Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Hans de Goede | 3699 | 99.87% | 1 | 25.00% |
Nathan Chancellor | 2 | 0.05% | 1 | 25.00% |
Payal Kshirsagar | 2 | 0.05% | 1 | 25.00% |
Quytelda Kahja | 1 | 0.03% | 1 | 25.00% |
Total | 3704 | 4 |
// SPDX-License-Identifier: GPL-2.0 /****************************************************************************** * * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved. * ******************************************************************************/ #define _RTL8723B_PHYCFG_C_ #include <drv_types.h> #include <rtw_debug.h> #include <rtl8723b_hal.h> /*---------------------------Define Local Constant---------------------------*/ /* Channel switch:The size of command tables for switch channel*/ #define MAX_PRECMD_CNT 16 #define MAX_RFDEPENDCMD_CNT 16 #define MAX_POSTCMD_CNT 16 #define MAX_DOZE_WAITING_TIMES_9x 64 /** * Function: phy_CalculateBitShift * * OverView: Get shifted position of the BitMask * * Input: * u32 BitMask, * * Output: none * Return: u32 Return the shift bit bit position of the mask */ static u32 phy_CalculateBitShift(u32 BitMask) { u32 i; for (i = 0; i <= 31; i++) { if (((BitMask>>i) & 0x1) == 1) break; } return i; } /** * Function: PHY_QueryBBReg * * OverView: Read "sepcific bits" from BB register * * Input: * struct adapter * Adapter, * u32 RegAddr, The target address to be readback * u32 BitMask The target bit position in the target address * to be readback * Output: None * Return: u32 Data The readback register value * Note: This function is equal to "GetRegSetting" in PHY programming guide */ u32 PHY_QueryBBReg_8723B(struct adapter *Adapter, u32 RegAddr, u32 BitMask) { u32 OriginalValue, BitShift; #if (DISABLE_BB_RF == 1) return 0; #endif /* RT_TRACE(COMP_RF, DBG_TRACE, ("--->PHY_QueryBBReg(): RegAddr(%#lx), BitMask(%#lx)\n", RegAddr, BitMask)); */ OriginalValue = rtw_read32(Adapter, RegAddr); BitShift = phy_CalculateBitShift(BitMask); return (OriginalValue & BitMask) >> BitShift; } /** * Function: PHY_SetBBReg * * OverView: Write "Specific bits" to BB register (page 8~) * * Input: * struct adapter * Adapter, * u32 RegAddr, The target address to be modified * u32 BitMask The target bit position in the target address * to be modified * u32 Data The new register value in the target bit position * of the target address * * Output: None * Return: None * Note: This function is equal to "PutRegSetting" in PHY programming guide */ void PHY_SetBBReg_8723B( struct adapter *Adapter, u32 RegAddr, u32 BitMask, u32 Data ) { /* u16 BBWaitCounter = 0; */ u32 OriginalValue, BitShift; #if (DISABLE_BB_RF == 1) return; #endif /* RT_TRACE(COMP_RF, DBG_TRACE, ("--->PHY_SetBBReg(): RegAddr(%#lx), BitMask(%#lx), Data(%#lx)\n", RegAddr, BitMask, Data)); */ if (BitMask != bMaskDWord) { /* if not "double word" write */ OriginalValue = rtw_read32(Adapter, RegAddr); BitShift = phy_CalculateBitShift(BitMask); Data = ((OriginalValue & (~BitMask)) | ((Data << BitShift) & BitMask)); } rtw_write32(Adapter, RegAddr, Data); } /* */ /* 2. RF register R/W API */ /* */ static u32 phy_RFSerialRead_8723B( struct adapter *Adapter, enum RF_PATH eRFPath, u32 Offset ) { u32 retValue = 0; struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); struct bb_register_def *pPhyReg = &pHalData->PHYRegDef[eRFPath]; u32 NewOffset; u32 tmplong2; u8 RfPiEnable = 0; u32 MaskforPhySet = 0; int i = 0; /* */ /* Make sure RF register offset is correct */ /* */ Offset &= 0xff; NewOffset = Offset; if (eRFPath == RF_PATH_A) { tmplong2 = PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter2|MaskforPhySet, bMaskDWord); tmplong2 = (tmplong2 & (~bLSSIReadAddress)) | (NewOffset<<23) | bLSSIReadEdge; /* T65 RF */ PHY_SetBBReg(Adapter, rFPGA0_XA_HSSIParameter2|MaskforPhySet, bMaskDWord, tmplong2&(~bLSSIReadEdge)); } else { tmplong2 = PHY_QueryBBReg(Adapter, rFPGA0_XB_HSSIParameter2|MaskforPhySet, bMaskDWord); tmplong2 = (tmplong2 & (~bLSSIReadAddress)) | (NewOffset<<23) | bLSSIReadEdge; /* T65 RF */ PHY_SetBBReg(Adapter, rFPGA0_XB_HSSIParameter2|MaskforPhySet, bMaskDWord, tmplong2&(~bLSSIReadEdge)); } tmplong2 = PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter2|MaskforPhySet, bMaskDWord); PHY_SetBBReg(Adapter, rFPGA0_XA_HSSIParameter2|MaskforPhySet, bMaskDWord, tmplong2 & (~bLSSIReadEdge)); PHY_SetBBReg(Adapter, rFPGA0_XA_HSSIParameter2|MaskforPhySet, bMaskDWord, tmplong2 | bLSSIReadEdge); udelay(10); for (i = 0; i < 2; i++) udelay(MAX_STALL_TIME); udelay(10); if (eRFPath == RF_PATH_A) RfPiEnable = (u8)PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter1|MaskforPhySet, BIT8); else if (eRFPath == RF_PATH_B) RfPiEnable = (u8)PHY_QueryBBReg(Adapter, rFPGA0_XB_HSSIParameter1|MaskforPhySet, BIT8); if (RfPiEnable) { /* Read from BBreg8b8, 12 bits for 8190, 20bits for T65 RF */ retValue = PHY_QueryBBReg(Adapter, pPhyReg->rfLSSIReadBackPi|MaskforPhySet, bLSSIReadBackData); /* RT_DISP(FINIT, INIT_RF, ("Readback from RF-PI : 0x%x\n", retValue)); */ } else { /* Read from BBreg8a0, 12 bits for 8190, 20 bits for T65 RF */ retValue = PHY_QueryBBReg(Adapter, pPhyReg->rfLSSIReadBack|MaskforPhySet, bLSSIReadBackData); /* RT_DISP(FINIT, INIT_RF, ("Readback from RF-SI : 0x%x\n", retValue)); */ } return retValue; } /** * Function: phy_RFSerialWrite_8723B * * OverView: Write data to RF register (page 8~) * * Input: * struct adapter * Adapter, * RF_PATH eRFPath, Radio path of A/B/C/D * u32 Offset, The target address to be read * u32 Data The new register Data in the target bit position * of the target to be read * * Output: None * Return: None * Note: Threre are three types of serial operations: * 1. Software serial write * 2. Hardware LSSI-Low Speed Serial Interface * 3. Hardware HSSI-High speed * serial write. Driver need to implement (1) and (2). * This function is equal to the combination of RF_ReadReg() and RFLSSIRead() * * Note: For RF8256 only * The total count of RTL8256(Zebra4) register is around 36 bit it only employs * 4-bit RF address. RTL8256 uses "register mode control bit" (Reg00[12], Reg00[10]) * to access register address bigger than 0xf. See "Appendix-4 in PHY Configuration * programming guide" for more details. * Thus, we define a sub-finction for RTL8526 register address conversion * =========================================================== * Register Mode RegCTL[1] RegCTL[0] Note * (Reg00[12]) (Reg00[10]) * =========================================================== * Reg_Mode0 0 x Reg 0 ~15(0x0 ~ 0xf) * ------------------------------------------------------------------ * Reg_Mode1 1 0 Reg 16 ~30(0x1 ~ 0xf) * ------------------------------------------------------------------ * Reg_Mode2 1 1 Reg 31 ~ 45(0x1 ~ 0xf) * ------------------------------------------------------------------ * *2008/09/02 MH Add 92S RF definition * * * */ static void phy_RFSerialWrite_8723B( struct adapter *Adapter, enum RF_PATH eRFPath, u32 Offset, u32 Data ) { u32 DataAndAddr = 0; struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); struct bb_register_def *pPhyReg = &pHalData->PHYRegDef[eRFPath]; u32 NewOffset; Offset &= 0xff; /* */ /* Switch page for 8256 RF IC */ /* */ NewOffset = Offset; /* */ /* Put write addr in [5:0] and write data in [31:16] */ /* */ /* DataAndAddr = (Data<<16) | (NewOffset&0x3f); */ DataAndAddr = ((NewOffset<<20) | (Data&0x000fffff)) & 0x0fffffff; /* T65 RF */ /* */ /* Write Operation */ /* */ PHY_SetBBReg(Adapter, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr); /* RTPRINT(FPHY, PHY_RFW, ("RFW-%d