Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paul Mackerras | 5351 | 75.90% | 41 | 59.42% |
Suraj Jitindar Singh | 700 | 9.93% | 1 | 1.45% |
Yongji Xie | 513 | 7.28% | 2 | 2.90% |
Alexander Graf | 167 | 2.37% | 1 | 1.45% |
Aneesh Kumar K.V | 157 | 2.23% | 11 | 15.94% |
David Gibson | 111 | 1.57% | 2 | 2.90% |
Simon Guo | 14 | 0.20% | 1 | 1.45% |
Anton Blanchard | 11 | 0.16% | 1 | 1.45% |
Balbir Singh | 7 | 0.10% | 1 | 1.45% |
Liu Ping Fan | 6 | 0.09% | 2 | 2.90% |
Ram Pai | 6 | 0.09% | 1 | 1.45% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.45% |
Takuya Yoshikawa | 2 | 0.03% | 1 | 1.45% |
Christoffer Dall | 1 | 0.01% | 1 | 1.45% |
Gavin Shan | 1 | 0.01% | 1 | 1.45% |
Mel Gorman | 1 | 0.01% | 1 | 1.45% |
Total | 7050 | 69 |
// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> */ #include <linux/types.h> #include <linux/string.h> #include <linux/kvm.h> #include <linux/kvm_host.h> #include <linux/hugetlb.h> #include <linux/module.h> #include <linux/log2.h> #include <linux/sizes.h> #include <asm/trace.h> #include <asm/kvm_ppc.h> #include <asm/kvm_book3s.h> #include <asm/book3s/64/mmu-hash.h> #include <asm/hvcall.h> #include <asm/synch.h> #include <asm/ppc-opcode.h> #include <asm/pte-walk.h> /* Translate address of a vmalloc'd thing to a linear map address */ static void *real_vmalloc_addr(void *x) { unsigned long addr = (unsigned long) x; pte_t *p; /* * assume we don't have huge pages in vmalloc space... * So don't worry about THP collapse/split. Called * Only in realmode with MSR_EE = 0, hence won't need irq_save/restore. */ p = find_init_mm_pte(addr, NULL); if (!p || !pte_present(*p)) return NULL; addr = (pte_pfn(*p) << PAGE_SHIFT) | (addr & ~PAGE_MASK); return __va(addr); } /* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */ static int global_invalidates(struct kvm *kvm) { int global; int cpu; /* * If there is only one vcore, and it's currently running, * as indicated by local_paca->kvm_hstate.kvm_vcpu being set, * we can use tlbiel as long as we mark all other physical * cores as potentially having stale TLB entries for this lpid. * Otherwise, don't use tlbiel. */ if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcpu) global = 0; else global = 1; if (!global) { /* any other core might now have stale TLB entries... */ smp_wmb(); cpumask_setall(&kvm->arch.need_tlb_flush); cpu = local_paca->kvm_hstate.kvm_vcore->pcpu; /* * On POWER9, threads are independent but the TLB is shared, * so use the bit for the first thread to represent the core. */ if (cpu_has_feature(CPU_FTR_ARCH_300)) cpu = cpu_first_thread_sibling(cpu); cpumask_clear_cpu(cpu, &kvm->arch.need_tlb_flush); } return global; } /* * Add this HPTE into the chain for the real page. * Must be called with the chain locked; it unlocks the chain. */ void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev, unsigned long *rmap, long pte_index, int realmode) { struct revmap_entry *head, *tail; unsigned long i; if (*rmap & KVMPPC_RMAP_PRESENT) { i = *rmap & KVMPPC_RMAP_INDEX; head = &kvm->arch.hpt.rev[i]; if (realmode) head = real_vmalloc_addr(head); tail = &kvm->arch.hpt.rev[head->back]; if (realmode) tail = real_vmalloc_addr(tail); rev->forw = i; rev->back = head->back; tail->forw = pte_index; head->back = pte_index; } else { rev->forw = rev->back = pte_index; *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | pte_index | KVMPPC_RMAP_PRESENT; } unlock_rmap(rmap); } EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain); /* Update the dirty bitmap of a memslot */ void kvmppc_update_dirty_map(const struct kvm_memory_slot *memslot, unsigned long gfn, unsigned long psize) { unsigned long npages; if (!psize || !memslot->dirty_bitmap) return; npages = (psize + PAGE_SIZE - 1) / PAGE_SIZE; gfn -= memslot->base_gfn; set_dirty_bits_atomic(memslot->dirty_bitmap, gfn, npages); } EXPORT_SYMBOL_GPL(kvmppc_update_dirty_map); static void kvmppc_set_dirty_from_hpte(struct kvm *kvm, unsigned long hpte_v, unsigned long hpte_gr) { struct kvm_memory_slot *memslot; unsigned long gfn; unsigned long psize; psize = kvmppc_actual_pgsz(hpte_v, hpte_gr); gfn = hpte_rpn(hpte_gr, psize); memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn); if (memslot && memslot->dirty_bitmap) kvmppc_update_dirty_map(memslot, gfn, psize); } /* Returns a pointer to the revmap entry for the page mapped