Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Timur Tabi | 1483 | 96.42% | 1 | 33.33% |
Liu Yu | 54 | 3.51% | 1 | 33.33% |
Masahiro Yamada | 1 | 0.07% | 1 | 33.33% |
Total | 1538 | 3 |
/* * Freescale hypervisor call interface * * Copyright 2008-2010 Freescale Semiconductor, Inc. * * Author: Timur Tabi <timur@freescale.com> * * This file is provided under a dual BSD/GPL license. When using or * redistributing this file, you may do so under either license. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Freescale Semiconductor nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * * ALTERNATIVELY, this software may be distributed under the terms of the * GNU General Public License ("GPL") as published by the Free Software * Foundation, either version 2 of that License or (at your option) any * later version. * * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef _FSL_HCALLS_H #define _FSL_HCALLS_H #include <linux/types.h> #include <linux/errno.h> #include <asm/byteorder.h> #include <asm/epapr_hcalls.h> #define FH_API_VERSION 1 #define FH_ERR_GET_INFO 1 #define FH_PARTITION_GET_DTPROP 2 #define FH_PARTITION_SET_DTPROP 3 #define FH_PARTITION_RESTART 4 #define FH_PARTITION_GET_STATUS 5 #define FH_PARTITION_START 6 #define FH_PARTITION_STOP 7 #define FH_PARTITION_MEMCPY 8 #define FH_DMA_ENABLE 9 #define FH_DMA_DISABLE 10 #define FH_SEND_NMI 11 #define FH_VMPIC_GET_MSIR 12 #define FH_SYSTEM_RESET 13 #define FH_GET_CORE_STATE 14 #define FH_ENTER_NAP 15 #define FH_EXIT_NAP 16 #define FH_CLAIM_DEVICE 17 #define FH_PARTITION_STOP_DMA 18 /* vendor ID: Freescale Semiconductor */ #define FH_HCALL_TOKEN(num) _EV_HCALL_TOKEN(EV_FSL_VENDOR_ID, num) /* * We use "uintptr_t" to define a register because it's guaranteed to be a * 32-bit integer on a 32-bit platform, and a 64-bit integer on a 64-bit * platform. * * All registers are either input/output or output only. Registers that are * initialized before making the hypercall are input/output. All * input/output registers are represented with "+r". Output-only registers * are represented with "=r". Do not specify any unused registers. The * clobber list will tell the compiler that the hypercall modifies those * registers, which is good enough. */ /** * fh_send_nmi - send NMI to virtual cpu(s). * @vcpu_mask: send NMI to virtual cpu(s) specified by this mask. * * Returns 0 for success, or EINVAL for invalid vcpu_mask. */ static inline unsigned int fh_send_nmi(unsigned int vcpu_mask) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); r11 = FH_HCALL_TOKEN(FH_SEND_NMI); r3 = vcpu_mask; asm volatile("bl epapr_hypercall_start" : "+r" (r11), "+r" (r3) : : EV_HCALL_CLOBBERS1 ); return r3; } /* Arbitrary limits to avoid excessive memory allocation in hypervisor */ #define FH_DTPROP_MAX_PATHLEN 4096 #define FH_DTPROP_MAX_PROPLEN 32768 /** * fh_partition_get_dtprop - get a property from a guest device tree. * @handle: handle of partition whose device tree is to be accessed * @dtpath_addr: physical address of device tree path to access * @propname_addr: physical address of name of property * @propvalue_addr: physical address of property value buffer * @propvalue_len: length of buffer on entry, length of property on return * * Returns zero on success, non-zero on error. */ static inline unsigned int fh_partition_get_dtprop(int handle, uint64_t dtpath_addr, uint64_t propname_addr, uint64_t propvalue_addr, uint32_t *propvalue_len) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); register uintptr_t r4 __asm__("r4"); register uintptr_t r5 __asm__("r5"); register uintptr_t r6 __asm__("r6"); register uintptr_t r7 __asm__("r7"); register uintptr_t r8 __asm__("r8"); register uintptr_t r9 __asm__("r9"); register uintptr_t r10 __asm__("r10"); r11 = FH_HCALL_TOKEN(FH_PARTITION_GET_DTPROP); r3 = handle; #ifdef CONFIG_PHYS_64BIT r4 = dtpath_addr >> 32; r6 = propname_addr >> 32; r8 = propvalue_addr >> 32; #else r4 = 0; r6 = 0; r8 = 0; #endif r5 = (uint32_t)dtpath_addr; r7 = (uint32_t)propname_addr; r9 = (uint32_t)propvalue_addr; r10 = *propvalue_len; asm volatile("bl epapr_hypercall_start" : "+r" (r11), "+r" (r3), "+r" (r4), "+r" (r5), "+r" (r6), "+r" (r7), "+r" (r8), "+r" (r9), "+r" (r10) : : EV_HCALL_CLOBBERS8 ); *propvalue_len = r4; return r3; } /** * Set a property in a guest device tree. * @handle: handle of partition whose device tree is to be accessed * @dtpath_addr: physical address of device tree path to access * @propname_addr: physical address of name of property * @propvalue_addr: physical address of property value * @propvalue_len: length of property * * Returns zero on success, non-zero on error. */ static inline unsigned int fh_partition_set_dtprop(int handle, uint64_t dtpath_addr, uint64_t propname_addr, uint64_t propvalue_addr, uint32_t propvalue_len) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); register uintptr_t r4 __asm__("r4"); register uintptr_t r6 __asm__("r6"); register uintptr_t r8 __asm__("r8"); register uintptr_t r5 __asm__("r5"); register uintptr_t r7 __asm__("r7"); register uintptr_t r9 __asm__("r9"); register uintptr_t r10 __asm__("r10"); r11 = FH_HCALL_TOKEN(FH_PARTITION_SET_DTPROP); r3 = handle; #ifdef CONFIG_PHYS_64BIT r4 = dtpath_addr >> 32; r6 = propname_addr >> 32; r8 = propvalue_addr >> 32; #else r4 = 0; r6 = 0; r8 = 0; #endif r5 = (uint32_t)dtpath_addr; r7 = (uint32_t)propname_addr; r9 = (uint32_t)propvalue_addr; r10 = propvalue_len; asm volatile("bl epapr_hypercall_start" : "+r" (r11), "+r" (r3), "+r" (r4), "+r" (r5), "+r" (r6), "+r" (r7), "+r" (r8), "+r" (r9), "+r" (r10) : : EV_HCALL_CLOBBERS8 ); return r3; } /** * fh_partition_restart - reboot the current partition * @partition: partition ID * * Returns an error code if reboot failed. Does not return if it succeeds. */ static inline unsigned int fh_partition_restart(unsigned int partition) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); r11 = FH_HCALL_TOKEN(FH_PARTITION_RESTART); r3 = partition; asm volatile("bl epapr_hypercall_start" : "+r" (r11), "+r" (r3) : : EV_HCALL_CLOBBERS1 ); return r3; } #define FH_PARTITION_STOPPED 0 #define FH_PARTITION_RUNNING 1 #define FH_PARTITION_STARTING 2 #define FH_PARTITION_STOPPING 3 #define FH_PARTITION_PAUSING 4 #define FH_PARTITION_PAUSED 5 #define FH_PARTITION_RESUMING 6 /** * fh_partition_get_status - gets the status of a partition * @partition: partition ID * @status: returned status code * * Returns 0 for success, or an error code. */ static inline unsigned int fh_partition_get_status(unsigned int partition, unsigned int *status) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); register uintptr_t r4 __asm__("r4"); r11 = FH_HCALL_TOKEN(FH_PARTITION_GET_STATUS); r3 = partition; asm volatile("bl epapr_hypercall_start" : "+r" (r11), "+r" (r3), "=r" (r4) : : EV_HCALL_CLOBBERS2 ); *status = r4; return r3; } /** * fh_partition_start - boots and starts execution of the specified partition * @partition: partition ID * @entry_point: guest physical address to start execution * * The hypervisor creates a 1-to-1 virtual/physical IMA mapping, so at boot * time, guest physical address are the same as guest virtual addresses. * * Returns 0 for success, or an error code. */ static inline unsigned int fh_partition_start(unsigned int partition, uint32_t entry_point, int load) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); register uintptr_t r4 __asm__("r4"); register uintptr_t r5 __asm__("r5"); r11 = FH_HCALL_TOKEN(FH_PARTITION_START); r3 = partition; r4 = entry_point; r5 = load; asm volatile("bl epapr_hypercall_start" : "+r" (r11), "+r" (r3), "+r" (r4), "+r" (r5) : : EV_HCALL_CLOBBERS3 ); return r3; } /** * fh_partition_stop - stops another partition * @partition: partition ID * * Returns 0 for success, or an