Addr[0x%lx]= 0x%lx\n", eRFPath, pPhyReg->rf3wireOffset, DataAndAddr)); */ } /** * Function: PHY_QueryRFReg * * OverView: Query "Specific bits" to RF register (page 8~) * * Input: * struct adapter * Adapter, * RF_PATH eRFPath, Radio path of A/B/C/D * u32 RegAddr, The target address to be read * u32 BitMask The target bit position in the target address * to be read * * Output: None * Return: u32 Readback value * Note: This function is equal to "GetRFRegSetting" in PHY programming guide */ u32 PHY_QueryRFReg_8723B( struct adapter *Adapter, u8 eRFPath, u32 RegAddr, u32 BitMask ) { u32 Original_Value, BitShift; #if (DISABLE_BB_RF == 1) return 0; #endif Original_Value = phy_RFSerialRead_8723B(Adapter, eRFPath, RegAddr); BitShift = phy_CalculateBitShift(BitMask); return (Original_Value & BitMask) >> BitShift; } /** * Function: PHY_SetRFReg * * OverView: Write "Specific bits" to RF register (page 8~) * * Input: * struct adapter * Adapter, * RF_PATH eRFPath, Radio path of A/B/C/D * u32 RegAddr, The target address to be modified * u32 BitMask The target bit position in the target address * to be modified * u32 Data The new register Data in the target bit position * of the target address * * Output: None * Return: None * Note: This function is equal to "PutRFRegSetting" in PHY programming guide */ void PHY_SetRFReg_8723B( struct adapter *Adapter, u8 eRFPath, u32 RegAddr, u32 BitMask, u32 Data ) { u32 Original_Value, BitShift; #if (DISABLE_BB_RF == 1) return; #endif /* RF data is 12 bits only */ if (BitMask != bRFRegOffsetMask) { Original_Value = phy_RFSerialRead_8723B(Adapter, eRFPath, RegAddr); BitShift = phy_CalculateBitShift(BitMask); Data = ((Original_Value & (~BitMask)) | (Data<<BitShift)); } phy_RFSerialWrite_8723B(Adapter, eRFPath, RegAddr, Data); } /* */ /* 3. Initial MAC/BB/RF config by reading MAC/BB/RF txt. */ /* */ /*----------------------------------------------------------------------------- * Function: PHY_MACConfig8192C * * Overview: Condig MAC by header file or parameter file. * * Input: NONE * * Output: NONE * * Return: NONE * * Revised History: * When Who Remark * 08/12/2008 MHC Create Version 0. * *--------------------------------------------------------------------------- */ s32 PHY_MACConfig8723B(struct adapter *Adapter) { int rtStatus = _SUCCESS; struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); s8 *pszMACRegFile; s8 sz8723MACRegFile[] = RTL8723B_PHY_MACREG; pszMACRegFile = sz8723MACRegFile; /* */ /* Config MAC */ /* */ rtStatus = phy_ConfigMACWithParaFile(Adapter, pszMACRegFile); if (rtStatus == _FAIL) { ODM_ConfigMACWithHeaderFile(&pHalData->odmpriv); rtStatus = _SUCCESS; } return rtStatus; } /** * Function: phy_InitBBRFRegisterDefinition * * OverView: Initialize Register definition offset for Radio Path A/B/C/D * * Input: * struct adapter * Adapter, * * Output: None * Return: None * Note: The initialization value is constant and it should never be changes */ static void phy_InitBBRFRegisterDefinition(struct adapter *Adapter) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); /* RF Interface Sowrtware Control */ pHalData->PHYRegDef[ODM_RF_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW; /* 16 LSBs if read 32-bit from 0x870 */ pHalData->PHYRegDef[ODM_RF_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW; /* 16 MSBs if read 32-bit from 0x870 (16-bit for 0x872) */ /* RF Interface Output (and Enable) */ pHalData->PHYRegDef[ODM_RF_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE; /* 16 LSBs if read 32-bit from 0x860 */ pHalData->PHYRegDef[ODM_RF_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE; /* 16 LSBs if read 32-bit from 0x864 */ /* RF Interface (Output and) Enable */ pHalData->PHYRegDef[ODM_RF_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE; /* 16 MSBs if read 32-bit from 0x860 (16-bit for 0x862) */ pHalData->PHYRegDef[ODM_RF_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE; /* 16 MSBs if read 32-bit from 0x864 (16-bit for 0x866) */ pHalData->PHYRegDef[ODM_RF_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter; /* LSSI Parameter */ pHalData->PHYRegDef[ODM_RF_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter; pHalData->PHYRegDef[ODM_RF_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2; /* wire control parameter2 */ pHalData->PHYRegDef[ODM_RF_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2; /* wire control parameter2 */ /* Tranceiver Readback LSSI/HSPI mode */ pHalData->PHYRegDef[ODM_RF_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack; pHalData->PHYRegDef[ODM_RF_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack; pHalData->PHYRegDef[ODM_RF_PATH_A].rfLSSIReadBackPi = TransceiverA_HSPI_Readback; pHalData->PHYRegDef[ODM_RF_PATH_B].rfLSSIReadBackPi = TransceiverB_HSPI_Readback; } static int phy_BB8723b_Config_ParaFile(struct adapter *Adapter) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); int rtStatus = _SUCCESS; u8 sz8723BBRegFile[] = RTL8723B_PHY_REG; u8 sz8723AGCTableFile[] = RTL8723B_AGC_TAB; u8 sz8723BBBRegPgFile[] = RTL8723B_PHY_REG_PG; u8 sz8723BBRegMpFile[] = RTL8723B_PHY_REG_MP; u8 sz8723BRFTxPwrLmtFile[] = RTL8723B_TXPWR_LMT; u8 *pszBBRegFile = NULL, *pszAGCTableFile = NULL, *pszBBRegPgFile = NULL, *pszBBRegMpFile = NULL, *pszRFTxPwrLmtFile = NULL; pszBBRegFile = sz8723BBRegFile; pszAGCTableFile = sz8723AGCTableFile; pszBBRegPgFile = sz8723BBBRegPgFile; pszBBRegMpFile = sz8723BBRegMpFile; pszRFTxPwrLmtFile = sz8723BRFTxPwrLmtFile; /* Read Tx Power Limit File */ PHY_InitTxPowerLimit(Adapter); if ( Adapter->registrypriv.RegEnableTxPowerLimit == 1 || (Adapter->registrypriv.RegEnableTxPowerLimit == 2 && pHalData->EEPROMRegulatory == 1) ) { if (PHY_ConfigRFWithPowerLimitTableParaFile(Adapter, pszRFTxPwrLmtFile) == _FAIL) { if (HAL_STATUS_SUCCESS != ODM_ConfigRFWithHeaderFile(&pHalData->odmpriv, CONFIG_RF_TXPWR_LMT, (ODM_RF_RADIO_PATH_E)0)) rtStatus = _FAIL; } if (rtStatus != _SUCCESS) { DBG_871X("%s():Read Tx power limit fail\n", __func__); goto phy_BB8190_Config_ParaFile_Fail; } } /* */ /* 1. Read PHY_REG.TXT BB INIT!! */ /* */ if (phy_ConfigBBWithParaFile(Adapter, pszBBRegFile, CONFIG_BB_PHY_REG) == _FAIL) { if (HAL_STATUS_SUCCESS != ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG)) rtStatus = _FAIL; } if (rtStatus != _SUCCESS) { DBG_8192C("%s():Write BB Reg Fail!!", __func__); goto phy_BB8190_Config_ParaFile_Fail; } /* If EEPROM or EFUSE autoload OK, We must config by PHY_REG_PG.txt */ PHY_InitTxPowerByRate(Adapter); if ( Adapter->registrypriv.RegEnableTxPowerByRate == 1 || (Adapter->registrypriv.RegEnableTxPowerByRate == 2 && pHalData->EEPROMRegulatory != 2) ) { if (phy_ConfigBBWithPgParaFile(Adapter, pszBBRegPgFile) == _FAIL) { if (HAL_STATUS_SUCCESS != ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG_PG)) rtStatus = _FAIL; } if (pHalData->odmpriv.PhyRegPgValueType == PHY_REG_PG_EXACT_VALUE) PHY_TxPowerByRateConfiguration(Adapter); if ( Adapter->registrypriv.RegEnableTxPowerLimit == 1 || (Adapter->registrypriv.RegEnableTxPowerLimit == 2 && pHalData->EEPROMRegulatory == 1) ) PHY_ConvertTxPowerLimitToPowerIndex(Adapter); if (rtStatus != _SUCCESS) { DBG_8192C("%s():BB_PG Reg Fail!!