by a HPTE */ static unsigned long *revmap_for_hpte(struct kvm *kvm, unsigned long hpte_v, unsigned long hpte_gr, struct kvm_memory_slot **memslotp, unsigned long *gfnp) { struct kvm_memory_slot *memslot; unsigned long *rmap; unsigned long gfn; gfn = hpte_rpn(hpte_gr, kvmppc_actual_pgsz(hpte_v, hpte_gr)); memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn); if (memslotp) *memslotp = memslot; if (gfnp) *gfnp = gfn; if (!memslot) return NULL; rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]); return rmap; } /* Remove this HPTE from the chain for a real page */ static void remove_revmap_chain(struct kvm *kvm, long pte_index, struct revmap_entry *rev, unsigned long hpte_v, unsigned long hpte_r) { struct revmap_entry *next, *prev; unsigned long ptel, head; unsigned long *rmap; unsigned long rcbits; struct kvm_memory_slot *memslot; unsigned long gfn; rcbits = hpte_r & (HPTE_R_R | HPTE_R_C); ptel = rev->guest_rpte |= rcbits; rmap = revmap_for_hpte(kvm, hpte_v, ptel, &memslot, &gfn); if (!rmap) return; lock_rmap(rmap); head = *rmap & KVMPPC_RMAP_INDEX; next = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->forw]); prev = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->back]); next->back = rev->back; prev->forw = rev->forw; if (head == pte_index) { head = rev->forw; if (head == pte_index) *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX); else *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head; } *rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT; if (rcbits & HPTE_R_C) kvmppc_update_dirty_map(memslot, gfn, kvmppc_actual_pgsz(hpte_v, hpte_r)); unlock_rmap(rmap); } long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags, long pte_index, unsigned long pteh, unsigned long ptel, pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret) { unsigned long i, pa, gpa, gfn, psize; unsigned long slot_fn, hva; __be64 *hpte; struct revmap_entry *rev; unsigned long g_ptel; struct kvm_memory_slot *memslot; unsigned hpage_shift; bool is_ci; unsigned long *rmap; pte_t *ptep; unsigned int writing; unsigned long mmu_seq; unsigned long rcbits, irq_flags = 0; if (kvm_is_radix(kvm)) return H_FUNCTION; psize = kvmppc_actual_pgsz(pteh, ptel); if (!psize) return H_PARAMETER; writing = hpte_is_writable(ptel); pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID); ptel &= ~HPTE_GR_RESERVED; g_ptel = ptel; /* used later to detect if we might have been invalidated */ mmu_seq = kvm->mmu_notifier_seq; smp_rmb(); /* Find the memslot (if any) for this address */ gpa = (ptel & HPTE_R_RPN) & ~(psize - 1); gfn = gpa >> PAGE_SHIFT; memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn); pa = 0; is_ci = false; rmap = NULL; if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) { /* Emulated MMIO - mark this with key=31 */ pteh |= HPTE_V_ABSENT; ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO; goto do_insert; } /* Check if the requested page fits entirely in the memslot. */ if (!slot_is_aligned(memslot, psize)) return H_PARAMETER; slot_fn = gfn - memslot->base_gfn; rmap = &memslot->arch.rmap[slot_fn]; /* Translate to host virtual address */ hva = __gfn_to_hva_memslot(memslot, gfn); /* * If we had a page table table change after lookup, we would * retry via mmu_notifier_retry. */ if (!realmode) local_irq_save(irq_flags); /* * If called in real mode we have MSR_EE = 0. Otherwise * we disable irq above. */ ptep = __find_linux_pte(pgdir, hva, NULL, &hpage_shift); if (ptep) { pte_t pte; unsigned int host_pte_size; if (hpage_shift) host_pte_size = 1ul << hpage_shift; else host_pte_size = PAGE_SIZE; /* * We should always find the guest page size * to <= host page size, if host is using hugepage */ if (host_pte_size < psize) { if (!realmode) local_irq_restore(flags); return H_PARAMETER; } pte = kvmppc_read_update_linux_pte(ptep, writing); if (pte_present(pte) && !pte_protnone(pte)) { if (writing && !