Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Paul Mackerras | 16064 | 93.20% | 24 | 37.50% |
Sandipan Das | 564 | 3.27% | 9 | 14.06% |
Matt Brown | 181 | 1.05% | 5 | 7.81% |
PrasannaKumar Muralidharan | 88 | 0.51% | 1 | 1.56% |
Michael Ellerman | 64 | 0.37% | 3 | 4.69% |
Ananth N. Mavinakayanahalli | 55 | 0.32% | 1 | 1.56% |
Naveen N. Rao | 55 | 0.32% | 2 | 3.12% |
Ravi Bangoria | 49 | 0.28% | 2 | 3.12% |
Tom Musta | 34 | 0.20% | 2 | 3.12% |
Tiejun Chen | 28 | 0.16% | 1 | 1.56% |
Anton Blanchard | 12 | 0.07% | 4 | 6.25% |
Lennart Sorensen | 10 | 0.06% | 1 | 1.56% |
Sean MacLennan | 10 | 0.06% | 1 | 1.56% |
Finn Thain | 6 | 0.03% | 1 | 1.56% |
SF Markus Elfring | 4 | 0.02% | 1 | 1.56% |
Linus Torvalds | 4 | 0.02% | 2 | 3.12% |
Gui,Jian | 3 | 0.02% | 1 | 1.56% |
Thomas Gleixner | 2 | 0.01% | 1 | 1.56% |
Mathieu Malaterre | 2 | 0.01% | 1 | 1.56% |
Stephen Rothwell | 1 | 0.01% | 1 | 1.56% |
Total | 17236 | 64 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Single-step support. * * Copyright (C) 2004 Paul Mackerras <paulus@au.ibm.com>, IBM */ #include <linux/kernel.h> #include <linux/kprobes.h> #include <linux/ptrace.h> #include <linux/prefetch.h> #include <asm/sstep.h> #include <asm/processor.h> #include <linux/uaccess.h> #include <asm/cpu_has_feature.h> #include <asm/cputable.h> extern char system_call_common[]; #ifdef CONFIG_PPC64 /* Bits in SRR1 that are copied from MSR */ #define MSR_MASK 0xffffffff87c0ffffUL #else #define MSR_MASK 0x87c0ffff #endif /* Bits in XER */ #define XER_SO 0x80000000U #define XER_OV 0x40000000U #define XER_CA 0x20000000U #define XER_OV32 0x00080000U #define XER_CA32 0x00040000U #ifdef CONFIG_PPC_FPU /* * Functions in ldstfp.S */ extern void get_fpr(int rn, double *p); extern void put_fpr(int rn, const double *p); extern void get_vr(int rn, __vector128 *p); extern void put_vr(int rn, __vector128 *p); extern void load_vsrn(int vsr, const void *p); extern void store_vsrn(int vsr, void *p); extern void conv_sp_to_dp(const float *sp, double *dp); extern void conv_dp_to_sp(const double *dp, float *sp); #endif #ifdef __powerpc64__ /* * Functions in quad.S */ extern int do_lq(unsigned long ea, unsigned long *regs); extern int do_stq(unsigned long ea, unsigned long val0, unsigned long val1); extern int do_lqarx(unsigned long ea, unsigned long *regs); extern int do_stqcx(unsigned long ea, unsigned long val0, unsigned long val1, unsigned int *crp); #endif #ifdef __LITTLE_ENDIAN__ #define IS_LE 1 #define IS_BE 0 #else #define IS_LE 0 #define IS_BE 1 #endif /* * Emulate the truncation of 64 bit values in 32-bit mode. */ static nokprobe_inline unsigned long truncate_if_32bit(unsigned long msr, unsigned long val) { #ifdef __powerpc64__ if ((msr & MSR_64BIT) == 0) val &= 0xffffffffUL; #endif return val; } /* * Determine whether a conditional branch instruction would branch. */ static nokprobe_inline int branch_taken(unsigned int instr, const struct pt_regs *regs, struct instruction_op *op) { unsigned int bo = (instr >> 21) & 0x1f; unsigned int bi; if ((bo & 4) == 0) { /* decrement counter */ op->type |= DECCTR; if (((bo >> 1) & 1) ^ (regs->ctr == 1)) return 0; } if ((bo & 0x10) == 0) { /* check bit from CR */ bi = (instr >> 16) & 0x1f; if (((regs->ccr >> (31 - bi)) & 1) != ((bo >> 3) & 1)) return 0; } return 1; } static nokprobe_inline long address_ok(struct pt_regs *regs, unsigned long ea, int nb) { if (!user_mode(regs)) return 1; if (__access_ok(ea, nb, USER_DS)) return 1; if (__access_ok(ea, 1, USER_DS)) /* Access