\n", __func__); } } /* */ /* 2. Read BB AGC table Initialization */ /* */ if (phy_ConfigBBWithParaFile(Adapter, pszAGCTableFile, CONFIG_BB_AGC_TAB) == _FAIL) { if (HAL_STATUS_SUCCESS != ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_AGC_TAB)) rtStatus = _FAIL; } if (rtStatus != _SUCCESS) { DBG_8192C("%s():AGC Table Fail\n", __func__); goto phy_BB8190_Config_ParaFile_Fail; } phy_BB8190_Config_ParaFile_Fail: return rtStatus; } int PHY_BBConfig8723B(struct adapter *Adapter) { int rtStatus = _SUCCESS; struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); u32 RegVal; u8 CrystalCap; phy_InitBBRFRegisterDefinition(Adapter); /* Enable BB and RF */ RegVal = rtw_read16(Adapter, REG_SYS_FUNC_EN); rtw_write16(Adapter, REG_SYS_FUNC_EN, (u16)(RegVal|BIT13|BIT0|BIT1)); rtw_write32(Adapter, 0x948, 0x280); /* Others use Antenna S1 */ rtw_write8(Adapter, REG_RF_CTRL, RF_EN|RF_RSTB|RF_SDMRSTB); msleep(1); PHY_SetRFReg(Adapter, ODM_RF_PATH_A, 0x1, 0xfffff, 0x780); rtw_write8(Adapter, REG_SYS_FUNC_EN, FEN_PPLL|FEN_PCIEA|FEN_DIO_PCIE|FEN_BB_GLB_RSTn|FEN_BBRSTB); rtw_write8(Adapter, REG_AFE_XTAL_CTRL+1, 0x80); /* */ /* Config BB and AGC */ /* */ rtStatus = phy_BB8723b_Config_ParaFile(Adapter); /* 0x2C[23:18] = 0x2C[17:12] = CrystalCap */ CrystalCap = pHalData->CrystalCap & 0x3F; PHY_SetBBReg(Adapter, REG_MAC_PHY_CTRL, 0xFFF000, (CrystalCap | (CrystalCap << 6))); return rtStatus; } static void phy_LCK_8723B(struct adapter *Adapter) { PHY_SetRFReg(Adapter, RF_PATH_A, 0xB0, bRFRegOffsetMask, 0xDFBE0); PHY_SetRFReg(Adapter, RF_PATH_A, RF_CHNLBW, bRFRegOffsetMask, 0x8C01); mdelay(200); PHY_SetRFReg(Adapter, RF_PATH_A, 0xB0, bRFRegOffsetMask, 0xDFFE0); } int PHY_RFConfig8723B(struct adapter *Adapter) { int rtStatus = _SUCCESS; /* */ /* RF config */ /* */ rtStatus = PHY_RF6052_Config8723B(Adapter); phy_LCK_8723B(Adapter); /* PHY_BB8723B_Config_1T(Adapter); */ return rtStatus; } /************************************************************************************************************** * Description: * The low-level interface to set TxAGC , called by both MP and Normal Driver. * * <20120830, Kordan> **************************************************************************************************************/ void PHY_SetTxPowerIndex_8723B( struct adapter *Adapter, u32 PowerIndex, u8 RFPath, u8 Rate ) { if (RFPath == ODM_RF_PATH_A || RFPath == ODM_RF_PATH_B) { switch (Rate) { case MGN_1M: PHY_SetBBReg(Adapter, rTxAGC_A_CCK1_Mcs32, bMaskByte1, PowerIndex); break; case MGN_2M: PHY_SetBBReg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte1, PowerIndex); break; case MGN_5_5M: PHY_SetBBReg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte2, PowerIndex); break; case MGN_11M: PHY_SetBBReg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte3, PowerIndex); break; case MGN_6M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate18_06, bMaskByte0, PowerIndex); break; case MGN_9M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate18_06, bMaskByte1, PowerIndex); break; case MGN_12M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate18_06, bMaskByte2, PowerIndex); break; case MGN_18M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate18_06, bMaskByte3, PowerIndex); break; case MGN_24M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate54_24, bMaskByte0, PowerIndex); break; case MGN_36M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate54_24, bMaskByte1, PowerIndex); break; case MGN_48M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate54_24, bMaskByte2, PowerIndex); break; case MGN_54M: PHY_SetBBReg(Adapter, rTxAGC_A_Rate54_24, bMaskByte3, PowerIndex); break; case MGN_MCS0: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte0, PowerIndex); break; case MGN_MCS1: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte1, PowerIndex); break; case MGN_MCS2: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte2, PowerIndex); break; case MGN_MCS3: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs03_Mcs00, bMaskByte3, PowerIndex); break; case MGN_MCS4: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte0, PowerIndex); break; case MGN_MCS5: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte1, PowerIndex); break; case MGN_MCS6: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte2, PowerIndex); break; case MGN_MCS7: PHY_SetBBReg(Adapter, rTxAGC_A_Mcs07_Mcs04, bMaskByte3, PowerIndex); break; default: DBG_871X("Invalid Rate!!