Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Lan Tianyu | 231 | 26.07% | 4 | 23.53% |
Dmitry Torokhov | 209 | 23.59% | 2 | 11.76% |
Matthew Garrett | 203 | 22.91% | 2 | 11.76% |
Dan J Williams | 131 | 14.79% | 3 | 17.65% |
Mathias Nyman | 62 | 7.00% | 1 | 5.88% |
Rafael J. Wysocki | 47 | 5.30% | 2 | 11.76% |
Greg Kroah-Hartman | 2 | 0.23% | 2 | 11.76% |
Alex Hung | 1 | 0.11% | 1 | 5.88% |
Total | 886 | 17 |
// SPDX-License-Identifier: GPL-2.0 /* * USB-ACPI glue code * * Copyright 2012 Red Hat <mjg@redhat.com> */ #include <linux/module.h> #include <linux/usb.h> #include <linux/device.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/acpi.h> #include <linux/pci.h> #include <linux/usb/hcd.h> #include "hub.h" /** * usb_acpi_power_manageable - check whether usb port has * acpi power resource. * @hdev: USB device belonging to the usb hub * @index: port index based zero * * Return true if the port has acpi power resource and false if no. */ bool usb_acpi_power_manageable(struct usb_device *hdev, int index) { acpi_handle port_handle; int port1 = index + 1; port_handle = usb_get_hub_port_acpi_handle(hdev, port1); if (port_handle) return acpi_bus_power_manageable(port_handle); else return false; } EXPORT_SYMBOL_GPL(usb_acpi_power_manageable); /** * usb_acpi_set_power_state - control usb port's power via acpi power * resource * @hdev: USB device belonging to the usb hub * @index: port index based zero * @enable: power state expected to be set * * Notice to use usb_acpi_power_manageable() to check whether the usb port * has acpi power resource before invoking this function. * * Returns 0 on success, else negative errno. */ int usb_acpi_set_power_state(struct usb_device *hdev, int index, bool enable) { struct usb_hub *hub = usb_hub_to_struct_hub(hdev); struct usb_port *port_dev; acpi_handle port_handle; unsigned char state; int port1 = index + 1; int error = -EINVAL; if (!hub) return -ENODEV; port_dev = hub->ports[port1 - 1]; port_handle = (acpi_handle) usb_get_hub_port_acpi_handle(hdev, port1); if (!port_handle) return error; if (enable) state = ACPI_STATE_D0; else state = ACPI_STATE_D3_COLD; error = acpi_bus_set_power(port_handle, state); if (!error) dev_dbg(&port_dev->dev, "acpi: power was set to %d\n", enable); else dev_dbg(&port_dev->dev, "acpi: power failed to be set\n"); return error; } EXPORT_SYMBOL_GPL(usb_acpi_set_power_state); static enum usb_port_connect_type usb_acpi_get_connect_type(acpi_handle handle, struct acpi_pld_info *pld) { enum usb_port_connect_type connect_type = USB_PORT_CONNECT_TYPE_UNKNOWN; struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *upc; acpi_status status; /* * According to 9.14 in ACPI Spec 6.2. _PLD indicates whether usb port * is user visible and _UPC indicates whether it is connectable. If * the port was visible and connectable, it could be freely connected * and disconnected with USB devices. If no visible and connectable, * a usb device is directly hard-wired to the port. If no visible and * no connectable, the port would be not used. */ status = acpi_evaluate_object(handle, "_UPC", NULL, &buffer); upc = buffer.pointer; if (!upc || (upc->type != ACPI_TYPE_PACKAGE) || upc->package.count != 4) { goto out; } if (upc->package.elements[0].integer.value) if (pld->user_visible) connect_type = USB_PORT_CONNECT_TYPE_HOT_PLUG; else connect_type = USB_PORT_CONNECT_TYPE_HARD_WIRED; else if (!pld->user_visible) connect_type = USB_PORT_NOT_USED; out: kfree(upc); return connect_type; } /* * Private to usb-acpi, all the core needs to know is that * port_dev->location is non-zero when it has been set by the firmware. */ #define USB_ACPI_LOCATION_VALID (1 << 31) static struct acpi_device *usb_acpi_find_port(struct acpi_device *parent, int raw) { struct