Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Håvard Skinnemoen | 8166 | 68.37% | 3 | 3.75% |
Cristian Birsan | 1307 | 10.94% | 4 | 5.00% |
Sylvain Rochet | 635 | 5.32% | 5 | 6.25% |
Jean-Christophe Plagniol-Villard | 470 | 3.94% | 3 | 3.75% |
Boris Brezillon | 367 | 3.07% | 5 | 6.25% |
Jonas Bonn | 265 | 2.22% | 3 | 3.75% |
Alexandre Belloni | 142 | 1.19% | 7 | 8.75% |
Ladislav Michl | 91 | 0.76% | 1 | 1.25% |
David Brownell | 73 | 0.61% | 2 | 2.50% |
Sebastian Andrzej Siewior | 66 | 0.55% | 2 | 2.50% |
Stelian Pop | 63 | 0.53% | 2 | 2.50% |
Songjun Wu | 45 | 0.38% | 1 | 1.25% |
Jingoo Han | 27 | 0.23% | 2 | 2.50% |
David Howells | 25 | 0.21% | 1 | 1.25% |
Ido Shayevitz | 24 | 0.20% | 2 | 2.50% |
Ludovic Desroches | 20 | 0.17% | 1 | 1.25% |
Felipe Balbi | 20 | 0.17% | 4 | 5.00% |
Al Viro | 18 | 0.15% | 2 | 2.50% |
Michal Nazarewicz | 16 | 0.13% | 2 | 2.50% |
Peter Chen | 15 | 0.13% | 2 | 2.50% |
Bo Shen | 10 | 0.08% | 4 | 5.00% |
Harvey Harrison | 10 | 0.08% | 1 | 1.25% |
Martin Fuzzey | 8 | 0.07% | 1 | 1.25% |
Kay Sievers | 7 | 0.06% | 1 | 1.25% |
Matthias Kaehlcke | 6 | 0.05% | 1 | 1.25% |
Gregory CLEMENT | 6 | 0.05% | 1 | 1.25% |
Robert Baldyga | 5 | 0.04% | 1 | 1.25% |
Kees Cook | 5 | 0.04% | 1 | 1.25% |
Nicolas Ferre | 5 | 0.04% | 1 | 1.25% |
Douglas Gilbert | 4 | 0.03% | 1 | 1.25% |
Greg Kroah-Hartman | 4 | 0.03% | 3 | 3.75% |
Uwe Kleine-König | 3 | 0.03% | 1 | 1.25% |
Julia Lawall | 3 | 0.03% | 1 | 1.25% |
Tejun Heo | 3 | 0.03% | 1 | 1.25% |
Joe Perches | 2 | 0.02% | 1 | 1.25% |
Michal Sojka | 2 | 0.02% | 1 | 1.25% |
Arnd Bergmann | 2 | 0.02% | 1 | 1.25% |
Kuninori Morimoto | 1 | 0.01% | 1 | 1.25% |
Fabio Porcedda | 1 | 0.01% | 1 | 1.25% |
Jean Delvare | 1 | 0.01% | 1 | 1.25% |
Dan Carpenter | 1 | 0.01% | 1 | 1.25% |
Total | 11944 | 80 |
// SPDX-License-Identifier: GPL-2.0 /* * Driver for the Atmel USBA high speed USB device controller * * Copyright (C) 2005-2007 Atmel Corporation */ #include <linux/clk.h> #include <linux/clk/at91_pmc.h> #include <linux/module.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/list.h> #include <linux/mfd/syscon.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/ctype.h> #include <linux/usb/ch9.h> #include <linux/usb/gadget.h> #include <linux/delay.h> #include <linux/of.h> #include <linux/irq.h> #include <linux/gpio/consumer.h> #include "atmel_usba_udc.h" #define USBA_VBUS_IRQFLAGS (IRQF_ONESHOT \ | IRQF_TRIGGER_FALLING | IRQF_TRIGGER_RISING) #ifdef CONFIG_USB_GADGET_DEBUG_FS #include <linux/debugfs.h> #include <linux/uaccess.h> static int queue_dbg_open(struct inode *inode, struct file *file) { struct usba_ep *ep = inode->i_private; struct usba_request *req, *req_copy; struct list_head *queue_data; queue_data = kmalloc(sizeof(*queue_data), GFP_KERNEL); if (!queue_data) return -ENOMEM; INIT_LIST_HEAD(queue_data); spin_lock_irq(&ep->udc->lock); list_for_each_entry(req, &ep->queue, queue) { req_copy = kmemdup(req, sizeof(*req_copy), GFP_ATOMIC); if (!req_copy) goto fail; list_add_tail(&req_copy->queue, queue_data); } spin_unlock_irq(&ep->udc->lock); file->private_data = queue_data; return 0; fail: spin_unlock_irq(&ep->udc->lock); list_for_each_entry_safe(req, req_copy, queue_data, queue) { list_del(&req->queue); kfree(req); } kfree(queue_data); return -ENOMEM; } /* * bbbbbbbb llllllll IZS sssss nnnn FDL\n\0 * * b: buffer address * l: buffer length * I/i: interrupt/no interrupt * Z/z: zero/no zero * S/s: short ok/short not ok * s: status * n: nr_packets * F/f: submitted/not submitted to FIFO * D/d: using/not using DMA * L/l: last transaction/not last transaction */ static ssize_t queue_dbg_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct list_head *queue = file->private_data; struct usba_request *req, *tmp_req; size_t len, remaining, actual = 0; char tmpbuf[38]; if (!access_ok(buf, nbytes)) return -EFAULT; inode_lock(file_inode(file)); list_for_each_entry_safe(req, tmp_req, queue, queue) { len = snprintf(tmpbuf, sizeof(tmpbuf), "%8p %08x %c%c%c %5d %c%c%c\n", req->req.buf, req->req.length, req->req.no_interrupt ? 'i' : 'I', req->req.zero ? 'Z' : 'z', req->req.short_not_ok ? 's' : 'S', req->req.status, req->submitted ? 'F' : 'f', req->using_dma ? 'D' : 'd', req->last_transaction ? 'L' : 'l'); len = min(len, sizeof(tmpbuf)); if (len > nbytes) break; list_del(&req->queue); kfree(req); remaining = __copy_to_user(buf, tmpbuf, len); actual += len - remaining; if (remaining) break; nbytes -= len; buf += len; } inode_unlock(file_inode(file)); return actual; } static int queue_dbg_release(struct inode *inode, struct file *file) { struct list_head *queue_data = file->private_data; struct usba_request *req, *tmp_req; list_for_each_entry_safe(req, tmp_req, queue_data, queue) { list_del(&req->queue); kfree(req); } kfree(queue_data); return 0; } static int regs_dbg_open(struct inode *inode, struct file *file) { struct usba_udc *udc; unsigned int i; u32 *data; int ret = -ENOMEM; inode_lock(inode); udc = inode->i_private; data = kmalloc(inode->i_size, GFP_KERNEL); if (!data) goto out; spin_lock_irq(&udc->lock); for (i = 0; i < inode->i_size / 4; i++) data[i] = readl_relaxed(udc->regs + i * 4); spin_unlock_irq(&udc->lock); file->private_data = data; ret = 0; out: inode_unlock(inode); return ret; } static ssize_t regs_dbg_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos) { struct inode *inode = file_inode(file); int ret; inode_lock(inode); ret = simple_read_from_buffer(buf, nbytes, ppos, file->private_data, file_inode(file)->i_size); inode_unlock(inode); return ret; } static int regs_dbg_release(struct inode *inode, struct file *file) { kfree(file->private_data); return 0; } const struct file_operations queue_dbg_fops = { .owner = THIS_MODULE, .open = queue_dbg_open, .llseek = no_llseek, .read = queue_dbg_read, .release = queue_dbg_release, }; const struct file_operations regs_dbg_fops = { .owner = THIS_MODULE, .open = regs_dbg_open, .llseek = generic_file_llseek, .read = regs_dbg_read, .release = regs_dbg_release, }; static void usba_ep_init_debugfs(struct usba_udc *udc, struct usba_ep *ep) { struct dentry *ep_root; ep_root = debugfs_create_dir(ep->ep.name, udc->debugfs_root); ep->debugfs_dir = ep_root; debugfs_create_file("queue", 0400, ep_root, ep, &queue_dbg_fops); if (ep->can_dma) debugfs_create_u32("dma_status", 0400, ep_root, &ep->last_dma_status); if (ep_is_control(ep)) debugfs_create_u32("state", 0400, ep_root, &ep->state); } static void usba_ep_cleanup_debugfs(struct usba_ep *ep) { debugfs_remove_recursive(ep->debugfs_dir); } static void usba_init_debugfs(struct usba_udc *udc) { struct dentry *root; struct resource *regs_resource; root = debugfs_create_dir(udc->gadget.name, NULL); udc->debugfs_root = root; regs_resource = platform_get_resource(udc->pdev, IORESOURCE_MEM, CTRL_IOMEM_ID); if (regs_resource) { debugfs_create_file_size("regs", 0400, root, udc, ®s_dbg_fops, resource_size(regs_resource)); } usba_ep_init_debugfs(udc, to_usba_ep(udc->gadget.ep0)); } static void usba_cleanup_debugfs(struct usba_udc *udc) { usba_ep_cleanup_debugfs(to_usba_ep(udc->gadget.ep0)); debugfs_remove_recursive(udc->debugfs_root); } #else static inline void usba_ep_init_debugfs(struct usba_udc *udc, struct usba_ep *ep) { } static inline void usba_ep_cleanup_debugfs(struct usba_ep *ep) { } static inline void usba_init_debugfs(struct usba_udc *udc) { } static inline void usba_cleanup_debugfs(struct usba_udc *udc) { } #endif static ushort fifo_mode; module_param(fifo_mode, ushort, 0x0); MODULE_PARM_DESC(fifo_mode, "Endpoint configuration mode"); /* mode 0 - uses autoconfig */ /* mode 1 - fits in 8KB, generic max fifo configuration */ static struct usba_fifo_cfg mode_1_cfg[] = { { .hw_ep_num = 0, .fifo_size = 64, .nr_banks = 1, }, { .hw_ep_num = 1, .fifo_size = 1024, .nr_banks = 2, }, { .hw_ep_num = 2, .fifo_size = 1024, .nr_banks = 1, }, { .hw_ep_num = 3, .fifo_size = 1024, .nr_banks = 1, }, { .hw_ep_num = 4, .fifo_size = 1024, .nr_banks = 1, }, { .hw_ep_num = 5, .fifo_size = 1024, .nr_banks = 1, }, { .hw_ep_num = 6, .fifo_size = 1024, .nr_banks = 1, }, }; /* mode 2 - fits in 8KB, performance max fifo configuration */ static struct usba_fifo_cfg mode_2_cfg[] = { { .hw_ep_num = 0, .fifo_size = 64, .nr_banks = 1, }, { .hw_ep_num = 1, .fifo_size = 1024, .nr_banks = 3, }, { .hw_ep_num = 2, .fifo_size = 1024, .nr_banks = 2, }, { .hw_ep_num = 3, .fifo_size = 1024, .nr_banks = 2, }, }; /* mode 3 - fits in 8KB, mixed fifo configuration */ static struct usba_fifo_cfg mode_3_cfg[] = { { .hw_ep_num = 0, .fifo_size = 64, .nr_banks = 1, }, { .hw_ep_num = 1, .fifo_size = 1024, .nr_banks = 2, }, { .hw_ep_num = 2, .fifo_size = 512, .nr_banks = 2, }, { .hw_ep_num = 3, .fifo_size = 512, .nr_banks = 2, }, { .hw_ep_num = 4, .fifo_size = 512, .nr_banks = 2, }, { .hw_ep_num = 5, .fifo_size = 512, .nr_banks = 2, }, { .hw_ep_num = 6, .fifo_size = 512, .nr_banks = 2, }, }; /* mode 4 - fits in 8KB, custom fifo configuration */ static struct usba_fifo_cfg mode_4_cfg[] = { { .hw_ep_num = 0, .fifo_size = 64, .nr_banks = 1, }, { .hw_ep_num = 1, .fifo_size = 512, .nr_banks = 2, }, { .hw_ep_num = 2, .fifo_size = 512, .nr_banks = 2, }, { .hw_ep_num = 3, .fifo_size = 8, .nr_banks = 2, }, { .hw_ep_num = 4, .fifo_size = 512, .nr_banks = 2, }, { .hw_ep_num = 5, .fifo_size = 512, .nr_banks = 2, }, { .hw_ep_num = 6, .fifo_size = 16, .nr_banks = 2, }, { .hw_ep_num = 7, .fifo_size = 8, .nr_banks = 2, }, { .hw_ep_num = 8, .fifo_size = 8, .nr_banks = 2, }, }; /* Add additional configurations here */ static int usba_config_fifo_table(struct usba_udc *udc) { int n; switch (fifo_mode) { default: fifo_mode = 0; case 0: udc->fifo_cfg = NULL; n = 0; break; case 1: udc->fifo_cfg = mode_1_cfg; n = ARRAY_SIZE(mode_1_cfg); break; case 2: udc->fifo_cfg = mode_2_cfg; n = ARRAY_SIZE(mode_2_cfg); break; case 3: udc->fifo_cfg = mode_3_cfg; n = ARRAY_SIZE(mode_3_cfg); break; case 4: udc->fifo_cfg = mode_4_cfg; n = ARRAY_SIZE(mode_4_cfg); break; } DBG(DBG_HW, "Setup fifo_mode %d\n", fifo_mode); return n; } static inline u32 usba_int_enb_get(struct usba_udc *udc) { return udc->int_enb_cache; } static inline void usba_int_enb_set(struct usba_udc *udc, u32 mask) { u32 val; val = udc->int_enb_cache | mask; usba_writel(udc, INT_ENB, val); udc->int_enb_cache = val; } static inline void usba_int_enb_clear(struct usba_udc *udc, u32 mask) { u32 val; val = udc->int_enb_cache & ~mask; usba_writel(udc, INT_ENB, val); udc->int_enb_cache = val; } static int vbus_is_present(struct usba_udc *udc) { if (udc->vbus_pin) return gpiod_get_value(udc->vbus_pin); /* No Vbus detection: Assume always present */ return 1; } static void toggle_bias(struct usba_udc *udc, int is_on) { if (udc->errata && udc->errata->toggle_bias) udc->errata->toggle_bias(udc, is_on); } static void generate_bias_pulse(struct usba_udc *udc) { if (!udc->bias_pulse_needed) return; if (udc->errata && udc->errata->pulse_bias) udc->errata->pulse_bias(udc); udc->bias_pulse_needed = false; } static void next_fifo_transaction(struct usba_ep *ep, struct usba_request *req) { unsigned int transaction_len; transaction_len = req->req.length - req->req.actual; req->last_transaction = 1; if (transaction_len > ep->ep.maxpacket) { transaction_len = ep->ep.maxpacket; req->last_transaction = 0; } else if (transaction_len == ep->ep.maxpacket && req->req.zero) req->last_transaction = 0; DBG(DBG_QUEUE, "%s: submit_transaction, req %p (length %d)%s\n", ep->ep.name, req, transaction_len, req->last_transaction ? ", done" : ""); memcpy_toio(ep->fifo, req->req.buf + req->req.actual, transaction_len); usba_ep_writel(ep, SET_STA, USBA_TX_PK_RDY); req->req.actual += transaction_len; } static void submit_request(struct usba_ep *ep, struct usba_request *req) { DBG(DBG_QUEUE, "%s: submit_request: req %p (length %d)\n", ep->ep.name, req, req->req.length); req->req.actual = 0; req->submitted = 1; if (req->using_dma) { if (req->req.length == 0) { usba_ep_writel(ep, CTL_ENB, USBA_TX_PK_RDY); return; } if (req->req.zero) usba_ep_writel(ep, CTL_ENB, USBA_SHORT_PACKET); else usba_ep_writel(ep, CTL_DIS, USBA_SHORT_PACKET); usba_dma_writel(ep, ADDRESS, req->req.dma); usba_dma_writel(ep, CONTROL, req->ctrl); } else { next_fifo_transaction(ep, req); if (req->last_transaction) { usba_ep_writel(ep, CTL_DIS, USBA_TX_PK_RDY); usba_ep_writel(ep, CTL_ENB, USBA_TX_COMPLETE); } else { usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE); usba_ep_writel(ep, CTL_ENB, USBA_TX_PK_RDY); } } } static void submit_next_request(struct usba_ep *ep) { struct usba_request *req; if (list_empty(&ep->queue)) { usba_ep_writel(ep, CTL_DIS, USBA_TX_PK_RDY | USBA_RX_BK_RDY); return; } req = list_entry(ep->queue.next, struct usba_request, queue); if (!req->submitted) submit_request(ep, req); } static void send_status(struct usba_udc *udc, struct usba_ep *ep) { ep->state = STATUS_STAGE_IN; usba_ep_writel(ep, SET_STA, USBA_TX_PK_RDY); usba_ep_writel(ep, CTL_ENB, USBA_TX_COMPLETE); } static void receive_data(struct usba_ep *ep) { struct usba_udc *udc = ep->udc; struct usba_request *req; unsigned long status; unsigned int bytecount, nr_busy; int is_complete = 0; status = usba_ep_readl(ep, STA); nr_busy = USBA_BFEXT(BUSY_BANKS, status); DBG(DBG_QUEUE, "receive data: nr_busy=%u\n", nr_busy); while (nr_busy > 0) { if (list_empty(&ep->queue)) { usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY); break; } req = list_entry(ep->queue.next, struct usba_request, queue); bytecount = USBA_BFEXT(BYTE_COUNT, status); if (status & (1 << 31)) is_complete = 1; if (req->req.actual + bytecount >= req->req.length) { is_complete = 1; bytecount = req->req.length - req->req.actual; } memcpy_fromio(req->req.buf + req->req.actual, ep->fifo, bytecount); req->req.actual += bytecount; usba_ep_writel(ep, CLR_STA, USBA_RX_BK_RDY); if (is_complete) { DBG(DBG_QUEUE, "%s: request done\n", ep->ep.name); req->req.status = 0; list_del_init(&req->queue); usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY); spin_unlock(&udc->lock); usb_gadget_giveback_request(&ep->ep, &req->req); spin_lock(&udc->lock); } status = usba_ep_readl(ep, STA); nr_busy = USBA_BFEXT(BUSY_BANKS, status); if (is_complete && ep_is_control(ep)) { send_status(udc, ep); break; } } } static void request_complete(struct usba_ep *ep, struct usba_request *req, int status) { struct usba_udc *udc = ep->udc; WARN_ON(!list_empty(&req->queue)); if (req->req.status == -EINPROGRESS) req->req.status = status; if (req->using_dma) usb_gadget_unmap_request(&udc->gadget, &req->req, ep->is_in); DBG(DBG_GADGET | DBG_REQ, "%s: req %p complete: status %d, actual %u\n", ep->ep.name, req, req->req.status, req->req.actual); spin_unlock(&udc->lock); usb_gadget_giveback_request(&ep->ep, &req->req); spin_lock(&udc->lock); } static void request_complete_list(struct usba_ep *ep, struct list_head *list, int status) { struct usba_request *req, *tmp_req; list_for_each_entry_safe(req, tmp_req, list, queue) { list_del_init(&req->queue); request_complete(ep, req, status); } } static int usba_ep_enable(struct usb_ep *_ep, const struct usb_endpoint_descriptor *desc) { struct usba_ep *ep = to_usba_ep(_ep); struct usba_udc *udc = ep->udc; unsigned long flags, maxpacket; unsigned int nr_trans; DBG(DBG_GADGET, "%s: ep_enable: desc=%p\n", ep->ep.name, desc); maxpacket = usb_endpoint_maxp(desc); if (((desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK) != ep->index) || ep->index == 0 || desc->bDescriptorType != USB_DT_ENDPOINT || maxpacket == 0 || maxpacket > ep->fifo_size) { DBG(DBG_ERR, "ep_enable: Invalid argument"); return -EINVAL; } ep->is_isoc = 0; ep->is_in = 0; DBG(DBG_ERR, "%s: EPT_CFG = 0x%lx (maxpacket = %lu)\n", ep->ep.name, ep->ept_cfg, maxpacket); if (usb_endpoint_dir_in(desc)) { ep->is_in = 1; ep->ept_cfg |= USBA_EPT_DIR_IN; } switch (usb_endpoint_type(desc)) { case USB_ENDPOINT_XFER_CONTROL: ep->ept_cfg |= USBA_BF(EPT_TYPE, USBA_EPT_TYPE_CONTROL); break; case USB_ENDPOINT_XFER_ISOC: if (!ep->can_isoc) { DBG(DBG_ERR, "ep_enable: %s is not isoc capable\n", ep->ep.name); return -EINVAL; } /* * Bits 11:12 specify number of _additional_ * transactions per microframe. */ nr_trans = usb_endpoint_maxp_mult(desc); if (nr_trans > 3) return -EINVAL; ep->is_isoc = 1; ep->ept_cfg |= USBA_BF(EPT_TYPE, USBA_EPT_TYPE_ISO); ep->ept_cfg |= USBA_BF(NB_TRANS, nr_trans); break; case USB_ENDPOINT_XFER_BULK: ep->ept_cfg |= USBA_BF(EPT_TYPE, USBA_EPT_TYPE_BULK); break; case USB_ENDPOINT_XFER_INT: ep->ept_cfg |= USBA_BF(EPT_TYPE, USBA_EPT_TYPE_INT); break; } spin_lock_irqsave(&ep->udc->lock, flags); ep->ep.desc = desc; ep->ep.maxpacket = maxpacket; usba_ep_writel(ep, CFG, ep->ept_cfg); usba_ep_writel(ep, CTL_ENB, USBA_EPT_ENABLE); if (ep->can_dma) { u32 ctrl; usba_int_enb_set(udc, USBA_BF(EPT_INT, 1 << ep->index) | USBA_BF(DMA_INT, 1 << ep->index)); ctrl = USBA_AUTO_VALID | USBA_INTDIS_DMA; usba_ep_writel(ep, CTL_ENB, ctrl); } else { usba_int_enb_set(udc, USBA_BF(EPT_INT, 1 << ep->index)); } spin_unlock_irqrestore(&udc->lock, flags); DBG(DBG_HW, "EPT_CFG%d after init: %#08lx\n", ep->index, (unsigned long)usba_ep_readl(ep, CFG)); DBG(DBG_HW, "INT_ENB after init: %#08lx\n", (unsigned long)usba_int_enb_get(udc)); return 0; } static int usba_ep_disable(struct usb_ep *_ep) { struct usba_ep *ep = to_usba_ep(_ep); struct usba_udc *udc = ep->udc; LIST_HEAD(req_list); unsigned long flags; DBG(DBG_GADGET, "ep_disable: %s\n", ep->ep.name); spin_lock_irqsave(&udc->lock, flags); if (!ep->ep.desc) { spin_unlock_irqrestore(&udc->lock, flags); /* REVISIT because this driver disables endpoints in * reset_all_endpoints() before calling disconnect(), * most gadget drivers would trigger this non-error ... */ if (udc->gadget.speed != USB_SPEED_UNKNOWN) DBG(DBG_ERR, "ep_disable: %s not enabled\n", ep->ep.name); return -EINVAL; } ep->ep.desc = NULL; list_splice_init(&ep->queue, &req_list); if (ep->can_dma) { usba_dma_writel(ep, CONTROL, 0); usba_dma_writel(ep, ADDRESS, 0); usba_dma_readl(ep, STATUS); } usba_ep_writel(ep, CTL_DIS, USBA_EPT_ENABLE); usba_int_enb_clear(udc, USBA_BF(EPT_INT, 1 << ep->index)); request_complete_list(ep, &req_list, -ESHUTDOWN); spin_unlock_irqrestore(&udc->lock, flags); return 0; } static struct usb_request * usba_ep_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags) { struct usba_request *req; DBG(DBG_GADGET, "ep_alloc_request: %p, 0x%x\n", _ep, gfp_flags); req = kzalloc(sizeof(*req), gfp_flags); if (!req) return NULL; INIT_LIST_HEAD(&req->queue); return &req->req; } static void usba_ep_free_request(struct usb_ep *_ep, struct usb_request *_req) { struct usba_request *req = to_usba_req(_req); DBG(DBG_GADGET, "ep_free_request: %p, %p\n", _ep, _req); kfree(req); } static int queue_dma(struct usba_udc *udc, struct usba_ep *ep, struct usba_request *req, gfp_t gfp_flags) { unsigned long flags; int ret; DBG(DBG_DMA, "%s: req l/%u d/%pad %c%c%c\n", ep->ep.name, req->req.length, &req->req.dma, req->req.zero ? 'Z' : 'z', req->req.short_not_ok ? 'S' : 's', req->req.no_interrupt ? 'I' : 'i'); if (req->req.length > 0x10000) { /* Lengths from 0 to 65536 (inclusive) are supported */ DBG(DBG_ERR, "invalid request length %u\n", req->req.length); return -EINVAL; } ret = usb_gadget_map_request(&udc->gadget, &req->req, ep->is_in); if (ret) return ret; req->using_dma = 1; req->ctrl = USBA_BF(DMA_BUF_LEN, req->req.length) | USBA_DMA_CH_EN | USBA_DMA_END_BUF_IE | USBA_DMA_END_BUF_EN; if (!ep->is_in) req->ctrl |= USBA_DMA_END_TR_EN | USBA_DMA_END_TR_IE; /* * Add this request to the queue and submit for DMA if * possible. Check if we're still alive first -- we may have * received a reset since last time we checked. */ ret = -ESHUTDOWN; spin_lock_irqsave(&udc->lock, flags); if (ep->ep.desc) { if (list_empty(&ep->queue)) submit_request(ep, req); list_add_tail(&req->queue, &ep->queue); ret = 0; } spin_unlock_irqrestore(&udc->lock, flags); return ret; } static int usba_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags) { struct usba_request *req = to_usba_req(_req); struct usba_ep *ep = to_usba_ep(_ep); struct usba_udc *udc = ep->udc; unsigned long flags; int ret; DBG(DBG_GADGET | DBG_QUEUE | DBG_REQ, "%s: queue req %p, len %u\n", ep->ep.name, req, _req->length); if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN || !ep->ep.desc) return -ESHUTDOWN; req->submitted = 0; req->using_dma = 0; req->last_transaction = 0; _req->status = -EINPROGRESS; _req->actual = 0; if (ep->can_dma) return queue_dma(udc, ep, req, gfp_flags); /* May have received a reset since last time we checked */ ret = -ESHUTDOWN; spin_lock_irqsave(&udc->lock, flags); if (ep->ep.desc) { list_add_tail(&req->queue, &ep->queue); if ((!ep_is_control(ep) && ep->is_in) || (ep_is_control(ep) && (ep->state == DATA_STAGE_IN || ep->state == STATUS_STAGE_IN))) usba_ep_writel(ep, CTL_ENB, USBA_TX_PK_RDY); else usba_ep_writel(ep, CTL_ENB, USBA_RX_BK_RDY); ret = 0; } spin_unlock_irqrestore(&udc->lock, flags); return ret; } static void usba_update_req(struct usba_ep *ep, struct usba_request *req, u32 status) { req->req.actual = req->req.length - USBA_BFEXT(DMA_BUF_LEN, status); } static int stop_dma(struct usba_ep *ep, u32 *pstatus) { unsigned int timeout; u32 status; /* * Stop the DMA controller. When writing both CH_EN * and LINK to 0, the other bits are not affected. */ usba_dma_writel(ep, CONTROL, 0); /* Wait for the FIFO to empty */ for (timeout = 40; timeout; --timeout) { status = usba_dma_readl(ep, STATUS); if (!