\n"); break; } } else { RT_TRACE(_module_hal_init_c_, _drv_err_, ("Invalid RFPath!!\n")); } } u8 PHY_GetTxPowerIndex_8723B( struct adapter *padapter, u8 RFPath, u8 Rate, enum CHANNEL_WIDTH BandWidth, u8 Channel ) { struct hal_com_data *pHalData = GET_HAL_DATA(padapter); s8 txPower = 0, powerDiffByRate = 0, limit = 0; bool bIn24G = false; /* DBG_871X("===>%s\n", __func__); */ txPower = (s8) PHY_GetTxPowerIndexBase(padapter, RFPath, Rate, BandWidth, Channel, &bIn24G); powerDiffByRate = PHY_GetTxPowerByRate(padapter, BAND_ON_2_4G, ODM_RF_PATH_A, RF_1TX, Rate); limit = phy_get_tx_pwr_lmt( padapter, padapter->registrypriv.RegPwrTblSel, (u8)(!bIn24G), pHalData->CurrentChannelBW, RFPath, Rate, pHalData->CurrentChannel ); powerDiffByRate = powerDiffByRate > limit ? limit : powerDiffByRate; txPower += powerDiffByRate; txPower += PHY_GetTxPowerTrackingOffset(padapter, RFPath, Rate); if (txPower > MAX_POWER_INDEX) txPower = MAX_POWER_INDEX; /* DBG_871X("Final Tx Power(RF-%c, Channel: %d) = %d(0x%X)\n", ((RFPath == 0)?'A':'B'), Channel, txPower, txPower)); */ return (u8) txPower; } void PHY_SetTxPowerLevel8723B(struct adapter *Adapter, u8 Channel) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); PDM_ODM_T pDM_Odm = &pHalData->odmpriv; pFAT_T pDM_FatTable = &pDM_Odm->DM_FatTable; u8 RFPath = ODM_RF_PATH_A; if (pHalData->AntDivCfg) {/* antenna diversity Enable */ RFPath = ((pDM_FatTable->RxIdleAnt == MAIN_ANT) ? ODM_RF_PATH_A : ODM_RF_PATH_B); } else { /* antenna diversity disable */ RFPath = pHalData->ant_path; } RT_TRACE(_module_hal_init_c_, _drv_info_, ("==>PHY_SetTxPowerLevel8723B()\n")); PHY_SetTxPowerLevelByPath(Adapter, Channel, RFPath); RT_TRACE(_module_hal_init_c_, _drv_info_, ("<==PHY_SetTxPowerLevel8723B()\n")); } void PHY_GetTxPowerLevel8723B(struct adapter *Adapter, s32 *powerlevel) { } static void phy_SetRegBW_8723B( struct adapter *Adapter, enum CHANNEL_WIDTH CurrentBW ) { u16 RegRfMod_BW, u2tmp = 0; RegRfMod_BW = rtw_read16(Adapter, REG_TRXPTCL_CTL_8723B); switch (CurrentBW) { case CHANNEL_WIDTH_20: rtw_write16(Adapter, REG_TRXPTCL_CTL_8723B, (RegRfMod_BW & 0xFE7F)); /* BIT 7 = 0, BIT 8 = 0 */ break; case CHANNEL_WIDTH_40: u2tmp = RegRfMod_BW | BIT7; rtw_write16(Adapter, REG_TRXPTCL_CTL_8723B, (u2tmp & 0xFEFF)); /* BIT 7 = 1, BIT 8 = 0 */ break; case CHANNEL_WIDTH_80: u2tmp = RegRfMod_BW | BIT8; rtw_write16(Adapter, REG_TRXPTCL_CTL_8723B, (u2tmp & 0xFF7F)); /* BIT 7 = 0, BIT 8 = 1 */ break; default: DBG_871X("phy_PostSetBWMode8723B(): unknown Bandwidth: %#X\n", CurrentBW); break; } } static u8 phy_GetSecondaryChnl_8723B(struct adapter *Adapter) { u8 SCSettingOf40 = 0, SCSettingOf20 = 0; struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); RT_TRACE( _module_hal_init_c_, _drv_info_, ( "SCMapping: VHT Case: pHalData->CurrentChannelBW %d, pHalData->nCur80MhzPrimeSC %d, pHalData->nCur40MhzPrimeSC %d\n", pHalData->CurrentChannelBW, pHalData->nCur80MhzPrimeSC, pHalData->nCur40MhzPrimeSC ) ); if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_80) { if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) SCSettingOf40 = VHT_DATA_SC_40_LOWER_OF_80MHZ; else if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) SCSettingOf40 = VHT_DATA_SC_40_UPPER_OF_80MHZ; else RT_TRACE(_module_hal_init_c_, _drv_err_, ("SCMapping: Not Correct Primary40MHz Setting\n")); if ( (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) ) SCSettingOf20 = VHT_DATA_SC_20_LOWEST_OF_80MHZ; else if ( (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) ) SCSettingOf20 = VHT_DATA_SC_20_LOWER_OF_80MHZ; else if ( (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) ) SCSettingOf20 = VHT_DATA_SC_20_UPPER_OF_80MHZ; else if ( (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) ) SCSettingOf20 = VHT_DATA_SC_20_UPPERST_OF_80MHZ; else RT_TRACE(_module_hal_init_c_, _drv_err_, ("SCMapping: Not Correct Primary40MHz Setting\n")); } else if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) { RT_TRACE( _module_hal_init_c_, _drv_info_, ( "SCMapping: VHT Case: pHalData->CurrentChannelBW %d, pHalData->nCur40MhzPrimeSC %d\n", pHalData->CurrentChannelBW, pHalData->nCur40MhzPrimeSC ) ); if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) SCSettingOf20 = VHT_DATA_SC_20_UPPER_OF_80MHZ; else if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) SCSettingOf20 = VHT_DATA_SC_20_LOWER_OF_80MHZ; else RT_TRACE(_module_hal_init_c_, _drv_err_, ("SCMapping: Not Correct Primary40MHz Setting\n")); } RT_TRACE(_module_hal_init_c_, _drv_info_, ("SCMapping: SC Value %x\n", ((SCSettingOf40 << 4) | SCSettingOf20))); return (SCSettingOf40 << 4) | SCSettingOf20; } static void phy_PostSetBwMode8723B(struct adapter *Adapter) { u8 SubChnlNum = 0; struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); /* 3 Set Reg668 Reg440 BW */ phy_SetRegBW_8723B(Adapter, pHalData->CurrentChannelBW); /* 3 Set Reg483 */ SubChnlNum = phy_GetSecondaryChnl_8723B(Adapter); rtw_write8(Adapter, REG_DATA_SC_8723B, SubChnlNum); /* 3 */ /* 3<2>Set PHY related register */ /* 3 */ switch (pHalData->CurrentChannelBW) { /* 20 MHz channel*/ case CHANNEL_WIDTH_20: PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x0); PHY_SetBBReg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x0); /* PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter2, BIT10, 1); */ PHY_SetBBReg(Adapter, rOFDM0_TxPseudoNoiseWgt, (BIT31|BIT30), 0x0); break; /* 40 MHz channel*/ case CHANNEL_WIDTH_40: PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x1); PHY_SetBBReg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x1); /* Set Control channel to upper or lower. These settings are required only for 40MHz */ PHY_SetBBReg(Adapter, rCCK0_System, bCCKSideBand, (pHalData->nCur40MhzPrimeSC>>1)); PHY_SetBBReg(Adapter, rOFDM1_LSTF, 0xC00, pHalData->nCur40MhzPrimeSC); /* PHY_SetBBReg(Adapter, rFPGA0_AnalogParameter2, BIT10, 0); */ PHY_SetBBReg(Adapter, 0x818, (BIT26|BIT27), (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1); break; default: /*RT_TRACE(COMP_DBG, DBG_LOUD, ("phy_SetBWMode8723B(): unknown Bandwidth: %#X\n"\ , pHalData->CurrentChannelBW));*/ break; } /* 3<3>Set RF related register */ PHY_RF6052SetBandwidth8723B(Adapter, pHalData->CurrentChannelBW); } static void phy_SwChnl8723B(struct adapter *padapter) { struct hal_com_data *pHalData = GET_HAL_DATA(padapter); u8 channelToSW = pHalData->CurrentChannel; if (pHalData->rf_chip == RF_PSEUDO_11N) { /* RT_TRACE(COMP_MLME, DBG_LOUD, ("phy_SwChnl8723B: return for PSEUDO\n")); */ return; } pHalData->RfRegChnlVal[0] = ((pHalData->RfRegChnlVal[0] & 0xfffff00) | channelToSW); PHY_SetRFReg(padapter, ODM_RF_PATH_A, RF_CHNLBW, 0x3FF, pHalData->RfRegChnlVal[0]); PHY_SetRFReg(padapter, ODM_RF_PATH_B, RF_CHNLBW, 0x3FF, pHalData->RfRegChnlVal[0]); DBG_8192C("===>phy_SwChnl8723B: Channel = %d\n", channelToSW); } static void phy_SwChnlAndSetBwMode8723B(struct adapter *Adapter) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); /* RT_TRACE(COMP_SCAN, DBG_LOUD, ("phy_SwChnlAndSetBwMode8723B(): bSwChnl %d, bSetChnlBW %d\n", pHalData->bSwChnl, pHalData->bSetChnlBW)); */ if (Adapter->bNotifyChannelChange) { DBG_871X("[%s] bSwChnl =%d, ch =%d, bSetChnlBW =%d, bw =%d\n", __func__, pHalData->bSwChnl, pHalData->CurrentChannel, pHalData->bSetChnlBW, pHalData->CurrentChannelBW); } if (Adapter->bDriverStopped || Adapter->bSurpriseRemoved) return; if (pHalData->bSwChnl) { phy_SwChnl8723B(Adapter); pHalData->bSwChnl = false; } if (pHalData->bSetChnlBW) { phy_PostSetBwMode8723B(Adapter); pHalData->bSetChnlBW = false; } PHY_SetTxPowerLevel8723B(Adapter, pHalData->CurrentChannel); } static void PHY_HandleSwChnlAndSetBW8723B( struct adapter *Adapter, bool bSwitchChannel, bool bSetBandWidth, u8 ChannelNum, enum CHANNEL_WIDTH ChnlWidth, enum EXTCHNL_OFFSET ExtChnlOffsetOf40MHz, enum EXTCHNL_OFFSET ExtChnlOffsetOf80MHz, u8 CenterFrequencyIndex1 ) { /* static bool bInitialzed = false; */ struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); u8 tmpChannel = pHalData->CurrentChannel; enum CHANNEL_WIDTH tmpBW = pHalData->CurrentChannelBW; u8 tmpnCur40MhzPrimeSC = pHalData->nCur40MhzPrimeSC; u8 tmpnCur80MhzPrimeSC = pHalData->nCur80MhzPrimeSC; u8 tmpCenterFrequencyIndex1 = pHalData->CurrentCenterFrequencyIndex1; /* DBG_871X("=> PHY_HandleSwChnlAndSetBW8812: bSwitchChannel %d, bSetBandWidth %d\n", bSwitchChannel, bSetBandWidth); */ /* check is swchnl or setbw */ if (!bSwitchChannel && !bSetBandWidth) { DBG_871X("PHY_HandleSwChnlAndSetBW8812: not switch channel and not set bandwidth\n"); return; } /* skip change for channel or bandwidth is the same */ if (bSwitchChannel) { /* if (pHalData->CurrentChannel != ChannelNum) */ { if (HAL_IsLegalChannel(Adapter, ChannelNum)) pHalData->bSwChnl = true; } } if (bSetBandWidth) pHalData->bSetChnlBW = true; if (!pHalData->bSetChnlBW && !pHalData->bSwChnl) { /* DBG_871X("<= PHY_HandleSwChnlAndSetBW8812: bSwChnl %d, bSetChnlBW %d\n", pHalData->bSwChnl, pHalData->bSetChnlBW); */ return; } if (pHalData->bSwChnl) { pHalData->CurrentChannel = ChannelNum; pHalData->CurrentCenterFrequencyIndex1 = ChannelNum; } if (pHalData->bSetChnlBW) { pHalData->CurrentChannelBW = ChnlWidth; pHalData->nCur40MhzPrimeSC = ExtChnlOffsetOf40MHz; pHalData->nCur80MhzPrimeSC = ExtChnlOffsetOf80MHz; pHalData->CurrentCenterFrequencyIndex1 = CenterFrequencyIndex1; } /* Switch workitem or set timer to do switch channel or setbandwidth operation */ if ((!Adapter->bDriverStopped) && (!Adapter->bSurpriseRemoved)) { phy_SwChnlAndSetBwMode8723B(Adapter); } else { if (pHalData->bSwChnl) { pHalData->CurrentChannel = tmpChannel; pHalData->CurrentCenterFrequencyIndex1 = tmpChannel; } if (pHalData->bSetChnlBW) { pHalData->CurrentChannelBW = tmpBW; pHalData->nCur40MhzPrimeSC = tmpnCur40MhzPrimeSC; pHalData->nCur80MhzPrimeSC = tmpnCur80MhzPrimeSC; pHalData->CurrentCenterFrequencyIndex1 = tmpCenterFrequencyIndex1; } } } void PHY_SetBWMode8723B( struct adapter *Adapter, enum CHANNEL_WIDTH Bandwidth, /* 20M or 40M */ unsigned char Offset /* Upper, Lower, or Don't care */ ) { struct hal_com_data *pHalData = GET_HAL_DATA(Adapter); PHY_HandleSwChnlAndSetBW8723B(Adapter, false, true, pHalData->CurrentChannel, Bandwidth, Offset, Offset, pHalData->CurrentChannel); } /* Call after initialization */ void PHY_SwChnl8723B(struct adapter *Adapter, u8 channel) { PHY_HandleSwChnlAndSetBW8723B(Adapter, true, false, channel, 0, 0, 0, channel); } void PHY_SetSwChnlBWMode8723B( struct adapter *Adapter, u8 channel, enum CHANNEL_WIDTH Bandwidth, u8 Offset40, u8 Offset80 ) { /* DBG_871X("%s() ===>\n", __func__); */ PHY_HandleSwChnlAndSetBW8723B(Adapter, true, true, channel, Bandwidth, Offset40, Offset80, channel); /* DBG_871X("<==%s()\n", __func__); */ }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1