overlaps the end of the user region */ regs->dar = USER_DS.seg; else regs->dar = ea; return 0; } /* * Calculate effective address for a D-form instruction */ static nokprobe_inline unsigned long dform_ea(unsigned int instr, const struct pt_regs *regs) { int ra; unsigned long ea; ra = (instr >> 16) & 0x1f; ea = (signed short) instr; /* sign-extend */ if (ra) ea += regs->gpr[ra]; return ea; } #ifdef __powerpc64__ /* * Calculate effective address for a DS-form instruction */ static nokprobe_inline unsigned long dsform_ea(unsigned int instr, const struct pt_regs *regs) { int ra; unsigned long ea; ra = (instr >> 16) & 0x1f; ea = (signed short) (instr & ~3); /* sign-extend */ if (ra) ea += regs->gpr[ra]; return ea; } /* * Calculate effective address for a DQ-form instruction */ static nokprobe_inline unsigned long dqform_ea(unsigned int instr, const struct pt_regs *regs) { int ra; unsigned long ea; ra = (instr >> 16) & 0x1f; ea = (signed short) (instr & ~0xf); /* sign-extend */ if (ra) ea += regs->gpr[ra]; return ea; } #endif /* __powerpc64 */ /* * Calculate effective address for an X-form instruction */ static nokprobe_inline unsigned long xform_ea(unsigned int instr, const struct pt_regs *regs) { int ra, rb; unsigned long ea; ra = (instr >> 16) & 0x1f; rb = (instr >> 11) & 0x1f; ea = regs->gpr[rb]; if (ra) ea += regs->gpr[ra]; return ea; } /* * Return the largest power of 2, not greater than sizeof(unsigned long), * such that x is a multiple of it. */ static nokprobe_inline unsigned long max_align(unsigned long x) { x |= sizeof(unsigned long); return x & -x; /* isolates rightmost bit */ } static nokprobe_inline unsigned long byterev_2(unsigned long x) { return ((x >> 8) & 0xff) | ((x & 0xff) << 8); } static nokprobe_inline unsigned long byterev_4(unsigned long x) { return ((x >> 24) & 0xff) | ((x >> 8) & 0xff00) | ((x & 0xff00) << 8) | ((x & 0xff) << 24); } #ifdef __powerpc64__ static nokprobe_inline unsigned long byterev_8(unsigned long x) { return (byterev_4(x) << 32) | byterev_4(x >> 32); } #endif static nokprobe_inline void do_byte_reverse(void *ptr, int nb) { switch (nb) { case 2: *(u16 *)ptr = byterev_2(*(u16 *)ptr); break; case 4: *(u32 *)ptr = byterev_4(*(u32 *)ptr); break; #ifdef __powerpc64__ case 8: *(unsigned long *)ptr = byterev_8(*(unsigned long *)ptr); break; case 16: { unsigned long *up = (unsigned long *)ptr; unsigned long tmp; tmp = byterev_8(up[0]); up[0] = byterev_8(up[1]); up[1] = tmp; break; } #endif default: WARN_ON_ONCE(1); } } static nokprobe_inline int read_mem_aligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs) { int err = 0; unsigned long x = 0; switch (nb) { case 1: err = __get_user(x, (unsigned char __user *) ea); break; case 2: err = __get_user(x, (unsigned short __user *) ea); break; case 4: err = __get_user(x, (unsigned int __user *) ea); break; #ifdef __powerpc64__ case 8: err = __get_user(x, (unsigned long __user *) ea); break; #endif } if (!err) *dest = x; else regs->dar = ea; return err; } /* * Copy from userspace to a buffer, using the largest possible * aligned accesses, up to sizeof(long). */ static nokprobe_inline int copy_mem_in(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs) { int err = 0; int c; for (; nb > 0; nb -= c) { c = max_align(ea); if (c > nb) c = max_align(nb); switch (c) { case 1: err = __get_user(*dest, (unsigned char __user *) ea); break; case 2: err = __get_user(*(u16 *)dest, (unsigned short __user *) ea); break; case 4: err = __get_user(*(u32 *)dest, (unsigned