__pte_write(pte)) /* make the actual HPTE be read-only */ ptel = hpte_make_readonly(ptel); is_ci = pte_ci(pte); pa = pte_pfn(pte) << PAGE_SHIFT; pa |= hva & (host_pte_size - 1); pa |= gpa & ~PAGE_MASK; } } if (!realmode) local_irq_restore(irq_flags); ptel &= HPTE_R_KEY | HPTE_R_PP0 | (psize-1); ptel |= pa; if (pa) pteh |= HPTE_V_VALID; else { pteh |= HPTE_V_ABSENT; ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO); } /*If we had host pte mapping then Check WIMG */ if (ptep && !hpte_cache_flags_ok(ptel, is_ci)) { if (is_ci) return H_PARAMETER; /* * Allow guest to map emulated device memory as * uncacheable, but actually make it cacheable. */ ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G); ptel |= HPTE_R_M; } /* Find and lock the HPTEG slot to use */ do_insert: if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) return H_PARAMETER; if (likely((flags & H_EXACT) == 0)) { pte_index &= ~7UL; hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); for (i = 0; i < 8; ++i) { if ((be64_to_cpu(*hpte) & HPTE_V_VALID) == 0 && try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID | HPTE_V_ABSENT)) break; hpte += 2; } if (i == 8) { /* * Since try_lock_hpte doesn't retry (not even stdcx. * failures), it could be that there is a free slot * but we transiently failed to lock it. Try again, * actually locking each slot and checking it. */ hpte -= 16; for (i = 0; i < 8; ++i) { u64 pte; while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) cpu_relax(); pte = be64_to_cpu(hpte[0]); if (!(pte & (HPTE_V_VALID | HPTE_V_ABSENT))) break; __unlock_hpte(hpte, pte); hpte += 2; } if (i == 8) return H_PTEG_FULL; } pte_index += i; } else { hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID | HPTE_V_ABSENT)) { /* Lock the slot and check again */ u64 pte; while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) cpu_relax(); pte = be64_to_cpu(hpte[0]); if (pte & (HPTE_V_VALID | HPTE_V_ABSENT)) { __unlock_hpte(hpte, pte); return H_PTEG_FULL; } } } /* Save away the guest's idea of the second HPTE dword */ rev = &kvm->arch.hpt.rev[pte_index]; if (realmode) rev = real_vmalloc_addr(rev); if (rev) { rev->guest_rpte = g_ptel; note_hpte_modification(kvm, rev); } /* Link HPTE into reverse-map chain */ if (pteh & HPTE_V_VALID) { if (realmode) rmap = real_vmalloc_addr(rmap); lock_rmap(rmap); /* Check for pending invalidations under the rmap chain lock */ if (mmu_notifier_retry(kvm, mmu_seq)) { /* inval in progress, write a non-present HPTE */ pteh |= HPTE_V_ABSENT; pteh &= ~HPTE_V_VALID; ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO); unlock_rmap(rmap); } else { kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index, realmode); /* Only set R/C in real HPTE if already set in *rmap */ rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT; ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C); } } /* Convert to new format on P9 */ if (cpu_has_feature(CPU_FTR_ARCH_300)) { ptel = hpte_old_to_new_r(pteh, ptel); pteh = hpte_old_to_new_v(pteh); } hpte[1] = cpu_to_be64(ptel); /* Write the first HPTE dword, unlocking the HPTE and making it valid */ eieio(); __unlock_hpte(hpte, pteh); asm volatile("ptesync" : : : "memory"); *pte_idx_ret = pte_index; return H_SUCCESS; } EXPORT_SYMBOL_GPL(kvmppc_do_h_enter); long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags, long pte_index, unsigned long pteh, unsigned long ptel) { return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel, vcpu->arch.pgdir, true, &vcpu->arch.regs.gpr[4]); } #ifdef __BIG_ENDIAN__ #define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token)) #else #define LOCK_TOKEN (*(u32 *)(&get_paca()->paca_index)) #endif static inline int is_mmio_hpte(unsigned long v, unsigned long r) { return ((v & HPTE_V_ABSENT) && (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) == (HPTE_R_KEY_HI | HPTE_R_KEY_LO)); } static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues, long npages, int global, bool need_sync) { long i; /* * We use the POWER9 5-operand versions of tlbie and tlbiel here. * Since we are using RIC=0 PRS=0 R=0, and P7/P8 tlbiel ignores * the RS field, this is backwards-compatible with P7 and P8. */ if (global) { if (need_sync) asm volatile("ptesync" : : : "memory"); for (i = 0; i < npages; ++i) { asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : : "r" (rbvalues[i]), "r" (kvm->arch.lpid)); } if (cpu_has_feature(CPU_FTR_P9_TLBIE_BUG)) { /* * Need the extra ptesync to make sure we don't * re-order the tlbie */ asm volatile("ptesync": : :"memory"); asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : : "r" (rbvalues[0]), "r" (kvm->arch.lpid)); } asm volatile("eieio; tlbsync; ptesync" : : : "memory"); } else { if (need_sync) asm volatile("ptesync" : : : "memory"); for (i = 0; i < npages; ++i) { asm volatile(PPC_TLBIEL(%0,%1,0,0,0) : : "r" (rbvalues[i]), "r" (0)); } asm volatile("ptesync" : : : "memory"); } } long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags, unsigned long pte_index, unsigned long avpn, unsigned long *hpret) { __be64 *hpte; unsigned long v, r, rb; struct revmap_entry *rev; u64 pte, orig_pte, pte_r; if (kvm_is_radix(kvm)) return H_FUNCTION; if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) return H_PARAMETER; hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) cpu_relax(); pte = orig_pte = be64_to_cpu(hpte[0]); pte_r = be64_to_cpu(hpte[1]); if (cpu_has_feature(CPU_FTR_ARCH_300)) { pte = hpte_new_to_old_v(pte, pte_r); pte_r = hpte_new_to_old_r(pte_r); } if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 || ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn) || ((flags & H_ANDCOND) && (pte & avpn) != 0)) { __unlock_hpte(hpte, orig_pte); return H_NOT_FOUND; } rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); v = pte & ~HPTE_V_HVLOCK; if (v & HPTE_V_VALID) { hpte[0] &= ~cpu_to_be64(HPTE_V_VALID); rb = compute_tlbie_rb(v, pte_r, pte_index); do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true); /* * The reference (R) and change (C) bits in a HPT * entry can be set by hardware at any time up until * the HPTE is invalidated and the TLB invalidation * sequence has completed. This means that when * removing a HPTE, we need to re-read the HPTE after * the invalidation sequence has completed in order to * obtain reliable values of R and C. */ remove_revmap_chain(kvm, pte_index, rev, v, be64_to_cpu(hpte[1])); } r = rev->guest_rpte & ~HPTE_GR_RESERVED; note_hpte_modification(kvm, rev); unlock_hpte(hpte, 0); if (is_mmio_hpte(v, pte_r)) atomic64_inc(&kvm->arch.mmio_update); if (v & HPTE_V_ABSENT) v = (v & ~HPTE_V_ABSENT) | HPTE_V_VALID; hpret[0] = v; hpret[1] = r; return H_SUCCESS; } EXPORT_SYMBOL_GPL(kvmppc_do_h_remove); long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags, unsigned long pte_index, unsigned long avpn) { return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn, &vcpu->arch.regs.gpr[4]); } long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu) { struct kvm *kvm = vcpu->kvm; unsigned long *args = &vcpu->arch.regs.gpr[4]; __be64 *hp, *hptes[4]; unsigned long tlbrb[4]; long int i, j, k, n, found, indexes[4]; unsigned long flags, req, pte_index, rcbits; int global; long int ret = H_SUCCESS; struct revmap_entry *rev, *revs[4]; u64 hp0, hp1; if (kvm_is_radix(kvm)) return H_FUNCTION; global = global_invalidates(kvm); for (i = 0; i < 4 && ret == H_SUCCESS; ) { n = 0; for (; i < 4; ++i) { j = i * 2; pte_index = args[j]; flags = pte_index >> 56; pte_index &= ((1ul << 56) - 1); req = flags >> 6; flags &= 3; if (req == 3) { /* no more requests */ i = 4; break; } if (req != 1 || flags == 3 || pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) { /* parameter error */ args[j] = ((0xa0 | flags) << 56) + pte_index; ret = H_PARAMETER; break; } hp = (__be64 *) (kvm->arch.hpt.virt + (pte_index << 4)); /* to avoid deadlock, don't spin except for first */ if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) { if (n) break; while (!try_lock_hpte(hp, HPTE_V_HVLOCK)) cpu_relax(); } found = 0; hp0 = be64_to_cpu(hp[0]); hp1 = be64_to_cpu(hp[1]); if (cpu_has_feature(CPU_FTR_ARCH_300)) { hp0 = hpte_new_to_old_v(hp0, hp1); hp1 = hpte_new_to_old_r(hp1); } if (hp0 & (HPTE_V_ABSENT | HPTE_V_VALID)) { switch (flags & 3) { case 0: /* absolute */ found = 1; break; case 1: /* andcond */ if (!(hp0 & args[j + 1])) found = 1; break; case 2: /* AVPN */ if ((hp0 & ~0x7fUL) == args[j + 1]) found = 1; break; } } if (!found) { hp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK); args[j] = ((0x90 | flags) << 56) + pte_index; continue; } args[j] = ((0x80 | flags) << 56) + pte_index; rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); note_hpte_modification(kvm, rev); if (!