acpi_device *adev; if (!parent) return NULL; list_for_each_entry(adev, &parent->children, node) { if (acpi_device_adr(adev) == raw) return adev; } return acpi_find_child_device(parent, raw, false); } static struct acpi_device * usb_acpi_get_companion_for_port(struct usb_port *port_dev) { struct usb_device *udev; struct acpi_device *adev; acpi_handle *parent_handle; int port1; /* Get the struct usb_device point of port's hub */ udev = to_usb_device(port_dev->dev.parent->parent); /* * The root hub ports' parent is the root hub. The non-root-hub * ports' parent is the parent hub port which the hub is * connected to. */ if (!udev->parent) { adev = ACPI_COMPANION(&udev->dev); port1 = usb_hcd_find_raw_port_number(bus_to_hcd(udev->bus), port_dev->portnum); } else { parent_handle = usb_get_hub_port_acpi_handle(udev->parent, udev->portnum); if (!parent_handle) return NULL; acpi_bus_get_device(parent_handle, &adev); port1 = port_dev->portnum; } return usb_acpi_find_port(adev, port1); } static struct acpi_device * usb_acpi_find_companion_for_port(struct usb_port *port_dev) { struct acpi_device *adev; struct acpi_pld_info *pld; acpi_handle *handle; acpi_status status; adev = usb_acpi_get_companion_for_port(port_dev); if (!adev) return NULL; handle = adev->handle; status = acpi_get_physical_device_location(handle, &pld); if (!ACPI_FAILURE(status) && pld) { port_dev->location = USB_ACPI_LOCATION_VALID | pld->group_token << 8 | pld->group_position; port_dev->connect_type = usb_acpi_get_connect_type(handle, pld); ACPI_FREE(pld); } return adev; } static struct acpi_device * usb_acpi_find_companion_for_device(struct usb_device *udev) { struct acpi_device *adev; struct usb_port *port_dev; struct usb_hub *hub; if (!udev->parent) { /* root hub is only child (_ADR=0) under its parent, the HC */ adev = ACPI_COMPANION(udev->dev.parent); return acpi_find_child_device(adev, 0, false); } hub = usb_hub_to_struct_hub(udev->parent); if (!hub) return NULL; /* * This is an embedded USB device connected to a port and such * devices share port's ACPI companion. */ port_dev = hub->ports[udev->portnum - 1]; return usb_acpi_get_companion_for_port(port_dev); } static struct acpi_device *usb_acpi_find_companion(struct device *dev) { /* * The USB hierarchy like following: * * Device (EHC1) * Device (HUBN) * Device (PR01) * Device (PR11) * Device (PR12) * Device (FN12) * Device (FN13) * Device (PR13) * ... * where HUBN is root hub, and PRNN are USB ports and devices * connected to them, and FNNN are individualk functions for * connected composite USB devices. PRNN and FNNN may contain * _CRS and other methods describing sideband resources for * the connected device. * * On the kernel side both root hub and embedded USB devices are * represented as instances of usb_device structure, and ports * are represented as usb_port structures, so the whole process * is split into 2 parts: finding companions for devices and * finding companions for ports. * * Note that we do not handle individual functions of composite * devices yet, for that we would need to assign companions to * devices corresponding to USB interfaces. */ if (is_usb_device(dev)) return usb_acpi_find_companion_for_device(to_usb_device(dev)); else if (is_usb_port(dev)) return usb_acpi_find_companion_for_port(to_usb_port(dev)); return NULL; } static bool usb_acpi_bus_match(struct device *dev) { return is_usb_device(dev) || is_usb_port(dev); } static struct acpi_bus_type usb_acpi_bus = { .name = "USB", .match = usb_acpi_bus_match, .find_companion = usb_acpi_find_companion, }; int usb_acpi_register(void) { return register_acpi_bus_type(&usb_acpi_bus); } void usb_acpi_unregister(void) { unregister_acpi_bus_type(&usb_acpi_bus); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1