int __user *) ea); break; #ifdef __powerpc64__ case 8: err = __get_user(*(unsigned long *)dest, (unsigned long __user *) ea); break; #endif } if (err) { regs->dar = ea; return err; } dest += c; ea += c; } return 0; } static nokprobe_inline int read_mem_unaligned(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs) { union { unsigned long ul; u8 b[sizeof(unsigned long)]; } u; int i; int err; u.ul = 0; i = IS_BE ? sizeof(unsigned long) - nb : 0; err = copy_mem_in(&u.b[i], ea, nb, regs); if (!err) *dest = u.ul; return err; } /* * Read memory at address ea for nb bytes, return 0 for success * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8. * If nb < sizeof(long), the result is right-justified on BE systems. */ static int read_mem(unsigned long *dest, unsigned long ea, int nb, struct pt_regs *regs) { if (!address_ok(regs, ea, nb)) return -EFAULT; if ((ea & (nb - 1)) == 0) return read_mem_aligned(dest, ea, nb, regs); return read_mem_unaligned(dest, ea, nb, regs); } NOKPROBE_SYMBOL(read_mem); static nokprobe_inline int write_mem_aligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs) { int err = 0; switch (nb) { case 1: err = __put_user(val, (unsigned char __user *) ea); break; case 2: err = __put_user(val, (unsigned short __user *) ea); break; case 4: err = __put_user(val, (unsigned int __user *) ea); break; #ifdef __powerpc64__ case 8: err = __put_user(val, (unsigned long __user *) ea); break; #endif } if (err) regs->dar = ea; return err; } /* * Copy from a buffer to userspace, using the largest possible * aligned accesses, up to sizeof(long). */ static nokprobe_inline int copy_mem_out(u8 *dest, unsigned long ea, int nb, struct pt_regs *regs) { int err = 0; int c; for (; nb > 0; nb -= c) { c = max_align(ea); if (c > nb) c = max_align(nb); switch (c) { case 1: err = __put_user(*dest, (unsigned char __user *) ea); break; case 2: err = __put_user(*(u16 *)dest, (unsigned short __user *) ea); break; case 4: err = __put_user(*(u32 *)dest, (unsigned int __user *) ea); break; #ifdef __powerpc64__ case 8: err = __put_user(*(unsigned long *)dest, (unsigned long __user *) ea); break; #endif } if (err) { regs->dar = ea; return err; } dest += c; ea += c; } return 0; } static nokprobe_inline int write_mem_unaligned(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs) { union { unsigned long ul; u8 b[sizeof(unsigned long)]; } u; int i; u.ul = val; i = IS_BE ? sizeof(unsigned long) - nb : 0; return copy_mem_out(&u.b[i], ea, nb, regs); } /* * Write memory at address ea for nb bytes, return 0 for success * or -EFAULT if an error occurred. N.B. nb must be 1, 2, 4 or 8. */ static int write_mem(unsigned long val, unsigned long ea, int nb, struct pt_regs *regs) { if (!address_ok(regs, ea, nb)) return -EFAULT; if ((ea & (nb - 1)) == 0) return write_mem_aligned(val, ea, nb, regs); return write_mem_unaligned(val, ea, nb, regs); } NOKPROBE_SYMBOL(write_mem); #ifdef CONFIG_PPC_FPU /* * These access either the real FP register or the image in the * thread_struct, depending on regs->msr & MSR_FP. */ static int do_fp_load(struct instruction_op *op, unsigned long ea, struct pt_regs *regs, bool cross_endian) { int err, rn, nb; union { int i; unsigned int u; float f; double d[2]; unsigned long l[2]; u8 b[2 * sizeof(double)]; } u; nb = GETSIZE(op->type); if (!address_ok(regs, ea, nb)) return -EFAULT; rn = op->reg; err = copy_mem_in(u.b, ea, nb, regs); if (err) return err; if (unlikely(cross_endian)) { do_byte_reverse(u.b, min(nb, 8)); if (nb == 