(hp0 & HPTE_V_VALID)) { /* insert R and C bits from PTE */ rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C); args[j] |= rcbits << (56 - 5); hp[0] = 0; if (is_mmio_hpte(hp0, hp1)) atomic64_inc(&kvm->arch.mmio_update); continue; } /* leave it locked */ hp[0] &= ~cpu_to_be64(HPTE_V_VALID); tlbrb[n] = compute_tlbie_rb(hp0, hp1, pte_index); indexes[n] = j; hptes[n] = hp; revs[n] = rev; ++n; } if (!n) break; /* Now that we've collected a batch, do the tlbies */ do_tlbies(kvm, tlbrb, n, global, true); /* Read PTE low words after tlbie to get final R/C values */ for (k = 0; k < n; ++k) { j = indexes[k]; pte_index = args[j] & ((1ul << 56) - 1); hp = hptes[k]; rev = revs[k]; remove_revmap_chain(kvm, pte_index, rev, be64_to_cpu(hp[0]), be64_to_cpu(hp[1])); rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C); args[j] |= rcbits << (56 - 5); __unlock_hpte(hp, 0); } } return ret; } long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags, unsigned long pte_index, unsigned long avpn, unsigned long va) { struct kvm *kvm = vcpu->kvm; __be64 *hpte; struct revmap_entry *rev; unsigned long v, r, rb, mask, bits; u64 pte_v, pte_r; if (kvm_is_radix(kvm)) return H_FUNCTION; if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) return H_PARAMETER; hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) cpu_relax(); v = pte_v = be64_to_cpu(hpte[0]); if (cpu_has_feature(CPU_FTR_ARCH_300)) v = hpte_new_to_old_v(v, be64_to_cpu(hpte[1])); if ((v & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 || ((flags & H_AVPN) && (v & ~0x7fUL) != avpn)) { __unlock_hpte(hpte, pte_v); return H_NOT_FOUND; } pte_r = be64_to_cpu(hpte[1]); bits = (flags << 55) & HPTE_R_PP0; bits |= (flags << 48) & HPTE_R_KEY_HI; bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO); /* Update guest view of 2nd HPTE dword */ mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_HI | HPTE_R_KEY_LO; rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); if (rev) { r = (rev->guest_rpte & ~mask) | bits; rev->guest_rpte = r; note_hpte_modification(kvm, rev); } /* Update HPTE */ if (v & HPTE_V_VALID) { /* * If the page is valid, don't let it transition from * readonly to writable. If it should be writable, we'll * take a trap and let the page fault code sort it out. */ r = (pte_r & ~mask) | bits; if (hpte_is_writable(r) && !hpte_is_writable(pte_r)) r = hpte_make_readonly(r); /* If the PTE is changing, invalidate it first */ if (r != pte_r) { rb = compute_tlbie_rb(v, r, pte_index); hpte[0] = cpu_to_be64((pte_v & ~HPTE_V_VALID) | HPTE_V_ABSENT); do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true); /* Don't lose R/C bit updates done by hardware */ r |= be64_to_cpu(hpte[1]) & (HPTE_R_R | HPTE_R_C); hpte[1] = cpu_to_be64(r); } } unlock_hpte(hpte, pte_v & ~HPTE_V_HVLOCK); asm volatile("ptesync" : : : "memory"); if (is_mmio_hpte(v, pte_r)) atomic64_inc(&kvm->arch.mmio_update); return H_SUCCESS; } long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags, unsigned long pte_index) { struct kvm *kvm = vcpu->kvm; __be64 *hpte; unsigned long v, r; int i, n = 1; struct revmap_entry *rev = NULL; if (kvm_is_radix(kvm)) return H_FUNCTION; if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) return H_PARAMETER; if (flags & H_READ_4) { pte_index &= ~3; n = 4; } rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); for (i = 0; i < n; ++i, ++pte_index) { hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK; r = be64_to_cpu(hpte[1]); if (cpu_has_feature(CPU_FTR_ARCH_300)) { v = hpte_new_to_old_v(v, r); r = hpte_new_to_old_r(r); } if (v & HPTE_V_ABSENT) { v &= ~HPTE_V_ABSENT; v |= HPTE_V_VALID; } if (v & HPTE_V_VALID) { r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C)); r &= ~HPTE_GR_RESERVED; } vcpu->arch.regs.gpr[4 + i * 2] = v; vcpu->arch.regs.gpr[5 + i * 2] = r; } return H_SUCCESS; } long kvmppc_h_clear_ref(struct kvm_vcpu *vcpu, unsigned long flags, unsigned long pte_index) { struct kvm *kvm = vcpu->kvm; __be64 *hpte; unsigned long v, r, gr; struct revmap_entry *rev; unsigned long *rmap; long ret = H_NOT_FOUND; if (kvm_is_radix(kvm)) return H_FUNCTION; if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) return H_PARAMETER; rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) cpu_relax(); v = be64_to_cpu(hpte[0]); r = be64_to_cpu(hpte[1]); if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) goto out; gr = rev->guest_rpte; if (rev->guest_rpte & HPTE_R_R) { rev->guest_rpte &= ~HPTE_R_R; note_hpte_modification(kvm, rev); } if (v & HPTE_V_VALID) { gr |= r & (HPTE_R_R | HPTE_R_C); if (r & HPTE_R_R) { kvmppc_clear_ref_hpte(kvm, hpte, pte_index); rmap = revmap_for_hpte(kvm, v, gr, NULL, NULL); if (rmap) { lock_rmap(rmap); *rmap |= KVMPPC_RMAP_REFERENCED; unlock_rmap(rmap); } } } vcpu->arch.regs.gpr[4] = gr; ret = H_SUCCESS; out: unlock_hpte(hpte, v & ~HPTE_V_HVLOCK); return ret; } long kvmppc_h_clear_mod(struct kvm_vcpu *vcpu, unsigned long flags, unsigned long pte_index) { struct kvm *kvm = vcpu->kvm; __be64 *hpte; unsigned long v, r, gr; struct revmap_entry *rev; long ret = H_NOT_FOUND; if (kvm_is_radix(kvm)) return H_FUNCTION; if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) return H_PARAMETER; rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]); hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4)); while (!try_lock_hpte(hpte, HPTE_V_HVLOCK)) cpu_relax(); v = be64_to_cpu(hpte[0]); r = be64_to_cpu(hpte[1]); if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT))) goto out; gr = rev->guest_rpte; if (gr & HPTE_R_C) { rev->guest_rpte &= ~HPTE_R_C; note_hpte_modification(kvm, rev); } if (v & HPTE_V_VALID) { /* need to make it temporarily absent so C is stable */ hpte[0] |= cpu_to_be64(HPTE_V_ABSENT); kvmppc_invalidate_hpte(kvm, hpte, pte_index); r = be64_to_cpu(hpte[1]); gr |= r & (HPTE_R_R | HPTE_R_C); if (r & HPTE_R_C) { hpte[1] = cpu_to_be64(r & ~HPTE_R_C); eieio(); kvmppc_set_dirty_from_hpte(kvm, v, gr); } } vcpu->arch.regs.gpr[4] = gr; ret = H_SUCCESS; out: unlock_hpte(hpte, v & ~HPTE_V_HVLOCK); return ret; } static int kvmppc_get_hpa(struct kvm_vcpu *vcpu, unsigned long gpa, int writing, unsigned long *hpa, struct kvm_memory_slot **memslot_p) { struct kvm *kvm = vcpu->kvm; struct kvm_memory_slot *memslot; unsigned long gfn, hva, pa, psize = PAGE_SHIFT; unsigned int shift; pte_t *ptep, pte; /* Find the memslot for this address */ gfn = gpa >> PAGE_SHIFT; memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn); if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) return H_PARAMETER; /* Translate to host virtual address */ hva = __gfn_to_hva_memslot(memslot, gfn); /* Try to find the host pte for that virtual address */ ptep = __find_linux_pte(vcpu->arch.pgdir, hva, NULL, &shift); if (!ptep) return H_TOO_HARD; pte = kvmppc_read_update_linux_pte(ptep, writing); if (!pte_present(pte)) return H_TOO_HARD; /* Convert to a physical address */ if (shift) psize = 1UL << shift; pa = pte_pfn(pte) << PAGE_SHIFT; pa |= hva & (psize - 1); pa |= gpa & ~PAGE_MASK; if (hpa) *hpa = pa; if (memslot_p) *memslot_p = memslot; return H_SUCCESS; } static long kvmppc_do_h_page_init_zero(struct kvm_vcpu *vcpu, unsigned long dest) { struct kvm_memory_slot *memslot; struct kvm *kvm = vcpu->kvm; unsigned long pa, mmu_seq; long ret = H_SUCCESS; int i; /* Used later to detect if we might have been invalidated */ mmu_seq = kvm->mmu_notifier_seq; smp_rmb(); ret = kvmppc_get_hpa(vcpu, dest, 1, &pa, &memslot); if (ret != H_SUCCESS) return ret; /* Check if we've been invalidated */ raw_spin_lock(&kvm->mmu_lock.rlock); if (mmu_notifier_retry(kvm, mmu_seq)) { ret = H_TOO_HARD; goto out_unlock; } /* Zero the page */ for (i = 0; i < SZ_4K; i += L1_CACHE_BYTES, pa += L1_CACHE_BYTES) dcbz((void *)pa); kvmppc_update_dirty_map(memslot, dest >> PAGE_SHIFT, PAGE_SIZE); out_unlock: raw_spin_unlock(&kvm->mmu_lock.rlock); return ret; } static long kvmppc_do_h_page_init_copy(struct kvm_vcpu *vcpu, unsigned long dest, unsigned long src) { unsigned long dest_pa, src_pa, mmu_seq; struct kvm_memory_slot *dest_memslot; struct kvm *kvm = vcpu->kvm; long ret = H_SUCCESS; /* Used later to detect if we might have been invalidated */ mmu_seq = kvm->mmu_notifier_seq; smp_rmb(); ret = kvmppc_get_hpa(vcpu, dest, 1, &dest_pa, &dest_memslot); if (ret != H_SUCCESS) return ret; ret = kvmppc_get_hpa(vcpu, src, 0, &src_pa, NULL); if (ret != H_SUCCESS) return ret; /* Check if we've been invalidated */ raw_spin_lock(&kvm->mmu_lock.rlock); if (mmu_notifier_retry(kvm, mmu_seq)) { ret = H_TOO_HARD; goto out_unlock; } /* Copy the page */ memcpy((void *)dest_pa, (void *)src_pa, SZ_4K); kvmppc_update_dirty_map(dest_memslot, dest >> PAGE_SHIFT, PAGE_SIZE); out_unlock: raw_spin_unlock(&kvm->mmu_lock.rlock); return ret; } long kvmppc_rm_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags, unsigned long dest, unsigned long src) { struct kvm *kvm = vcpu->kvm; u64 pg_mask = SZ_4K - 1; /* 4K page size */ long ret = H_SUCCESS; /* Don't handle radix mode here, go up to the virtual mode handler */ if (kvm_is_radix(kvm)) return H_TOO_HARD; /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */ if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE | H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED)) return H_PARAMETER; /* dest (and src if copy_page flag set) must be page aligned */ if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask))) return H_PARAMETER; /* zero and/or copy the page as determined by the flags */ if (flags & H_COPY_PAGE) ret = kvmppc_do_h_page_init_copy(vcpu, dest, src); else if (flags & H_ZERO_PAGE) ret = kvmppc_do_h_page_init_zero(vcpu, dest); /* We can ignore the other flags */ return ret; } void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep, unsigned long pte_index) { unsigned long rb; u64 hp0, hp1; hptep[0] &= ~cpu_to_be64(HPTE_V_VALID); hp0 = be64_to_cpu(hptep[0]); hp1 = be64_to_cpu(hptep[1]); if (cpu_has_feature(CPU_FTR_ARCH_300)) { hp0 = hpte_new_to_old_v(hp0, hp1); hp1 = hpte_new_to_old_r(hp1); } rb = compute_tlbie_rb(hp0, hp1, pte_index); do_tlbies(kvm, &rb, 1, 1, true); } EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte); void kvmppc_clear_ref_hpte(struct kvm *kvm, __be64 *hptep, unsigned long pte_index) { unsigned long rb; unsigned char rbyte; u64 hp0, hp1; hp0 = be64_to_cpu(hptep[0]); hp1 = be64_to_cpu(hptep[1]); if (cpu_has_feature(CPU_FTR_ARCH_300)) { hp0 = hpte_new_to_old_v(hp0, hp1); hp1 = hpte_new_to_old_r(hp1); } rb = compute_tlbie_rb(hp0, hp1, pte_index); rbyte = (be64_to_cpu(hptep[1]) & ~HPTE_R_R) >> 8; /* modify only the second-last byte, which contains the ref bit */ *((char *)hptep + 14) = rbyte; do_tlbies(kvm, &rb, 1, 1, false); } EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte); static int slb_base_page_shift[4] = { 24, /* 16M */ 16, /* 64k */ 34, /* 16G */ 20, /* 1M, unsupported */ }; static struct mmio_hpte_cache_entry *mmio_cache_search(struct kvm_vcpu *vcpu, unsigned long eaddr, unsigned long slb_v, long mmio_update) { struct mmio_hpte_cache_entry *entry = NULL; unsigned int pshift; unsigned int i; for (i = 0; i < MMIO_HPTE_CACHE_SIZE; i++) { entry = &vcpu->arch.mmio_cache.entry[i]; if (entry->mmio_update == mmio_update) { pshift = entry->slb_base_pshift; if ((entry->eaddr >> pshift) == (eaddr >> pshift) && entry->slb_v == slb_v) return entry; } } return NULL; } static struct mmio_hpte_cache_entry * next_mmio_cache_entry(struct kvm_vcpu *vcpu) { unsigned int index = vcpu->arch.mmio_cache.index; vcpu->arch.mmio_cache.index++; if (vcpu->arch.mmio_cache.index == MMIO_HPTE_CACHE_SIZE) vcpu->arch.mmio_cache.index = 0; return &vcpu->arch.mmio_cache.entry[index]; } /* When called from virtmode, this func should be protected by * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK * can trigger deadlock issue. */ long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v, unsigned long valid) { unsigned int i; unsigned int pshift; unsigned long somask; unsigned long vsid, hash; unsigned long avpn; __be64 *hpte; unsigned long mask, val; unsigned long v, r, orig_v; /* Get page shift, work out hash and AVPN etc. */ mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY; val = 0; pshift = 12; if (slb_v & SLB_VSID_L) { mask |= HPTE_V_LARGE; val |= HPTE_V_LARGE; pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4]; } if (slb_v & SLB_VSID_B_1T) { somask = (1UL << 40) - 1; vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T; vsid ^= vsid << 25; } else { somask = (1UL << 28) - 1; vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT; } hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvmppc_hpt_mask(&kvm->arch.hpt); avpn = slb_v & ~(somask >> 16); /* also includes B */ avpn |= (eaddr & somask) >> 16; if (pshift >= 24) avpn &= ~((1UL << (pshift - 16)) - 1); else avpn &= ~0x7fUL; val |= avpn; for (;;) { hpte = (__be64 *)(kvm->arch.hpt.virt + (hash << 7)); for (i = 0; i < 16; i += 2) { /* Read the PTE racily */ v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK; if (cpu_has_feature(CPU_FTR_ARCH_300)) v = hpte_new_to_old_v(v, be64_to_cpu(hpte[i+1])); /* Check valid/absent, hash, segment size and AVPN */ if (!