(status & USBA_DMA_CH_EN)) break; udelay(1); } if (pstatus) *pstatus = status; if (timeout == 0) { dev_err(&ep->udc->pdev->dev, "%s: timed out waiting for DMA FIFO to empty\n", ep->ep.name); return -ETIMEDOUT; } return 0; } static int usba_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req) { struct usba_ep *ep = to_usba_ep(_ep); struct usba_udc *udc = ep->udc; struct usba_request *req; unsigned long flags; u32 status; DBG(DBG_GADGET | DBG_QUEUE, "ep_dequeue: %s, req %p\n", ep->ep.name, req); spin_lock_irqsave(&udc->lock, flags); list_for_each_entry(req, &ep->queue, queue) { if (&req->req == _req) break; } if (&req->req != _req) { spin_unlock_irqrestore(&udc->lock, flags); return -EINVAL; } if (req->using_dma) { /* * If this request is currently being transferred, * stop the DMA controller and reset the FIFO. */ if (ep->queue.next == &req->queue) { status = usba_dma_readl(ep, STATUS); if (status & USBA_DMA_CH_EN) stop_dma(ep, &status); #ifdef CONFIG_USB_GADGET_DEBUG_FS ep->last_dma_status = status; #endif usba_writel(udc, EPT_RST, 1 << ep->index); usba_update_req(ep, req, status); } } /* * Errors should stop the queue from advancing until the * completion function returns. */ list_del_init(&req->queue); request_complete(ep, req, -ECONNRESET); /* Process the next request if any */ submit_next_request(ep); spin_unlock_irqrestore(&udc->lock, flags); return 0; } static int usba_ep_set_halt(struct usb_ep *_ep, int value) { struct usba_ep *ep = to_usba_ep(_ep); struct usba_udc *udc = ep->udc; unsigned long flags; int ret = 0; DBG(DBG_GADGET, "endpoint %s: %s HALT\n", ep->ep.name, value ? "set" : "clear"); if (!ep->ep.desc) { DBG(DBG_ERR, "Attempted to halt uninitialized ep %s\n", ep->ep.name); return -ENODEV; } if (ep->is_isoc) { DBG(DBG_ERR, "Attempted to halt isochronous ep %s\n", ep->ep.name); return -ENOTTY; } spin_lock_irqsave(&udc->lock, flags); /* * We can't halt IN endpoints while there are still data to be * transferred */ if (!list_empty(&ep->queue) || ((value && ep->is_in && (usba_ep_readl(ep, STA) & USBA_BF(BUSY_BANKS, -1L))))) { ret = -EAGAIN; } else { if (value) usba_ep_writel(ep, SET_STA, USBA_FORCE_STALL); else usba_ep_writel(ep, CLR_STA, USBA_FORCE_STALL | USBA_TOGGLE_CLR); usba_ep_readl(ep, STA); } spin_unlock_irqrestore(&udc->lock, flags); return ret; } static int usba_ep_fifo_status(struct usb_ep *_ep) { struct usba_ep *ep = to_usba_ep(_ep); return USBA_BFEXT(BYTE_COUNT, usba_ep_readl(ep, STA)); } static void usba_ep_fifo_flush(struct usb_ep *_ep) { struct usba_ep *ep = to_usba_ep(_ep); struct usba_udc *udc = ep->udc; usba_writel(udc, EPT_RST, 1 << ep->index); } static const struct usb_ep_ops usba_ep_ops = { .enable = usba_ep_enable, .disable = usba_ep_disable, .alloc_request = usba_ep_alloc_request, .free_request = usba_ep_free_request, .queue = usba_ep_queue, .dequeue = usba_ep_dequeue, .set_halt = usba_ep_set_halt, .fifo_status = usba_ep_fifo_status, .fifo_flush = usba_ep_fifo_flush, }; static int usba_udc_get_frame(struct usb_gadget *gadget) { struct usba_udc *udc = to_usba_udc(gadget); return USBA_BFEXT(FRAME_NUMBER, usba_readl(udc, FNUM)); } static int usba_udc_wakeup(struct usb_gadget *gadget) { struct usba_udc *udc = to_usba_udc(gadget); unsigned long flags; u32 ctrl; int ret = -EINVAL; spin_lock_irqsave(&udc->lock, flags); if (udc->devstatus & (1 << USB_DEVICE_REMOTE_WAKEUP)) { ctrl = usba_readl(udc, CTRL); usba_writel(udc, CTRL, ctrl | USBA_REMOTE_WAKE_UP); ret = 0; } spin_unlock_irqrestore(&udc->lock, flags); return ret; } static int usba_udc_set_selfpowered(struct usb_gadget *gadget, int is_selfpowered) { struct usba_udc *udc = to_usba_udc(gadget); unsigned long flags; gadget->is_selfpowered = (is_selfpowered != 0); spin_lock_irqsave(&udc->lock, flags); if (is_selfpowered) udc->devstatus |= 1 << USB_DEVICE_SELF_POWERED; else udc->devstatus &= ~(1 << USB_DEVICE_SELF_POWERED); spin_unlock_irqrestore(&udc->lock, flags); return 0; } static int atmel_usba_start(struct usb_gadget *gadget, struct usb_gadget_driver *driver); static int atmel_usba_stop(struct usb_gadget *gadget); static struct usb_ep *atmel_usba_match_ep(struct usb_gadget *gadget, struct usb_endpoint_descriptor *desc, struct usb_ss_ep_comp_descriptor *ep_comp) { struct usb_ep *_ep; struct usba_ep *ep; /* Look at endpoints until an unclaimed one looks usable */ list_for_each_entry(_ep, &gadget->ep_list, ep_list) { if (usb_gadget_ep_match_desc(gadget, _ep, desc, ep_comp)) goto found_ep; } /* Fail */ return NULL; found_ep: if (fifo_mode == 0) { /* Optimize hw fifo size based on ep type and other info */ ep = to_usba_ep(_ep); switch (usb_endpoint_type(desc)) { case USB_ENDPOINT_XFER_CONTROL: break; case USB_ENDPOINT_XFER_ISOC: ep->fifo_size = 1024; ep->nr_banks = 2; break; case USB_ENDPOINT_XFER_BULK: ep->fifo_size = 512; ep->nr_banks = 1; break; case USB_ENDPOINT_XFER_INT: if (desc->wMaxPacketSize == 0) ep->fifo_size = roundup_pow_of_two(_ep->maxpacket_limit); else ep->fifo_size = roundup_pow_of_two(le16_to_cpu(desc->wMaxPacketSize)); ep->nr_banks = 1; break; } /* It might be a little bit late to set this */ usb_ep_set_maxpacket_limit(&ep->ep, ep->fifo_size); /* Generate ept_cfg basd on FIFO size and number of banks */ if (ep->fifo_size <= 8) ep->ept_cfg = USBA_BF(EPT_SIZE, USBA_EPT_SIZE_8); else /* LSB is bit 1, not 0 */ ep->ept_cfg = USBA_BF(EPT_SIZE, fls(ep->fifo_size - 1) - 3); ep->ept_cfg |= USBA_BF(BK_NUMBER, ep->nr_banks); ep->udc->configured_ep++; } return _ep; } static const struct usb_gadget_ops usba_udc_ops = { .get_frame = usba_udc_get_frame, .wakeup = usba_udc_wakeup, .set_selfpowered = usba_udc_set_selfpowered, .udc_start = atmel_usba_start, .udc_stop = atmel_usba_stop, .match_ep = atmel_usba_match_ep, }; static struct usb_endpoint_descriptor usba_ep0_desc = { .bLength = USB_DT_ENDPOINT_SIZE, .bDescriptorType = USB_DT_ENDPOINT, .bEndpointAddress = 0, .bmAttributes = USB_ENDPOINT_XFER_CONTROL, .wMaxPacketSize = cpu_to_le16(64), /* FIXME: I have no idea what to put here */ .bInterval = 1, }; static struct usb_gadget usba_gadget_template = { .ops = &usba_udc_ops, .max_speed = USB_SPEED_HIGH, .name = "atmel_usba_udc", }; /* * Called with interrupts disabled and udc->lock held. */ static void reset_all_endpoints(struct usba_udc *udc) { struct usba_ep *ep; struct usba_request *req, *tmp_req; usba_writel(udc, EPT_RST, ~0UL); ep = to_usba_ep(udc->gadget.ep0); list_for_each_entry_safe(req, tmp_req, &ep->queue, queue) { list_del_init(&req->queue); request_complete(ep, req, -ECONNRESET); } } static struct usba_ep *get_ep_by_addr(struct usba_udc *udc, u16 wIndex) { struct usba_ep *ep; if ((wIndex & USB_ENDPOINT_NUMBER_MASK) == 0) return to_usba_ep(udc->gadget.ep0); list_for_each_entry (ep, &udc->gadget.ep_list, ep.ep_list) { u8 bEndpointAddress; if (!ep->ep.desc) continue; bEndpointAddress = ep->ep.desc->bEndpointAddress; if ((wIndex ^ bEndpointAddress) & USB_DIR_IN) continue; if ((bEndpointAddress & USB_ENDPOINT_NUMBER_MASK) == (wIndex & USB_ENDPOINT_NUMBER_MASK)) return ep; } return NULL; } /* Called with interrupts disabled and udc->lock held */ static inline void set_protocol_stall(struct usba_udc *udc, struct usba_ep *ep) { usba_ep_writel(ep, SET_STA, USBA_FORCE_STALL); ep->state = WAIT_FOR_SETUP; } static inline int is_stalled(struct usba_udc *udc, struct usba_ep *ep) { if (usba_ep_readl(ep, STA) & USBA_FORCE_STALL) return 1; return 0; } static inline void set_address(struct usba_udc *udc, unsigned int addr) { u32 regval; DBG(DBG_BUS, "setting address %u...