unsigned long)-ENOMEM; if (!sdma) return -ENODEV; /* allocate 2 internal temporary buffers (512 bytes size each) for * the SDMA */ if (IS_ERR_VALUE(sdma_buf_offset)) { sdma_buf_offset = qe_muram_alloc(512 * 2, 4096); if (IS_ERR_VALUE(sdma_buf_offset)) return -ENOMEM; } out_be32(&sdma->sdebcr, (u32) sdma_buf_offset & QE_SDEBCR_BA_MASK); out_be32(&sdma->sdmr, (QE_SDMR_GLB_1_MSK | (0x1 << QE_SDMR_CEN_SHIFT))); return 0; } /* The maximum number of RISCs we support */ #define MAX_QE_RISC 4 /* Firmware information stored here for qe_get_firmware_info() */ static struct qe_firmware_info qe_firmware_info; /* * Set to 1 if QE firmware has been uploaded, and therefore * qe_firmware_info contains valid data. */ static int qe_firmware_uploaded; /* * Upload a QE microcode * * This function is a worker function for qe_upload_firmware(). It does * the actual uploading of the microcode. */ static void qe_upload_microcode(const void *base, const struct qe_microcode *ucode) { const __be32 *code = base + be32_to_cpu(ucode->code_offset); unsigned int i; if (ucode->major || ucode->minor || ucode->revision) printk(KERN_INFO "qe-firmware: " "uploading microcode '%s' version %u.%u.%u\n", ucode->id, ucode->major, ucode->minor, ucode->revision); else printk(KERN_INFO "qe-firmware: " "uploading microcode '%s'\n", ucode->id); /* Use auto-increment */ out_be32(&qe_immr->iram.iadd, be32_to_cpu(ucode->iram_offset) | QE_IRAM_IADD_AIE | QE_IRAM_IADD_BADDR); for (i = 0; i < be32_to_cpu(ucode->count); i++) out_be32(&qe_immr->iram.idata, be32_to_cpu(code[i])); /* Set I-RAM Ready Register */ out_be32(&qe_immr->iram.iready, be32_to_cpu(QE_IRAM_READY)); } /* * Upload a microcode to the I-RAM at a specific address. * * See Documentation/powerpc/qe_firmware.txt for information on QE microcode * uploading. * * Currently, only version 1 is supported, so the 'version' field must be * set to 1. * * The SOC model and revision are not validated, they are only displayed for * informational purposes. * * 'calc_size' is the calculated size, in bytes, of the firmware structure and * all of the microcode structures, minus the CRC. * * 'length' is the size that the structure says it is, including the CRC. */ int qe_upload_firmware(const struct qe_firmware *firmware) { unsigned int i; unsigned int j; u32 crc; size_t calc_size = sizeof(struct qe_firmware); size_t length; const struct qe_header *hdr; if (!firmware) { printk(KERN_ERR "qe-firmware: invalid pointer\n"); return -EINVAL; } hdr = &firmware->header; length = be32_to_cpu(hdr->length); /* Check the magic */ if ((hdr->magic[0] != 'Q') || (hdr->magic[1] != 'E') || (hdr->magic[2] != 'F')) { printk(KERN_ERR "qe-firmware: not a microcode\n"); return -EPERM; } /* Check the version */ if (hdr->version != 1) { printk(KERN_ERR "qe-firmware: unsupported version\n"); return -EPERM; } /* Validate some of the fields */ if ((firmware->count < 1) || (firmware->count > MAX_QE_RISC)) { printk(KERN_ERR "qe-firmware: invalid data\n"); return -EINVAL; } /* Validate the length and check if there's a CRC */ calc_size += (firmware->count - 1) * sizeof(struct qe_microcode); for (i = 0; i < firmware->count; i++) /* * For situations where the second RISC uses the same microcode * as the first, the 'code_offset' and 'count' fields will be * zero, so it's okay to add those. */ calc_size += sizeof(__be32) * be32_to_cpu(firmware->microcode[i].count); /* Validate the length */ if (length != calc_size + sizeof(__be32)) { printk(KERN_ERR "qe-firmware: invalid length\n"); return -EPERM; } /* Validate the CRC */ crc = be32_to_cpu(*(__be32 *)((void *)firmware + calc_size)); if (crc != crc32(0, firmware, calc_size)) { printk(KERN_ERR "qe-firmware: firmware CRC is invalid\n"); return -EIO; } /* * If the microcode calls for it, split the I-RAM. */ if (!firmware->split) setbits16(&qe_immr->cp.cercr, QE_CP_CERCR_CIR); if (firmware->soc.model) printk(KERN_INFO "qe-firmware: firmware '%s' for %u V%u.