Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Anton Vorontsov | 2914 | 98.28% | 2 | 16.67% |
Stefani Seibold | 30 | 1.01% | 1 | 8.33% |
Guilherme Maciel Ferreira | 7 | 0.24% | 1 | 8.33% |
Lucas De Marchi | 4 | 0.13% | 1 | 8.33% |
Tejun Heo | 3 | 0.10% | 1 | 8.33% |
Kees Cook | 2 | 0.07% | 1 | 8.33% |
Greg Kroah-Hartman | 2 | 0.07% | 2 | 16.67% |
Eric Lescouet | 1 | 0.03% | 1 | 8.33% |
Masanari Iida | 1 | 0.03% | 1 | 8.33% |
Geyslan G. Bem | 1 | 0.03% | 1 | 8.33% |
Total | 2965 | 12 |
// SPDX-License-Identifier: GPL-2.0+ /* * Freescale QUICC Engine USB Host Controller Driver * * Copyright (c) Freescale Semicondutor, Inc. 2006. * Shlomi Gridish <gridish@freescale.com> * Jerry Huang <Chang-Ming.Huang@freescale.com> * Copyright (c) Logic Product Development, Inc. 2007 * Peter Barada <peterb@logicpd.com> * Copyright (c) MontaVista Software, Inc. 2008. * Anton Vorontsov <avorontsov@ru.mvista.com> */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/io.h> #include <linux/usb.h> #include <linux/usb/hcd.h> #include "fhci.h" #define DUMMY_BD_BUFFER 0xdeadbeef #define DUMMY2_BD_BUFFER 0xbaadf00d /* Transaction Descriptors bits */ #define TD_R 0x8000 /* ready bit */ #define TD_W 0x2000 /* wrap bit */ #define TD_I 0x1000 /* interrupt on completion */ #define TD_L 0x0800 /* last */ #define TD_TC 0x0400 /* transmit CRC */ #define TD_CNF 0x0200 /* CNF - Must be always 1 */ #define TD_LSP 0x0100 /* Low-speed transaction */ #define TD_PID 0x00c0 /* packet id */ #define TD_RXER 0x0020 /* Rx error or not */ #define TD_NAK 0x0010 /* No ack. */ #define TD_STAL 0x0008 /* Stall received */ #define TD_TO 0x0004 /* time out */ #define TD_UN 0x0002 /* underrun */ #define TD_NO 0x0010 /* Rx Non Octet Aligned Packet */ #define TD_AB 0x0008 /* Frame Aborted */ #define TD_CR 0x0004 /* CRC Error */ #define TD_OV 0x0002 /* Overrun */ #define TD_BOV 0x0001 /* Buffer Overrun */ #define TD_ERRORS (TD_NAK | TD_STAL | TD_TO | TD_UN | \ TD_NO | TD_AB | TD_CR | TD_OV | TD_BOV) #define TD_PID_DATA0 0x0080 /* Data 0 toggle */ #define TD_PID_DATA1 0x00c0 /* Data 1 toggle */ #define TD_PID_TOGGLE 0x00c0 /* Data 0/1 toggle mask */ #define TD_TOK_SETUP 0x0000 #define TD_TOK_OUT 0x4000 #define TD_TOK_IN 0x8000 #define TD_ISO 0x1000 #define TD_ENDP 0x0780 #define TD_ADDR 0x007f #define TD_ENDP_SHIFT 7 struct usb_td { __be16 status; __be16 length; __be32 buf_ptr; __be16 extra; __be16 reserved; }; static struct usb_td __iomem *next_bd(struct usb_td __iomem *base, struct usb_td __iomem *td, u16 status) { if (status & TD_W) return base; else return ++td; } void fhci_push_dummy_bd(struct endpoint *ep) { if (!ep->already_pushed_dummy_bd) { u16 td_status = in_be16(&ep->empty_td->status); out_be32(&ep->empty_td->buf_ptr, DUMMY_BD_BUFFER); /* get the next TD in the ring */ ep->empty_td = next_bd(ep->td_base, ep->empty_td, td_status); ep->already_pushed_dummy_bd = true; } } /* destroy an USB endpoint */ void fhci_ep0_free(struct fhci_usb *usb) { struct endpoint *ep; int size; ep = usb->ep0; if (ep) { if (ep->td_base) cpm_muram_free(cpm_muram_offset(ep->td_base)); if (kfifo_initialized(&ep->conf_frame_Q)) { size = cq_howmany(&ep->conf_frame_Q); for (; size; size--) { struct packet *pkt = cq_get(&ep->conf_frame_Q); kfree(pkt); } cq_delete(&ep->conf_frame_Q); } if (kfifo_initialized(&ep->empty_frame_Q)) { size = cq_howmany(&ep->empty_frame_Q); for (; size; size--) { struct packet *pkt = cq_get(&ep->empty_frame_Q); kfree(pkt); } cq_delete(&ep->empty_frame_Q); } if (kfifo_initialized(&ep->dummy_packets_Q)) { size = cq_howmany(&ep->dummy_packets_Q); for (; size; size--) { u8 *buff = cq_get(&ep->dummy_packets_Q); kfree(buff); } cq_delete(&ep->dummy_packets_Q); } kfree(ep); usb->ep0 = NULL; } } /* * create the endpoint structure * * arguments: * usb A pointer to the data structure of the USB * data_mem The data memory partition(BUS) * ring_len TD ring length */ u32 fhci_create_ep(struct fhci_usb *usb, enum fhci_mem_alloc data_mem, u32 ring_len) { struct endpoint *ep; struct usb_td __iomem *td; unsigned long ep_offset; char *err_for = "endpoint PRAM"; int ep_mem_size; u32 i; /* we need at least 3 TDs in the ring */ if (!(ring_len > 2)) { fhci_err(usb->fhci, "illegal TD ring length parameters\n"); return -EINVAL; } ep = kzalloc(sizeof(*ep), GFP_KERNEL); if (!ep) return -ENOMEM; ep_mem_size = ring_len * sizeof(*td) + sizeof(struct fhci_ep_pram); ep_offset = cpm_muram_alloc(ep_mem_size, 32); if (IS_ERR_VALUE(ep_offset)) goto err; ep->td_base = cpm_muram_addr(ep_offset); /* zero all queue pointers */ if (cq_new(&ep->conf_frame_Q, ring_len + 2) || cq_new(&ep->empty_frame_Q, ring_len + 2) || cq_new(&ep->dummy_packets_Q, ring_len + 2)) { err_for = "frame_queues"; goto err; } for (i = 0; i < (ring_len + 1); i++) { struct packet *pkt; u8 *buff; pkt = kmalloc(sizeof(*pkt), GFP_KERNEL); if (!pkt) { err_for = "frame"; goto err; } buff = kmalloc_array(1028, sizeof(*buff), GFP_KERNEL); if (!buff) { kfree(pkt); err_for = "buffer"; goto err; } cq_put(&ep->empty_frame_Q, pkt); cq_put(&ep->dummy_packets_Q, buff); } /* we put the endpoint parameter RAM right behind the TD ring */ ep->ep_pram_ptr = (void __iomem *)ep->td_base + sizeof(*td) * ring_len; ep->conf_td = ep->td_base; ep->empty_td = ep->td_base; ep->already_pushed_dummy_bd = false; /* initialize tds */ td = ep->td_base; for (i = 0; i < ring_len; i++) { out_be32(&td->buf_ptr, 0); out_be16(&td->status, 0); out_be16(&td->length, 0); out_be16(&td->extra, 0); td++; } td--; out_be16(&td->status, TD_W); /* for last TD set Wrap bit */ out_be16(&td->length, 0); /* endpoint structure has been created */ usb->ep0 = ep; return 0; err: fhci_ep0_free(usb); kfree(ep); fhci_err(usb->fhci, "no memory for the %s\n", err_for); return -ENOMEM; } /* * initialize the endpoint register according to the given parameters * * artuments: * usb A pointer to the data strucutre of the USB * ep A pointer to the endpoint structre * data_mem The data memory partition(BUS) */ void fhci_init_ep_registers(struct fhci_usb *usb, struct endpoint *ep, enum fhci_mem_alloc data_mem) { u8 rt; /* set the endpoint registers according to the endpoint */ out_be16(&usb->fhci->regs->usb_usep[0], USB_TRANS_CTR | USB_EP_MF | USB_EP_RTE); out_be16(&usb->fhci->pram->ep_ptr[0], cpm_muram_offset(ep->ep_pram_ptr)); rt = (BUS_MODE_BO_BE | BUS_MODE_GBL); #ifdef MULTI_DATA_BUS if (data_mem == MEM_SECONDARY) rt |= BUS_MODE_DTB; #endif