\n", addr); regval = usba_readl(udc, CTRL); regval = USBA_BFINS(DEV_ADDR, addr, regval); usba_writel(udc, CTRL, regval); } static int do_test_mode(struct usba_udc *udc) { static const char test_packet_buffer[] = { /* JKJKJKJK * 9 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* JJKKJJKK * 8 */ 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, /* JJKKJJKK * 8 */ 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, /* JJJJJJJKKKKKKK * 8 */ 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* JJJJJJJK * 8 */ 0x7F, 0xBF, 0xDF, 0xEF, 0xF7, 0xFB, 0xFD, /* {JKKKKKKK * 10}, JK */ 0xFC, 0x7E, 0xBF, 0xDF, 0xEF, 0xF7, 0xFB, 0xFD, 0x7E }; struct usba_ep *ep; struct device *dev = &udc->pdev->dev; int test_mode; test_mode = udc->test_mode; /* Start from a clean slate */ reset_all_endpoints(udc); switch (test_mode) { case 0x0100: /* Test_J */ usba_writel(udc, TST, USBA_TST_J_MODE); dev_info(dev, "Entering Test_J mode...\n"); break; case 0x0200: /* Test_K */ usba_writel(udc, TST, USBA_TST_K_MODE); dev_info(dev, "Entering Test_K mode...\n"); break; case 0x0300: /* * Test_SE0_NAK: Force high-speed mode and set up ep0 * for Bulk IN transfers */ ep = &udc->usba_ep[0]; usba_writel(udc, TST, USBA_BF(SPEED_CFG, USBA_SPEED_CFG_FORCE_HIGH)); usba_ep_writel(ep, CFG, USBA_BF(EPT_SIZE, USBA_EPT_SIZE_64) | USBA_EPT_DIR_IN | USBA_BF(EPT_TYPE, USBA_EPT_TYPE_BULK) | USBA_BF(BK_NUMBER, 1)); if (!(usba_ep_readl(ep, CFG) & USBA_EPT_MAPPED)) { set_protocol_stall(udc, ep); dev_err(dev, "Test_SE0_NAK: ep0 not mapped\n"); } else { usba_ep_writel(ep, CTL_ENB, USBA_EPT_ENABLE); dev_info(dev, "Entering Test_SE0_NAK mode...\n"); } break; case 0x0400: /* Test_Packet */ ep = &udc->usba_ep[0]; usba_ep_writel(ep, CFG, USBA_BF(EPT_SIZE, USBA_EPT_SIZE_64) | USBA_EPT_DIR_IN | USBA_BF(EPT_TYPE, USBA_EPT_TYPE_BULK) | USBA_BF(BK_NUMBER, 1)); if (!(usba_ep_readl(ep, CFG) & USBA_EPT_MAPPED)) { set_protocol_stall(udc, ep); dev_err(dev, "Test_Packet: ep0 not mapped\n"); } else { usba_ep_writel(ep, CTL_ENB, USBA_EPT_ENABLE); usba_writel(udc, TST, USBA_TST_PKT_MODE); memcpy_toio(ep->fifo, test_packet_buffer, sizeof(test_packet_buffer)); usba_ep_writel(ep, SET_STA, USBA_TX_PK_RDY); dev_info(dev, "Entering Test_Packet mode...\n"); } break; default: dev_err(dev, "Invalid test mode: 0x%04x\n", test_mode); return -EINVAL; } return 0; } /* Avoid overly long expressions */ static inline bool feature_is_dev_remote_wakeup(struct usb_ctrlrequest *crq) { if (crq->wValue == cpu_to_le16(USB_DEVICE_REMOTE_WAKEUP)) return true; return false; } static inline bool feature_is_dev_test_mode(struct usb_ctrlrequest *crq) { if (crq->wValue == cpu_to_le16(USB_DEVICE_TEST_MODE)) return true; return false; } static inline bool feature_is_ep_halt(struct usb_ctrlrequest *crq) { if (crq->wValue == cpu_to_le16(USB_ENDPOINT_HALT)) return true; return false; } static int handle_ep0_setup(struct usba_udc *udc, struct usba_ep *ep, struct usb_ctrlrequest *crq) { int retval = 0; switch (crq->bRequest) { case USB_REQ_GET_STATUS: { u16 status; if (crq->bRequestType == (USB_DIR_IN | USB_RECIP_DEVICE)) { status = cpu_to_le16(udc->devstatus); } else if (crq->bRequestType == (USB_DIR_IN | USB_RECIP_INTERFACE)) { status = cpu_to_le16(0); } else if (crq->bRequestType == (USB_DIR_IN | USB_RECIP_ENDPOINT)) { struct usba_ep *target; target = get_ep_by_addr(udc, le16_to_cpu(crq->wIndex)); if (!target) goto stall; status = 0; if (is_stalled(udc, target)) status |= cpu_to_le16(1); } else goto delegate; /* Write directly to the FIFO. No queueing is done. */ if (crq->wLength != cpu_to_le16(sizeof(status))) goto stall; ep->state = DATA_STAGE_IN; writew_relaxed(status, ep->fifo); usba_ep_writel(ep, SET_STA, USBA_TX_PK_RDY); break; } case USB_REQ_CLEAR_FEATURE: { if (crq->bRequestType == USB_RECIP_DEVICE) { if (feature_is_dev_remote_wakeup(crq)) udc->devstatus &= ~(1 << USB_DEVICE_REMOTE_WAKEUP); else /* Can't CLEAR_FEATURE TEST_MODE */ goto stall; } else if (crq->bRequestType == USB_RECIP_ENDPOINT) { struct usba_ep *target; if (crq->wLength != cpu_to_le16(0) || !feature_is_ep_halt(crq)) goto stall; target = get_ep_by_addr(udc, le16_to_cpu(crq->wIndex)); if (!target) goto stall; usba_ep_writel(target, CLR_STA, USBA_FORCE_STALL); if (target->index != 0) usba_ep_writel(target, CLR_STA, USBA_TOGGLE_CLR); } else { goto delegate; } send_status(udc, ep); break; } case USB_REQ_SET_FEATURE: { if (crq->bRequestType == USB_RECIP_DEVICE) { if (feature_is_dev_test_mode(crq)) { send_status(udc, ep); ep->state = STATUS_STAGE_TEST; udc->test_mode = le16_to_cpu(crq->wIndex); return 0; } else if (feature_is_dev_remote_wakeup(crq)) { udc->devstatus |= 1 << USB_DEVICE_REMOTE_WAKEUP; } else { goto stall; } } else if (crq->bRequestType == USB_RECIP_ENDPOINT) { struct usba_ep *target; if (crq->wLength != cpu_to_le16(0) || !feature_is_ep_halt(crq)) goto stall; target = get_ep_by_addr(udc, le16_to_cpu(crq->wIndex)); if (!target) goto stall; usba_ep_writel(target, SET_STA, USBA_FORCE_STALL); } else goto delegate; send_status(udc, ep); break; } case USB_REQ_SET_ADDRESS: if (crq->bRequestType != (USB_DIR_OUT | USB_RECIP_DEVICE)) goto delegate; set_address(udc, le16_to_cpu(crq->wValue)); send_status(udc, ep); ep->state = STATUS_STAGE_ADDR; break; default: delegate: spin_unlock(&udc->lock); retval = udc->driver->setup(&udc->gadget, crq); spin_lock(&udc->lock); } return retval; stall: pr_err("udc: %s: Invalid setup request: %02x.%02x v%04x i%04x l%d, " "halting endpoint...\n", ep->ep.name, crq->bRequestType, crq->bRequest, le16_to_cpu(crq->wValue), le16_to_cpu(crq->wIndex), le16_to_cpu(crq->wLength)); set_protocol_stall(udc, ep); return -1; } static void usba_control_irq(struct usba_udc *udc, struct usba_ep *ep) { struct usba_request *req; u32 epstatus; u32 epctrl; restart: epstatus = usba_ep_readl(ep, STA); epctrl = usba_ep_readl(ep, CTL); DBG(DBG_INT, "%s [%d]: s/%08x c/%08x\n", ep->ep.name, ep->state, epstatus, epctrl); req = NULL; if (!list_empty(&ep->queue)) req = list_entry(ep->queue.next, struct usba_request, queue); if ((epctrl & USBA_TX_PK_RDY) && !