%u\n", firmware->id, be16_to_cpu(firmware->soc.model), firmware->soc.major, firmware->soc.minor); else printk(KERN_INFO "qe-firmware: firmware '%s'\n", firmware->id); /* * The QE only supports one microcode per RISC, so clear out all the * saved microcode information and put in the new. */ memset(&qe_firmware_info, 0, sizeof(qe_firmware_info)); strlcpy(qe_firmware_info.id, firmware->id, sizeof(qe_firmware_info.id)); qe_firmware_info.extended_modes = firmware->extended_modes; memcpy(qe_firmware_info.vtraps, firmware->vtraps, sizeof(firmware->vtraps)); /* Loop through each microcode. */ for (i = 0; i < firmware->count; i++) { const struct qe_microcode *ucode = &firmware->microcode[i]; /* Upload a microcode if it's present */ if (ucode->code_offset) qe_upload_microcode(firmware, ucode); /* Program the traps for this processor */ for (j = 0; j < 16; j++) { u32 trap = be32_to_cpu(ucode->traps[j]); if (trap) out_be32(&qe_immr->rsp[i].tibcr[j], trap); } /* Enable traps */ out_be32(&qe_immr->rsp[i].eccr, be32_to_cpu(ucode->eccr)); } qe_firmware_uploaded = 1; return 0; } EXPORT_SYMBOL(qe_upload_firmware); /* * Get info on the currently-loaded firmware * * This function also checks the device tree to see if the boot loader has * uploaded a firmware already. */ struct qe_firmware_info *qe_get_firmware_info(void) { static int initialized; struct property *prop; struct device_node *qe; struct device_node *fw = NULL; const char *sprop; unsigned int i; /* * If we haven't checked yet, and a driver hasn't uploaded a firmware * yet, then check the device tree for information. */ if (qe_firmware_uploaded) return &qe_firmware_info; if (initialized) return NULL; initialized = 1; /* * Newer device trees have an "fsl,qe" compatible property for the QE * node, but we still need to support older device trees. */ qe = of_find_compatible_node(NULL, NULL, "fsl,qe"); if (!qe) { qe = of_find_node_by_type(NULL, "qe"); if (!qe) return NULL; } /* Find the 'firmware' child node */ fw = of_get_child_by_name(qe, "firmware"); of_node_put(qe); /* Did we find the 'firmware' node? */ if (!fw) return NULL; qe_firmware_uploaded = 1; /* Copy the data into qe_firmware_info*/ sprop = of_get_property(fw, "id", NULL); if (sprop) strlcpy(qe_firmware_info.id, sprop, sizeof(qe_firmware_info.id)); prop = of_find_property(fw, "extended-modes", NULL); if (prop && (prop->length == sizeof(u64))) { const u64 *iprop = prop->value; qe_firmware_info.extended_modes = *iprop; } prop = of_find_property(fw, "virtual-traps", NULL); if (prop && (prop->length == 32)) { const u32 *iprop = prop->value; for (i = 0; i < ARRAY_SIZE(qe_firmware_info.vtraps); i++) qe_firmware_info.vtraps[i] = iprop[i]; } of_node_put(fw); return &qe_firmware_info; } EXPORT_SYMBOL(qe_get_firmware_info); unsigned int qe_get_num_of_risc(void) { struct device_node *qe; int size; unsigned int num_of_risc = 0; const u32 *prop; qe = of_find_compatible_node(NULL, NULL, "fsl,qe"); if (!qe) { /* Older devices trees did not have an "fsl,qe" * compatible property, so we need to look for * the QE node by name. */ qe = of_find_node_by_type(NULL, "qe"); if (!qe) return num_of_risc; } prop = of_get_property(qe, "fsl,qe-num-riscs", &size); if (prop && size == sizeof(*prop)) num_of_risc = *prop; of_node_put(qe); return num_of_risc; } EXPORT_SYMBOL(qe_get_num_of_risc); unsigned int qe_get_num_of_snums(void) { struct device_node *qe; int size; unsigned int num_of_snums; const u32 *prop; num_of_snums = 28; /* The default number of snum for threads is 28 */ qe = of_find_compatible_node(NULL, NULL, "fsl,qe"); if (!qe) { /* Older devices trees did not have an "fsl,qe" * compatible property, so we need to look for * the QE node by name. */ qe = of_find_node_by_type(NULL, "qe"); if (!qe) return num_of_snums; } prop = of_get_property(qe, "fsl,qe-num-snums", &size); if (prop && size == sizeof(*prop)) { num_of_snums = *prop; if ((num_of_snums < 28) || (num_of_snums > QE_NUM_OF_SNUM)) { /* No QE ever has fewer than 28 SNUMs */ pr_err("QE: number of snum is invalid\n"); of_node_put(qe); return -EINVAL; } } of_node_put(qe); return num_of_snums; } EXPORT_SYMBOL(qe_get_num_of_snums); static int __init qe_init(void) { struct device_node *np; np = of_find_compatible_node(NULL, NULL, "fsl,qe"); if (!np) return -ENODEV; qe_reset(); of_node_put(np); return 0; } subsys_initcall(qe_init); #if defined(CONFIG_SUSPEND) && defined(CONFIG_PPC_85xx) static int qe_resume(struct platform_device *ofdev) { if (!qe_alive_during_sleep()) qe_reset(); return 0; } static int qe_probe(struct platform_device *ofdev) { return 0; } static const struct of_device_id qe_ids[] = { { .compatible = "fsl,qe", }, { }, }; static struct platform_driver qe_driver = { .driver = { .name = "fsl-qe", .of_match_table = qe_ids, }, .probe = qe_probe, .resume = qe_resume, }; builtin_platform_driver(qe_driver); #endif /* defined(CONFIG_SUSPEND) && defined(CONFIG_PPC_85xx) */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1