out_8(&ep->ep_pram_ptr->rx_func_code, rt); out_8(&ep->ep_pram_ptr->tx_func_code, rt); out_be16(&ep->ep_pram_ptr->rx_buff_len, 1028); out_be16(&ep->ep_pram_ptr->rx_base, 0); out_be16(&ep->ep_pram_ptr->tx_base, cpm_muram_offset(ep->td_base)); out_be16(&ep->ep_pram_ptr->rx_bd_ptr, 0); out_be16(&ep->ep_pram_ptr->tx_bd_ptr, cpm_muram_offset(ep->td_base)); out_be32(&ep->ep_pram_ptr->tx_state, 0); } /* * Collect the submitted frames and inform the application about them * It is also preparing the TDs for new frames. If the Tx interrupts * are disabled, the application should call that routine to get * confirmation about the submitted frames. Otherwise, the routine is * called from the interrupt service routine during the Tx interrupt. * In that case the application is informed by calling the application * specific 'fhci_transaction_confirm' routine */ static void fhci_td_transaction_confirm(struct fhci_usb *usb) { struct endpoint *ep = usb->ep0; struct packet *pkt; struct usb_td __iomem *td; u16 extra_data; u16 td_status; u16 td_length; u32 buf; /* * collect transmitted BDs from the chip. The routine clears all BDs * with R bit = 0 and the pointer to data buffer is not NULL, that is * BDs which point to the transmitted data buffer */ while (1) { td = ep->conf_td; td_status = in_be16(&td->status); td_length = in_be16(&td->length); buf = in_be32(&td->buf_ptr); extra_data = in_be16(&td->extra); /* check if the TD is empty */ if (!(!(td_status & TD_R) && ((td_status & ~TD_W) || buf))) break; /* check if it is a dummy buffer */ else if ((buf == DUMMY_BD_BUFFER) && !(td_status & ~TD_W)) break; /* mark TD as empty */ clrbits16(&td->status, ~TD_W); out_be16(&td->length, 0); out_be32(&td->buf_ptr, 0); out_be16(&td->extra, 0); /* advance the TD pointer */ ep->conf_td = next_bd(ep->td_base, ep->conf_td, td_status); /* check if it is a dummy buffer(type2) */ if ((buf == DUMMY2_BD_BUFFER) && !(td_status & ~TD_W)) continue; pkt = cq_get(&ep->conf_frame_Q); if (!pkt) fhci_err(usb->fhci, "no frame to confirm\n"); if (td_status & TD_ERRORS) { if (td_status & TD_RXER) { if (td_status & TD_CR) pkt->status = USB_TD_RX_ER_CRC; else if (td_status & TD_AB) pkt->status = USB_TD_RX_ER_BITSTUFF; else if (td_status & TD_OV) pkt->status = USB_TD_RX_ER_OVERUN; else if (td_status & TD_BOV) pkt->status = USB_TD_RX_DATA_OVERUN; else if (td_status & TD_NO) pkt->status = USB_TD_RX_ER_NONOCT; else fhci_err(usb->fhci, "illegal error " "occurred\n"); } else if (td_status & TD_NAK) pkt->status = USB_TD_TX_ER_NAK; else if (td_status & TD_TO) pkt->status = USB_TD_TX_ER_TIMEOUT; else if (td_status & TD_UN) pkt->status = USB_TD_TX_ER_UNDERUN; else if (td_status & TD_STAL) pkt->status = USB_TD_TX_ER_STALL; else fhci_err(usb->fhci, "illegal error occurred\n"); } else if ((extra_data & TD_TOK_IN) && pkt->len > td_length - CRC_SIZE) { pkt->status = USB_TD_RX_DATA_UNDERUN; } if (extra_data & TD_TOK_IN) pkt->len = td_length - CRC_SIZE; else if (pkt->info & PKT_ZLP) pkt->len = 0; else pkt->len = td_length; fhci_transaction_confirm(usb, pkt); } } /* * Submitting a data frame to a specified endpoint of a USB device * The frame is put in the driver's transmit queue for this endpoint * * Arguments: * usb A pointer to the USB structure * pkt A pointer to the user frame structure * trans_type Transaction tyep - IN,OUT or SETUP * dest_addr Device address - 0~127 * dest_ep Endpoint number of the device - 0~16 * trans_mode Pipe type - ISO,Interrupt,bulk or control * dest_speed USB speed - Low speed or FULL speed * data_toggle Data sequence toggle - 0 or 1 */ u32 fhci_host_transaction(struct fhci_usb *usb, struct packet *pkt, enum fhci_ta_type trans_type, u8 dest_addr, u8 dest_ep, enum fhci_tf_mode trans_mode, enum fhci_speed dest_speed, u8 data_toggle) { struct endpoint *ep = usb->ep0; struct usb_td __iomem *td; u16 extra_data; u16 td_status; fhci_usb_disable_interrupt(usb); /* start from the next BD that should be filled */ td = ep->empty_td; td_status = in_be16(&td->status); if (td_status & TD_R && in_be16(&td->length)) { /* if the TD is not free */ fhci_usb_enable_interrupt(usb); return -1; } /* get the next TD in the ring */ ep->empty_td = next_bd(ep->td_base, ep->empty_td, td_status); fhci_usb_enable_interrupt(usb); pkt->priv_data = td; out_be32(&td->buf_ptr, virt_to_phys(pkt->data)); /* sets up transaction parameters - addr,endp,dir,and type */ extra_data = (dest_ep << TD_ENDP_SHIFT) | dest_addr; switch (trans_type) { case FHCI_TA_IN: extra_data |= TD_TOK_IN; break; case FHCI_TA_OUT: extra_data |= TD_TOK_OUT; break; case FHCI_TA_SETUP: extra_data |= TD_TOK_SETUP; break; } if (trans_mode == FHCI_TF_ISO) extra_data |= TD_ISO; out_be16(&td->extra, extra_data); /* sets up the buffer descriptor */ td_status = ((td_status & TD_W) | TD_R | TD_L | TD_I | TD_CNF); if (!(pkt->info & PKT_NO_CRC)) td_status |= TD_TC; switch (trans_type) { case FHCI_TA_IN: if (data_toggle) pkt->info |= PKT_PID_DATA1; else pkt->info |= PKT_PID_DATA0; break; default: if (data_toggle) { td_status |= TD_PID_DATA1; pkt->info |= PKT_PID_DATA1; } else { td_status |= TD_PID_DATA0; pkt->info |= PKT_PID_DATA0; } break; } if ((dest_speed == FHCI_LOW_SPEED) && (usb->port_status == FHCI_PORT_FULL)) td_status |= TD_LSP; out_be16(&td->status, td_status); /* set up buffer length */ if (trans_type == FHCI_TA_IN) out_be16(&td->length, pkt->len + CRC_SIZE); else out_be16(&td->length, pkt->len); /* put the frame to the confirmation queue */ cq_put(&ep->conf_frame_Q, pkt); if (cq_howmany(&ep->conf_frame_Q) == 1) out_8(&usb->fhci->regs->usb_uscom, USB_CMD_STR_FIFO); return 0; } /* Reset the Tx BD ring */ void fhci_flush_bds(struct fhci_usb *usb) { u16 extra_data; u16 td_status; u32 buf; struct usb_td __iomem *td; struct endpoint *ep = usb->ep0; td = ep->td_base; while (1) { td_status = in_be16(&td->status); buf = in_be32(&td->buf_ptr); extra_data = in_be16(&td->extra); /* if the TD is not empty - we'll confirm it as Timeout */ if (td_status & TD_R) out_be16(&td->status, (td_status & ~TD_R) | TD_TO); /* if this TD is dummy - let's skip this TD */ else if (in_be32(&td->buf_ptr) == DUMMY_BD_BUFFER) out_be32(&td->buf_ptr, DUMMY2_BD_BUFFER); /* if this is the last TD - break */ if (td_status & TD_W) break; td++; } fhci_td_transaction_confirm(usb); td = ep->td_base; do { out_be16(&td->status, 0); out_be16(&td->length, 0); out_be32(&td->buf_ptr, 0); out_be16(&td->extra, 0); td++; } while (!