(epstatus & USBA_TX_PK_RDY)) { if (req->submitted) next_fifo_transaction(ep, req); else submit_request(ep, req); if (req->last_transaction) { usba_ep_writel(ep, CTL_DIS, USBA_TX_PK_RDY); usba_ep_writel(ep, CTL_ENB, USBA_TX_COMPLETE); } goto restart; } if ((epstatus & epctrl) & USBA_TX_COMPLETE) { usba_ep_writel(ep, CLR_STA, USBA_TX_COMPLETE); switch (ep->state) { case DATA_STAGE_IN: usba_ep_writel(ep, CTL_ENB, USBA_RX_BK_RDY); usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE); ep->state = STATUS_STAGE_OUT; break; case STATUS_STAGE_ADDR: /* Activate our new address */ usba_writel(udc, CTRL, (usba_readl(udc, CTRL) | USBA_FADDR_EN)); usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE); ep->state = WAIT_FOR_SETUP; break; case STATUS_STAGE_IN: if (req) { list_del_init(&req->queue); request_complete(ep, req, 0); submit_next_request(ep); } usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE); ep->state = WAIT_FOR_SETUP; break; case STATUS_STAGE_TEST: usba_ep_writel(ep, CTL_DIS, USBA_TX_COMPLETE); ep->state = WAIT_FOR_SETUP; if (do_test_mode(udc)) set_protocol_stall(udc, ep); break; default: pr_err("udc: %s: TXCOMP: Invalid endpoint state %d, " "halting endpoint...\n", ep->ep.name, ep->state); set_protocol_stall(udc, ep); break; } goto restart; } if ((epstatus & epctrl) & USBA_RX_BK_RDY) { switch (ep->state) { case STATUS_STAGE_OUT: usba_ep_writel(ep, CLR_STA, USBA_RX_BK_RDY); usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY); if (req) { list_del_init(&req->queue); request_complete(ep, req, 0); } ep->state = WAIT_FOR_SETUP; break; case DATA_STAGE_OUT: receive_data(ep); break; default: usba_ep_writel(ep, CLR_STA, USBA_RX_BK_RDY); usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY); pr_err("udc: %s: RXRDY: Invalid endpoint state %d, " "halting endpoint...\n", ep->ep.name, ep->state); set_protocol_stall(udc, ep); break; } goto restart; } if (epstatus & USBA_RX_SETUP) { union { struct usb_ctrlrequest crq; unsigned long data[2]; } crq; unsigned int pkt_len; int ret; if (ep->state != WAIT_FOR_SETUP) { /* * Didn't expect a SETUP packet at this * point. Clean up any pending requests (which * may be successful). */ int status = -EPROTO; /* * RXRDY and TXCOMP are dropped when SETUP * packets arrive. Just pretend we received * the status packet. */ if (ep->state == STATUS_STAGE_OUT || ep->state == STATUS_STAGE_IN) { usba_ep_writel(ep, CTL_DIS, USBA_RX_BK_RDY); status = 0; } if (req) { list_del_init(&req->queue); request_complete(ep, req, status); } } pkt_len = USBA_BFEXT(BYTE_COUNT, usba_ep_readl(ep, STA)); DBG(DBG_HW, "Packet length: %u\n", pkt_len); if (pkt_len != sizeof(crq)) { pr_warn("udc: Invalid packet length %u (expected %zu)\n", pkt_len, sizeof(crq)); set_protocol_stall(udc, ep); return; } DBG(DBG_FIFO, "Copying ctrl request from 0x%p:\n", ep->fifo); memcpy_fromio(crq.data, ep->fifo, sizeof(crq)); /* Free up one bank in the FIFO so that we can * generate or receive a reply right away. */ usba_ep_writel(ep, CLR_STA, USBA_RX_SETUP); /* printk(KERN_DEBUG "setup: %d: %02x.%02x\n", ep->state, crq.crq.bRequestType, crq.crq.bRequest); */ if (crq.crq.bRequestType & USB_DIR_IN) { /* * The USB 2.0 spec states that "if wLength is * zero, there is no data transfer phase." * However, testusb #14 seems to actually * expect a data phase even if wLength = 0... */ ep->state = DATA_STAGE_IN; } else { if (crq.crq.wLength != cpu_to_le16(0)) ep->state = DATA_STAGE_OUT; else ep->state = STATUS_STAGE_IN; } ret = -1; if (ep->index == 0) ret = handle_ep0_setup(udc, ep, &crq.crq); else { spin_unlock(&udc->lock); ret = udc->driver->setup(&udc->gadget, &crq.crq); spin_lock(&udc->lock); } DBG(DBG_BUS, "req %02x.%02x, length %d, state %d, ret %d\n", crq.crq.bRequestType, crq.crq.bRequest, le16_to_cpu(crq.crq.wLength), ep->state, ret); if (ret < 0) { /* Let the host know that we failed */ set_protocol_stall(udc, ep); } } } static void usba_ep_irq(struct usba_udc *udc, struct usba_ep *ep) { struct usba_request *req; u32 epstatus; u32 epctrl; epstatus = usba_ep_readl(ep, STA); epctrl = usba_ep_readl(ep, CTL); DBG(DBG_INT, "%s: interrupt, status: 0x%08x\n", ep->ep.name, epstatus); while ((epctrl & USBA_TX_PK_RDY) && !(epstatus & USBA_TX_PK_RDY)) { DBG(DBG_BUS, "%s: TX PK ready\n", ep->ep.name); if (list_empty(&ep->queue)) { dev_warn(&udc->pdev->dev, "ep_irq: queue empty\n"); usba_ep_writel(ep, CTL_DIS, USBA_TX_PK_RDY); return; } req = list_entry(ep->queue.next, struct usba_request, queue); if (req->using_dma) { /* Send a zero-length packet */ usba_ep_writel(ep, SET_STA, USBA_TX_PK_RDY); usba_ep_writel(ep, CTL_DIS, USBA_TX_PK_RDY); list_del_init(&req->queue); submit_next_request(ep); request_complete(ep, req, 0); } else { if (req->submitted) next_fifo_transaction(ep, req); else submit_request(ep, req); if (req->last_transaction) { list_del_init(&req->queue); submit_next_request(ep); request_complete(ep, req, 0); } } epstatus = usba_ep_readl(ep, STA); epctrl = usba_ep_readl(ep, CTL); } if ((epstatus & epctrl) & USBA_RX_BK_RDY) { DBG(DBG_BUS, "%s: RX data ready\n", ep->ep.name); receive_data(ep); } } static void usba_dma_irq(struct usba_udc *udc, struct usba_ep *ep) { struct usba_request *req; u32 status, control, pending; status = usba_dma_readl(ep, STATUS); control = usba_dma_readl(ep, CONTROL); #ifdef CONFIG_USB_GADGET_DEBUG_FS ep->last_dma_status = status; #endif pending = status & control; DBG(DBG_INT | DBG_DMA, "dma irq, s/%#08x, c/%#08x\n", status, control); if (status & USBA_DMA_CH_EN) { dev_err(&udc->pdev->dev, "DMA_CH_EN is set after transfer is finished!\n"); dev_err(&udc->pdev->dev, "status=%#08x, pending=%#08x, control=%#08x\n", status, pending, control); /* * try to pretend nothing happened. We might have to * do something here... */ } if (list_empty(&ep->queue)) /* Might happen if a reset comes along at the right moment */ return; if (pending & (USBA_DMA_END_TR_ST | USBA_DMA_END_BUF_ST)) { req = list_entry(ep->queue.next, struct usba_request, queue); usba_update_req(ep, req, status); list_del_init(&req->queue); submit_next_request(ep); request_complete(ep, req, 0); } } static int start_clock(struct usba_udc *udc); static void stop_clock(struct usba_udc *udc); static irqreturn_t usba_udc_irq(int irq, void *devid) { struct usba_udc *udc = devid; u32 status, int_enb; u32 dma_status; u32 ep_status; spin_lock(&udc->lock); int_enb = usba_int_enb_get(udc); status = usba_readl(udc, INT_STA) & (int_enb | USBA_HIGH_SPEED); DBG(DBG_INT, "irq, status=%#08x\n", status); if (status & USBA_DET_SUSPEND) { usba_writel(udc, INT_CLR, USBA_DET_SUSPEND|USBA_WAKE_UP); usba_int_enb_set(udc, USBA_WAKE_UP); usba_int_enb_clear(udc, USBA_DET_SUSPEND); udc->suspended = true; toggle_bias(udc, 0); udc->bias_pulse_needed = true; stop_clock(udc); DBG(DBG_BUS, "Suspend detected\n"); if (udc->gadget.speed != USB_SPEED_UNKNOWN && udc->driver && udc->driver->suspend) { spin_unlock(&udc->lock); udc->driver->suspend(&udc->gadget); spin_lock(&udc->lock); } } if (status & USBA_WAKE_UP) { start_clock(udc); toggle_bias(udc, 1); usba_writel(udc, INT_CLR, USBA_WAKE_UP); DBG(DBG_BUS, "Wake Up CPU detected\n"); } if (status & USBA_END_OF_RESUME) { udc->suspended = false; usba_writel(udc, INT_CLR, USBA_END_OF_RESUME); usba_int_enb_clear(udc, USBA_WAKE_UP); usba_int_enb_set(udc, USBA_DET_SUSPEND); generate_bias_pulse(udc); DBG(DBG_BUS, "Resume detected\n"); if (udc->gadget.speed != USB_SPEED_UNKNOWN && udc->driver && udc->driver->resume) { spin_unlock(&udc->lock); udc->driver->resume(&udc->gadget); spin_lock(&udc->lock); } } dma_status = USBA_BFEXT(DMA_INT, status); if (dma_status) { int i; usba_int_enb_set(udc, USBA_DET_SUSPEND); for (i = 1; i <= USBA_NR_DMAS; i++) if (dma_status & (1 << i)) usba_dma_irq(udc, &udc->usba_ep[i]); } ep_status = USBA_BFEXT(EPT_INT, status); if (ep_status) { int i; usba_int_enb_set(udc, USBA_DET_SUSPEND); for (i = 0; i < udc->num_ep; i++) if (ep_status & (1 << i)) { if (ep_is_control(&udc->usba_ep[i])) usba_control_irq(udc, &udc->usba_ep[i]); else usba_ep_irq(udc, &udc->usba_ep[i]); } } if (status & USBA_END_OF_RESET) { struct usba_ep *ep0, *ep; int i, n; usba_writel(udc, INT_CLR, USBA_END_OF_RESET|USBA_END_OF_RESUME |USBA_DET_SUSPEND|USBA_WAKE_UP); generate_bias_pulse(udc); reset_all_endpoints(udc); if (udc->gadget.speed != USB_SPEED_UNKNOWN && udc->driver) { udc->gadget.speed = USB_SPEED_UNKNOWN; spin_unlock(&udc->lock); usb_gadget_udc_reset(&udc->gadget, udc->driver); spin_lock(&udc->lock); } if (status & USBA_HIGH_SPEED) udc->gadget.speed = USB_SPEED_HIGH; else udc->gadget.speed = USB_SPEED_FULL; DBG(DBG_BUS, "%s bus reset detected\n", usb_speed_string(udc->gadget.speed)); ep0 = &udc->usba_ep[0]; ep0->ep.desc = &usba_ep0_desc; ep0->state = WAIT_FOR_SETUP; usba_ep_writel(ep0, CFG, (USBA_BF(EPT_SIZE, EP0_EPT_SIZE) | USBA_BF(EPT_TYPE, USBA_EPT_TYPE_CONTROL) | USBA_BF(BK_NUMBER, USBA_BK_NUMBER_ONE))); usba_ep_writel(ep0, CTL_ENB, USBA_EPT_ENABLE | USBA_RX_SETUP); /* If we get reset while suspended... */ udc->suspended = false; usba_int_enb_clear(udc, USBA_WAKE_UP); usba_int_enb_set(udc, USBA_BF(EPT_INT, 1) | USBA_DET_SUSPEND | USBA_END_OF_RESUME); /* * Unclear why we hit this irregularly, e.g. in usbtest, * but it's clearly harmless... */ if (!(usba_ep_readl(ep0, CFG) & USBA_EPT_MAPPED)) dev_err(&udc->pdev->dev, "ODD: EP0 configuration is invalid!\n"); /* Preallocate other endpoints */ n = fifo_mode ? udc->num_ep : udc->configured_ep; for (i = 1; i < n; i++) { ep = &udc->usba_ep[i]; usba_ep_writel(ep, CFG, ep->ept_cfg); if (!(usba_ep_readl(ep, CFG) & USBA_EPT_MAPPED)) dev_err(&udc->pdev->dev, "ODD: EP%d configuration is invalid!\n", i); } } spin_unlock(&udc->lock); return IRQ_HANDLED; } static int start_clock(struct usba_udc *udc) { int ret; if (udc->clocked) return 0; pm_stay_awake(&udc->pdev->dev); ret = clk_prepare_enable(udc->pclk); if (ret) return ret; ret = clk_prepare_enable(udc->hclk); if (ret) { clk_disable_unprepare(udc->pclk); return ret; } udc->clocked = true; return 0; } static void stop_clock(struct usba_udc *udc) { if (!udc->clocked) return; clk_disable_unprepare(udc->hclk); clk_disable_unprepare(udc->pclk); udc->clocked = false; pm_relax(&udc->pdev->dev); } static int usba_start(struct usba_udc *udc) { unsigned long flags; int ret; ret = start_clock(udc); if (ret) return ret; if (udc->suspended) return 0; spin_lock_irqsave(&udc->lock, flags); toggle_bias(udc, 1); usba_writel(udc, CTRL, USBA_ENABLE_MASK); /* Clear all requested and pending interrupts... */ usba_writel(udc, INT_ENB, 0); udc->int_enb_cache = 0; usba_writel(udc, INT_CLR, USBA_END_OF_RESET|USBA_END_OF_RESUME |USBA_DET_SUSPEND|USBA_WAKE_UP); /* ...and enable just 'reset' IRQ to get us started */ usba_int_enb_set(udc, USBA_END_OF_RESET); spin_unlock_irqrestore(&udc->lock, flags); return 0; } static void usba_stop(struct usba_udc *udc) { unsigned long flags; if (udc->suspended) return; spin_lock_irqsave(&udc->lock, flags); udc->gadget.speed = USB_SPEED_UNKNOWN; reset_all_endpoints(udc); /* This will also disable the DP pullup */ toggle_bias(udc, 0); usba_writel(udc, CTRL, USBA_DISABLE_MASK); spin_unlock_irqrestore(&udc->lock, flags); stop_clock(udc); } static irqreturn_t usba_vbus_irq_thread(int irq, void *devid) { struct usba_udc *udc = devid; int vbus; /* debounce */ udelay(10); mutex_lock(&udc->vbus_mutex); vbus = vbus_is_present(udc); if (vbus != udc->vbus_prev) { if (vbus) { usba_start(udc); } else { udc->suspended = false; usba_stop(udc); if (udc->driver->disconnect) udc->driver->disconnect(&udc->gadget); } udc->vbus_prev = vbus; } mutex_unlock(&udc->vbus_mutex); return IRQ_HANDLED; } static int atmel_usba_start(struct usb_gadget *gadget, struct usb_gadget_driver *driver) { int ret; struct usba_udc *udc = container_of(gadget, struct usba_udc, gadget); unsigned long flags; spin_lock_irqsave(&udc->lock, flags); udc->devstatus = 1 << USB_DEVICE_SELF_POWERED; udc->driver = driver; spin_unlock_irqrestore(&udc->lock, flags); mutex_lock(&udc->vbus_mutex); if (udc->vbus_pin) enable_irq(gpiod_to_irq(udc->vbus_pin)); /* If Vbus is present, enable the controller and wait for reset */ udc->vbus_prev = vbus_is_present(udc); if (udc->vbus_prev) { ret = usba_start(udc); if (ret) goto err; } mutex_unlock(&udc->vbus_mutex); return 0; err: if (udc->vbus_pin) disable_irq(gpiod_to_irq(udc->vbus_pin)); mutex_unlock(&udc->vbus_mutex); spin_lock_irqsave(&udc->lock, flags); udc->devstatus &= ~(1 << USB_DEVICE_SELF_POWERED); udc->driver = NULL; spin_unlock_irqrestore(&udc->lock, flags); return ret; } static int atmel_usba_stop(struct usb_gadget *gadget) { struct usba_udc *udc = container_of(gadget, struct usba_udc, gadget); if (udc->vbus_pin) disable_irq(gpiod_to_irq(udc->vbus_pin)); if (fifo_mode == 0) udc->configured_ep = 1; udc->suspended = false; usba_stop(udc); udc->driver = NULL; return 0; } static void at91sam9rl_toggle_bias(struct usba_udc *udc, int is_on) { regmap_update_bits(udc->pmc, AT91_CKGR_UCKR, AT91_PMC_BIASEN, is_on ? AT91_PMC_BIASEN : 0); } static void at91sam9g45_pulse_bias(struct usba_udc *udc) { regmap_update_bits(udc->pmc, AT91_CKGR_UCKR, AT91_PMC_BIASEN, 0); regmap_update_bits(udc->pmc, AT91_CKGR_UCKR, AT91_PMC_BIASEN, AT91_PMC_BIASEN); } static const struct usba_udc_errata at91sam9rl_errata = { .toggle_bias = at91sam9rl_toggle_bias, }; static const struct usba_udc_errata at91sam9g45_errata = { .pulse_bias = at91sam9g45_pulse_bias, }; static const struct of_device_id atmel_udc_dt_ids[] = { { .compatible = "atmel,at91sam9rl-udc", .data = &at91sam9rl_errata }, { .compatible = "atmel,at91sam9g45-udc", .data = &at91sam9g45_errata }, { .compatible = "atmel,sama5d3-udc" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, atmel_udc_dt_ids); static struct usba_ep * atmel_udc_of_init(struct platform_device *pdev, struct usba_udc *udc) { u32 val; struct device_node *np = pdev->dev.of_node; const struct of_device_id *match; struct device_node *pp; int i, ret; struct usba_ep *eps, *ep; match = of_match_node(atmel_udc_dt_ids, np); if (!match) return ERR_PTR(-EINVAL); udc->errata = match->data; udc->pmc = syscon_regmap_lookup_by_compatible("atmel,at91sam9g45-pmc"); if (IS_ERR(udc->pmc)) udc->pmc = syscon_regmap_lookup_by_compatible("atmel,at91sam9rl-pmc"); if (IS_ERR(udc->pmc)) udc->pmc = syscon_regmap_lookup_by_compatible("atmel,at91sam9x5-pmc"); if (udc->errata && IS_ERR(udc->pmc)) return ERR_CAST(udc->pmc); udc->num_ep = 0; udc->vbus_pin = devm_gpiod_get_optional(&pdev->dev, "atmel,vbus", GPIOD_IN); if (fifo_mode == 0) { pp = NULL; while ((pp = of_get_next_child(np, pp))) udc->num_ep++; udc->configured_ep = 1; } else { udc->num_ep = usba_config_fifo_table(udc); } eps = devm_kcalloc(&pdev->dev, udc->num_ep, sizeof(struct usba_ep), GFP_KERNEL); if (!eps) return ERR_PTR(-ENOMEM); udc->gadget.ep0 = &eps[0].ep; INIT_LIST_HEAD(&eps[0].ep.ep_list); pp = NULL; i = 0; while ((pp = of_get_next_child(np, pp)) && i < udc->num_ep) { ep = &eps[i]; ret = of_property_read_u32(pp, "reg", &val); if (ret) { dev_err(&pdev->dev, "of_probe: reg error(%d)\n", ret); goto err; } ep->index = fifo_mode ? udc->fifo_cfg[i].hw_ep_num : val; ret = of_property_read_u32(pp, "atmel,fifo-size", &val); if (ret) { dev_err(&pdev->dev, "of_probe: fifo-size error(%d)\n", ret); goto err; } if (fifo_mode) { if (val < udc->fifo_cfg[i].fifo_size) { dev_warn(&pdev->dev, "Using max fifo-size value from DT\n"); ep->fifo_size = val; } else { ep->fifo_size = udc->fifo_cfg[i].fifo_size; } } else { ep->fifo_size = val; } ret = of_property_read_u32(pp, "atmel,nb-banks", &val); if (ret) { dev_err(&pdev->dev, "of_probe: nb-banks error(%d)\n", ret); goto err; } if (fifo_mode) { if (val < udc->fifo_cfg[i].nr_banks) { dev_warn(&pdev->dev, "Using max nb-banks value from DT\n"); ep->nr_banks = val; } else { ep->nr_banks = udc->fifo_cfg[i].nr_banks; } } else { ep->nr_banks = val; } ep->can_dma = of_property_read_bool(pp, "atmel,can-dma"); ep->can_isoc = of_property_read_bool(pp, "atmel,can-isoc"); sprintf(ep->name, "ep%d", ep->index); ep->ep.name = ep->name; ep->ep_regs = udc->regs + USBA_EPT_BASE(i); ep->dma_regs = udc->regs + USBA_DMA_BASE(i); ep->fifo = udc->fifo + USBA_FIFO_BASE(i); ep->ep.ops = &usba_ep_ops; usb_ep_set_maxpacket_limit(&ep->ep, ep->fifo_size); ep->udc = udc; INIT_LIST_HEAD(&ep->queue); if (ep->index == 0) { ep->ep.caps.type_control = true; } else { ep->ep.caps.type_iso = ep->can_isoc; ep->ep.caps.type_bulk = true; ep->ep.caps.type_int = true; } ep->ep.caps.dir_in = true; ep->ep.caps.dir_out = true; if (fifo_mode != 0) { /* * Generate ept_cfg based on FIFO size and * banks number */ if (ep->fifo_size <= 8) ep->ept_cfg = USBA_BF(EPT_SIZE, USBA_EPT_SIZE_8); else /* LSB is bit 1, not 0 */ ep->ept_cfg = USBA_BF(EPT_SIZE, fls(ep->fifo_size - 1) - 3); ep->ept_cfg |= USBA_BF(BK_NUMBER, ep->nr_banks); } if (i) list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list); i++; } if (i == 0) { dev_err(&pdev->dev, "of_probe: no endpoint specified\n"); ret = -EINVAL; goto err; } return eps; err: return ERR_PTR(ret); } static int usba_udc_probe(struct platform_device *pdev) { struct resource *res; struct clk *pclk, *hclk; struct usba_udc *udc; int irq, ret, i; udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL); if (!udc) return -ENOMEM; udc->gadget = usba_gadget_template; INIT_LIST_HEAD(&udc->gadget.ep_list); res = platform_get_resource(pdev, IORESOURCE_MEM, CTRL_IOMEM_ID); udc->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(udc->regs)) return PTR_ERR(udc->regs); dev_info(&pdev->dev, "MMIO registers at %pR mapped at %p\n", res, udc->regs); res = platform_get_resource(pdev, IORESOURCE_MEM, FIFO_IOMEM_ID); udc->fifo = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(udc->fifo)) return PTR_ERR(udc->fifo); dev_info(&pdev->dev, "FIFO at %pR mapped at %p\n", res, udc->fifo); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; pclk = devm_clk_get(&pdev->dev, "pclk"); if (IS_ERR(pclk)) return PTR_ERR(pclk); hclk = devm_clk_get(&pdev->dev, "hclk"); if (IS_ERR(hclk)) return PTR_ERR(hclk); spin_lock_init(&udc->lock); mutex_init(&udc->vbus_mutex); udc->pdev = pdev; udc->pclk = pclk; udc->hclk = hclk; platform_set_drvdata(pdev, udc); /* Make sure we start from a clean slate */ ret = clk_prepare_enable(pclk); if (ret) { dev_err(&pdev->dev, "Unable to enable pclk, aborting.\n"); return ret; } usba_writel(udc, CTRL, USBA_DISABLE_MASK); clk_disable_unprepare(pclk); udc->usba_ep = atmel_udc_of_init(pdev, udc); toggle_bias(udc, 0); if (IS_ERR(udc->usba_ep)) return PTR_ERR(udc->usba_ep); ret = devm_request_irq(&pdev->dev, irq, usba_udc_irq, 0, "atmel_usba_udc", udc); if (ret) { dev_err(&pdev->dev, "Cannot request irq %d (error %d)\n", irq, ret); return ret; } udc->irq = irq; if (udc->vbus_pin) { irq_set_status_flags(gpiod_to_irq(udc->vbus_pin), IRQ_NOAUTOEN); ret = devm_request_threaded_irq(&pdev->dev, gpiod_to_irq(udc->vbus_pin), NULL, usba_vbus_irq_thread, USBA_VBUS_IRQFLAGS, "atmel_usba_udc", udc); if (ret) { udc->vbus_pin = NULL; dev_warn(&udc->pdev->dev, "failed to request vbus irq; " "assuming always on\n"); } } ret = usb_add_gadget_udc(&pdev->dev, &udc->gadget); if (ret) return ret; device_init_wakeup(&pdev->dev, 1); usba_init_debugfs(udc); for (i = 1; i < udc->num_ep; i++) usba_ep_init_debugfs(udc, &udc->usba_ep[i]); return 0; } static int usba_udc_remove(struct platform_device *pdev) { struct usba_udc *udc; int i; udc = platform_get_drvdata(pdev); device_init_wakeup(&pdev->dev, 0); usb_del_gadget_udc(&udc->gadget); for (i = 1; i < udc->num_ep; i++) usba_ep_cleanup_debugfs(&udc->usba_ep[i]); usba_cleanup_debugfs(udc); return 0; } #ifdef CONFIG_PM_SLEEP static int usba_udc_suspend(struct device *dev) { struct usba_udc *udc = dev_get_drvdata(dev); /* Not started */ if (!udc->driver) return 0; mutex_lock(&udc->vbus_mutex); if (!device_may_wakeup(dev)) { udc->suspended = false; usba_stop(udc); goto out; } /* * Device may wake up. We stay clocked if we failed * to request vbus irq, assuming always on. */ if (udc->vbus_pin) { /* FIXME: right to stop here...??? */ usba_stop(udc); enable_irq_wake(gpiod_to_irq(udc->vbus_pin)); } enable_irq_wake(udc->irq); out: mutex_unlock(&udc->vbus_mutex); return 0; } static int usba_udc_resume(struct device *dev) { struct usba_udc *udc = dev_get_drvdata(dev); /* Not started */ if (!udc->driver) return 0; if (device_may_wakeup(dev)) { if (udc->vbus_pin) disable_irq_wake(gpiod_to_irq(udc->vbus_pin)); disable_irq_wake(udc->irq); } /* If Vbus is present, enable the controller and wait for reset */ mutex_lock(&udc->vbus_mutex); udc->vbus_prev = vbus_is_present(udc); if (udc->vbus_prev) usba_start(udc); mutex_unlock(&udc->vbus_mutex); return 0; } #endif static SIMPLE_DEV_PM_OPS(usba_udc_pm_ops, usba_udc_suspend, usba_udc_resume); static struct platform_driver udc_driver = { .remove = usba_udc_remove, .driver = { .name = "atmel_usba_udc", .pm = &usba_udc_pm_ops, .of_match_table = atmel_udc_dt_ids, }, }; module_platform_driver_probe(udc_driver, usba_udc_probe); MODULE_DESCRIPTION("Atmel USBA UDC driver"); MODULE_AUTHOR("Haavard Skinnemoen (Atmel)"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:atmel_usba_udc");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1