error code. */ static inline unsigned int fh_partition_stop(unsigned int partition) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); r11 = FH_HCALL_TOKEN(FH_PARTITION_STOP); r3 = partition; asm volatile("bl epapr_hypercall_start" : "+r" (r11), "+r" (r3) : : EV_HCALL_CLOBBERS1 ); return r3; } /** * struct fh_sg_list: definition of the fh_partition_memcpy S/G list * @source: guest physical address to copy from * @target: guest physical address to copy to * @size: number of bytes to copy * @reserved: reserved, must be zero * * The scatter/gather list for fh_partition_memcpy() is an array of these * structures. The array must be guest physically contiguous. * * This structure must be aligned on 32-byte boundary, so that no single * strucuture can span two pages. */ struct fh_sg_list { uint64_t source; /**< guest physical address to copy from */ uint64_t target; /**< guest physical address to copy to */ uint64_t size; /**< number of bytes to copy */ uint64_t reserved; /**< reserved, must be zero */ } __attribute__ ((aligned(32))); /** * fh_partition_memcpy - copies data from one guest to another * @source: the ID of the partition to copy from * @target: the ID of the partition to copy to * @sg_list: guest physical address of an array of &fh_sg_list structures * @count: the number of entries in @sg_list * * Returns 0 for success, or an error code. */ static inline unsigned int fh_partition_memcpy(unsigned int source, unsigned int target, phys_addr_t sg_list, unsigned int count) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); register uintptr_t r4 __asm__("r4"); register uintptr_t r5 __asm__("r5"); register uintptr_t r6 __asm__("r6"); register uintptr_t r7 __asm__("r7"); r11 = FH_HCALL_TOKEN(FH_PARTITION_MEMCPY); r3 = source; r4 = target; r5 = (uint32_t) sg_list; #ifdef CONFIG_PHYS_64BIT r6 = sg_list >> 32; #else r6 = 0; #endif r7 = count; asm volatile("bl epapr_hypercall_start" : "+r" (r11), "+r" (r3), "+r" (r4), "+r" (r5), "+r" (r6), "+r" (r7) : : EV_HCALL_CLOBBERS5 ); return r3; } /** * fh_dma_enable - enable DMA for the specified device * @liodn: the LIODN of the I/O device for which to enable DMA * * Returns 0 for success, or an error code. */ static inline unsigned int fh_dma_enable(unsigned int liodn) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); r11 = FH_HCALL_TOKEN(FH_DMA_ENABLE); r3 = liodn; asm volatile("bl epapr_hypercall_start" : "+r" (r11), "+r" (r3) : : EV_HCALL_CLOBBERS1 ); return r3; } /** * fh_dma_disable - disable DMA for the specified device * @liodn: the LIODN of the I/O device for which to disable DMA * * Returns 0 for success, or an error code. */ static inline unsigned int fh_dma_disable(unsigned int liodn) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); r11 = FH_HCALL_TOKEN(FH_DMA_DISABLE); r3 = liodn; asm volatile("bl epapr_hypercall_start" : "+r" (r11), "+r" (r3) : : EV_HCALL_CLOBBERS1 ); return r3; } /** * fh_vmpic_get_msir - returns the MPIC-MSI register value * @interrupt: the interrupt number * @msir_val: returned MPIC-MSI register value * * Returns 0 for success, or an error code. */ static inline unsigned int fh_vmpic_get_msir(unsigned int interrupt, unsigned int *msir_val) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); register uintptr_t r4 __asm__("r4"); r11 = FH_HCALL_TOKEN(FH_VMPIC_GET_MSIR); r3 = interrupt; asm volatile("bl epapr_hypercall_start" : "+r" (r11), "+r" (r3), "=r" (r4) : : EV_HCALL_CLOBBERS2 ); *msir_val = r4; return r3; } /** * fh_system_reset - reset the system * * Returns 0 for success, or an error code. */ static inline unsigned int fh_system_reset(void) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); r11 = FH_HCALL_TOKEN(FH_SYSTEM_RESET); asm volatile("bl epapr_hypercall_start" : "+r" (r11), "=r" (r3) : : EV_HCALL_CLOBBERS1 ); return r3; } /** * fh_err_get_info - get platform error information * @queue id: * 0 for guest error event queue * 1 for global error event queue * * @pointer to store the platform error data: * platform error data is returned in registers r4 - r11 * * Returns 0 for success, or an error code. */ static inline unsigned int fh_err_get_info(int queue, uint32_t *bufsize, uint32_t addr_hi, uint32_t addr_lo, int peek) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); register uintptr_t r4 __asm__("r4"); register uintptr_t r5 __asm__("r5"); register uintptr_t r6 __asm__("r6"); register uintptr_t r7 __asm__("r7"); r11 = FH_HCALL_TOKEN(FH_ERR_GET_INFO); r3 = queue; r4 = *bufsize; r5 = addr_hi; r6 = addr_lo; r7 = peek; asm volatile("bl epapr_hypercall_start" : "+r" (r11), "+r" (r3), "+r" (r4), "+r" (r5), "+r" (r6), "+r" (r7) : : EV_HCALL_CLOBBERS5 ); *bufsize = r4; return r3; } #define FH_VCPU_RUN 0 #define FH_VCPU_IDLE 1 #define FH_VCPU_NAP 2 /** * fh_get_core_state - get the state of a vcpu * * @handle: handle of partition containing the vcpu * @vcpu: vcpu number within the partition * @state:the current state of the vcpu, see FH_VCPU_* * * Returns 0 for success, or an error code. */ static inline unsigned int fh_get_core_state(unsigned int handle, unsigned int vcpu, unsigned int *state) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); register uintptr_t r4 __asm__("r4"); r11 = FH_HCALL_TOKEN(FH_GET_CORE_STATE); r3 = handle; r4 = vcpu; asm volatile("bl epapr_hypercall_start" : "+r" (r11), "+r" (r3), "+r" (r4) : : EV_HCALL_CLOBBERS2 ); *state = r4; return r3; } /** * fh_enter_nap - enter nap on a vcpu * * Note that though the API supports entering nap on a vcpu other * than the caller, this may not be implmented and may return EINVAL. * * @handle: handle of partition containing the vcpu * @vcpu: vcpu number within the partition * * Returns 0 for success, or an error code. */ static inline unsigned int fh_enter_nap(unsigned int handle, unsigned int vcpu) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); register uintptr_t r4 __asm__("r4"); r11 = FH_HCALL_TOKEN(FH_ENTER_NAP); r3 = handle; r4 = vcpu; asm volatile("bl epapr_hypercall_start" : "+r" (r11), "+r" (r3), "+r" (r4) : : EV_HCALL_CLOBBERS2 ); return r3; } /** * fh_exit_nap - exit nap on a vcpu * @handle: handle of partition containing the vcpu * @vcpu: vcpu number within the partition * * Returns 0 for success, or an error code. */ static inline unsigned int fh_exit_nap(unsigned int handle, unsigned int vcpu) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); register uintptr_t r4 __asm__("r4"); r11 = FH_HCALL_TOKEN(FH_EXIT_NAP); r3 = handle; r4 = vcpu; asm volatile("bl epapr_hypercall_start" : "+r" (r11), "+r" (r3), "+r" (r4) : : EV_HCALL_CLOBBERS2 ); return r3; } /** * fh_claim_device - claim a "claimable" shared device * @handle: fsl,hv-device-handle of node to claim * * Returns 0 for success, or an error code. */ static inline unsigned int fh_claim_device(unsigned int handle) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); r11 = FH_HCALL_TOKEN(FH_CLAIM_DEVICE); r3 = handle; asm volatile("bl epapr_hypercall_start" : "+r" (r11), "+r" (r3) : : EV_HCALL_CLOBBERS1 ); return r3; } /** * Run deferred DMA disabling on a partition's private devices * * This applies to devices which a partition owns either privately, * or which are claimable and still actively owned by that partition, * and which do not have the no-dma-disable property. * * @handle: partition (must be stopped) whose DMA is to be disabled * * Returns 0 for success, or an error code. */ static inline unsigned int fh_partition_stop_dma(unsigned int handle) { register uintptr_t r11 __asm__("r11"); register uintptr_t r3 __asm__("r3"); r11 = FH_HCALL_TOKEN(FH_PARTITION_STOP_DMA); r3 = handle; asm volatile("bl epapr_hypercall_start" : "+r" (r11), "+r" (r3) : : EV_HCALL_CLOBBERS1 ); return r3; } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1