(in_be16(&td->status) & TD_W)); out_be16(&td->status, TD_W); /* for last TD set Wrap bit */ out_be16(&td->length, 0); out_be32(&td->buf_ptr, 0); out_be16(&td->extra, 0); out_be16(&ep->ep_pram_ptr->tx_bd_ptr, in_be16(&ep->ep_pram_ptr->tx_base)); out_be32(&ep->ep_pram_ptr->tx_state, 0); out_be16(&ep->ep_pram_ptr->tx_cnt, 0); ep->empty_td = ep->td_base; ep->conf_td = ep->td_base; } /* * Flush all transmitted packets from TDs in the actual frame. * This routine is called when something wrong with the controller and * we want to get rid of the actual frame and start again next frame */ void fhci_flush_actual_frame(struct fhci_usb *usb) { u8 mode; u16 tb_ptr; u16 extra_data; u16 td_status; u32 buf_ptr; struct usb_td __iomem *td; struct endpoint *ep = usb->ep0; /* disable the USB controller */ mode = in_8(&usb->fhci->regs->usb_usmod); out_8(&usb->fhci->regs->usb_usmod, mode & ~USB_MODE_EN); tb_ptr = in_be16(&ep->ep_pram_ptr->tx_bd_ptr); td = cpm_muram_addr(tb_ptr); td_status = in_be16(&td->status); buf_ptr = in_be32(&td->buf_ptr); extra_data = in_be16(&td->extra); do { if (td_status & TD_R) { out_be16(&td->status, (td_status & ~TD_R) | TD_TO); } else { out_be32(&td->buf_ptr, 0); ep->already_pushed_dummy_bd = false; break; } /* advance the TD pointer */ td = next_bd(ep->td_base, td, td_status); td_status = in_be16(&td->status); buf_ptr = in_be32(&td->buf_ptr); extra_data = in_be16(&td->extra); } while ((td_status & TD_R) || buf_ptr); fhci_td_transaction_confirm(usb); out_be16(&ep->ep_pram_ptr->tx_bd_ptr, in_be16(&ep->ep_pram_ptr->tx_base)); out_be32(&ep->ep_pram_ptr->tx_state, 0); out_be16(&ep->ep_pram_ptr->tx_cnt, 0); ep->empty_td = ep->td_base; ep->conf_td = ep->td_base; usb->actual_frame->frame_status = FRAME_TIMER_END_TRANSMISSION; /* reset the event register */ out_be16(&usb->fhci->regs->usb_usber, 0xffff); /* enable the USB controller */ out_8(&usb->fhci->regs->usb_usmod, mode | USB_MODE_EN); } /* handles Tx confirm and Tx error interrupt */ void fhci_tx_conf_interrupt(struct fhci_usb *usb) { fhci_td_transaction_confirm(usb); /* * Schedule another transaction to this frame only if we have * already confirmed all transaction in the frame. */ if (((fhci_get_sof_timer_count(usb) < usb->max_frame_usage) || (usb->actual_frame->frame_status & FRAME_END_TRANSMISSION)) && (list_empty(&usb->actual_frame->tds_list))) fhci_schedule_transactions(usb); } void fhci_host_transmit_actual_frame(struct fhci_usb *usb) { u16 tb_ptr; u16 td_status; struct usb_td __iomem *td; struct endpoint *ep = usb->ep0; tb_ptr = in_be16(&ep->ep_pram_ptr->tx_bd_ptr); td = cpm_muram_addr(tb_ptr); if (in_be32(&td->buf_ptr) == DUMMY_BD_BUFFER) { struct usb_td __iomem *old_td = td; ep->already_pushed_dummy_bd = false; td_status = in_be16(&td->status); /* gets the next TD in the ring */ td = next_bd(ep->td_base, td, td_status); tb_ptr = cpm_muram_offset(td); out_be16(&ep->ep_pram_ptr->tx_bd_ptr, tb_ptr); /* start transmit only if we have something in the TDs */ if (in_be16(&td->status) & TD_R) out_8(&usb->fhci->regs->usb_uscom, USB_CMD_STR_FIFO); if (in_be32(&ep->conf_td->buf_ptr) == DUMMY_BD_BUFFER) { out_be32(&old_td->buf_ptr, 0); ep->conf_td = next_bd(ep->td_base, ep->conf_td, td_status); } else { out_be32(&old_td->buf_ptr, DUMMY2_BD_BUFFER); } } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1