(v & valid) || (v & mask) != val) continue; /* Lock the PTE and read it under the lock */ while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK)) cpu_relax(); v = orig_v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK; r = be64_to_cpu(hpte[i+1]); if (cpu_has_feature(CPU_FTR_ARCH_300)) { v = hpte_new_to_old_v(v, r); r = hpte_new_to_old_r(r); } /* * Check the HPTE again, including base page size */ if ((v & valid) && (v & mask) == val && kvmppc_hpte_base_page_shift(v, r) == pshift) /* Return with the HPTE still locked */ return (hash << 3) + (i >> 1); __unlock_hpte(&hpte[i], orig_v); } if (val & HPTE_V_SECONDARY) break; val |= HPTE_V_SECONDARY; hash = hash ^ kvmppc_hpt_mask(&kvm->arch.hpt); } return -1; } EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte); /* * Called in real mode to check whether an HPTE not found fault * is due to accessing a paged-out page or an emulated MMIO page, * or if a protection fault is due to accessing a page that the * guest wanted read/write access to but which we made read-only. * Returns a possibly modified status (DSISR) value if not * (i.e. pass the interrupt to the guest), * -1 to pass the fault up to host kernel mode code, -2 to do that * and also load the instruction word (for MMIO emulation), * or 0 if we should make the guest retry the access. */ long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr, unsigned long slb_v, unsigned int status, bool data) { struct kvm *kvm = vcpu->kvm; long int index; unsigned long v, r, gr, orig_v; __be64 *hpte; unsigned long valid; struct revmap_entry *rev; unsigned long pp, key; struct mmio_hpte_cache_entry *cache_entry = NULL; long mmio_update = 0; /* For protection fault, expect to find a valid HPTE */ valid = HPTE_V_VALID; if (status & DSISR_NOHPTE) { valid |= HPTE_V_ABSENT; mmio_update = atomic64_read(&kvm->arch.mmio_update); cache_entry = mmio_cache_search(vcpu, addr, slb_v, mmio_update); } if (cache_entry) { index = cache_entry->pte_index; v = cache_entry->hpte_v; r = cache_entry->hpte_r; gr = cache_entry->rpte; } else { index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid); if (index < 0) { if (status & DSISR_NOHPTE) return status; /* there really was no HPTE */ return 0; /* for prot fault, HPTE disappeared */ } hpte = (__be64 *)(kvm->arch.hpt.virt + (index << 4)); v = orig_v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK; r = be64_to_cpu(hpte[1]); if (cpu_has_feature(CPU_FTR_ARCH_300)) { v = hpte_new_to_old_v(v, r); r = hpte_new_to_old_r(r); } rev = real_vmalloc_addr(&kvm->arch.hpt.rev[index]); gr = rev->guest_rpte; unlock_hpte(hpte, orig_v); } /* For not found, if the HPTE is valid by now, retry the instruction */ if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID)) return 0; /* Check access permissions to the page */ pp = gr & (HPTE_R_PP0 | HPTE_R_PP); key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS; status &= ~DSISR_NOHPTE; /* DSISR_NOHPTE == SRR1_ISI_NOPT */ if (!data) { if (gr & (HPTE_R_N | HPTE_R_G)) return status | SRR1_ISI_N_OR_G; if (!hpte_read_permission(pp, slb_v & key)) return status | SRR1_ISI_PROT; } else if (status & DSISR_ISSTORE) { /* check write permission */ if (!hpte_write_permission(pp, slb_v & key)) return status | DSISR_PROTFAULT; } else { if (!hpte_read_permission(pp, slb_v & key)) return status | DSISR_PROTFAULT; } /* Check storage key, if applicable */ if (data && (vcpu->arch.shregs.msr & MSR_DR)) { unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr); if (status & DSISR_ISSTORE) perm >>= 1; if (perm & 1) return status | DSISR_KEYFAULT; } /* Save HPTE info for virtual-mode handler */ vcpu->arch.pgfault_addr = addr; vcpu->arch.pgfault_index = index; vcpu->arch.pgfault_hpte[0] = v; vcpu->arch.pgfault_hpte[1] = r; vcpu->arch.pgfault_cache = cache_entry; /* Check the storage key to see if it is possibly emulated MMIO */ if ((r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) == (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) { if (!cache_entry) { unsigned int pshift = 12; unsigned int pshift_index; if (slb_v & SLB_VSID_L) { pshift_index = ((slb_v & SLB_VSID_LP) >> 4); pshift = slb_base_page_shift[pshift_index]; } cache_entry = next_mmio_cache_entry(vcpu); cache_entry->eaddr = addr; cache_entry->slb_base_pshift = pshift; cache_entry->pte_index = index; cache_entry->hpte_v = v; cache_entry->hpte_r = r; cache_entry->rpte = gr; cache_entry->slb_v = slb_v; cache_entry->mmio_update = mmio_update; } if (data && (vcpu->arch.shregs.msr & MSR_IR)) return -2; /* MMIO emulation - load instr word */ } return -1; /* send fault up to host kernel mode */ }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1