16) do_byte_reverse(&u.b[8], 8); } preempt_disable(); if (nb == 4) { if (op->type & FPCONV) conv_sp_to_dp(&u.f, &u.d[0]); else if (op->type & SIGNEXT) u.l[0] = u.i; else u.l[0] = u.u; } if (regs->msr & MSR_FP) put_fpr(rn, &u.d[0]); else current->thread.TS_FPR(rn) = u.l[0]; if (nb == 16) { /* lfdp */ rn |= 1; if (regs->msr & MSR_FP) put_fpr(rn, &u.d[1]); else current->thread.TS_FPR(rn) = u.l[1]; } preempt_enable(); return 0; } NOKPROBE_SYMBOL(do_fp_load); static int do_fp_store(struct instruction_op *op, unsigned long ea, struct pt_regs *regs, bool cross_endian) { int rn, nb; union { unsigned int u; float f; double d[2]; unsigned long l[2]; u8 b[2 * sizeof(double)]; } u; nb = GETSIZE(op->type); if (!address_ok(regs, ea, nb)) return -EFAULT; rn = op->reg; preempt_disable(); if (regs->msr & MSR_FP) get_fpr(rn, &u.d[0]); else u.l[0] = current->thread.TS_FPR(rn); if (nb == 4) { if (op->type & FPCONV) conv_dp_to_sp(&u.d[0], &u.f); else u.u = u.l[0]; } if (nb == 16) { rn |= 1; if (regs->msr & MSR_FP) get_fpr(rn, &u.d[1]); else u.l[1] = current->thread.TS_FPR(rn); } preempt_enable(); if (unlikely(cross_endian)) { do_byte_reverse(u.b, min(nb, 8)); if (nb == 16) do_byte_reverse(&u.b[8], 8); } return copy_mem_out(u.b, ea, nb, regs); } NOKPROBE_SYMBOL(do_fp_store); #endif #ifdef CONFIG_ALTIVEC /* For Altivec/VMX, no need to worry about alignment */ static nokprobe_inline int do_vec_load(int rn, unsigned long ea, int size, struct pt_regs *regs, bool cross_endian) { int err; union { __vector128 v; u8 b[sizeof(__vector128)]; } u = {}; if (!address_ok(regs, ea & ~0xfUL, 16)) return -EFAULT; /* align to multiple of size */ ea &= ~(size - 1); err = copy_mem_in(&u.b[ea & 0xf], ea, size, regs); if (err) return err; if (unlikely(cross_endian)) do_byte_reverse(&u.b[ea & 0xf], size); preempt_disable(); if (regs->msr & MSR_VEC) put_vr(rn, &u.v); else current->thread.vr_state.vr[rn] = u.v; preempt_enable(); return 0; } static nokprobe_inline int do_vec_store(int rn, unsigned long ea, int size, struct pt_regs *regs, bool cross_endian) { union { __vector128 v; u8 b[sizeof(__vector128)]; } u; if (!address_ok(regs, ea & ~0xfUL, 16)) return -EFAULT; /* align to multiple of size */ ea &= ~(size - 1); preempt_disable(); if (regs->msr & MSR_VEC) get_vr(rn, &u.v); else u.v = current->thread.vr_state.vr[rn]; preempt_enable(); if (unlikely(cross_endian)) do_byte_reverse(&u.b[ea & 0xf], size); return copy_mem_out(&u.b[ea & 0xf], ea, size, regs); } #endif /* CONFIG_ALTIVEC */ #ifdef __powerpc64__ static nokprobe_inline int emulate_lq(struct pt_regs *regs, unsigned long ea, int reg, bool cross_endian) { int err; if (!address_ok(regs, ea, 16)) return -EFAULT; /* if aligned, should be atomic */ if ((ea & 0xf) == 0) { err = do_lq(ea, ®s->gpr[reg]); } else { err = read_mem(®s->gpr[reg + IS_LE], ea, 8, regs); if (!err) err = read_mem(®s->gpr[reg + IS_BE], ea + 8, 8, regs); } if (!err && unlikely(cross_endian)) do_byte_reverse(®s->gpr[reg], 16); return err; } static nokprobe_inline int emulate_stq(struct pt_regs *regs, unsigned long ea, int reg, bool cross_endian) { int err; unsigned long vals[2]; if (!address_ok(regs, ea, 16)) return -EFAULT; vals[0] = regs->gpr[reg]; vals[1] = regs->gpr[reg + 1]; if (unlikely(cross_endian)) do_byte_reverse(vals, 16); /* if aligned, should be atomic */ if ((ea & 0xf) == 0) return do_stq(ea, vals[0], vals[1]); err = write_mem(vals[IS_LE], ea, 8, regs); if (!err) err = write_mem(vals[IS_BE], ea + 8, 8, regs); return err; } #endif /* __powerpc64 */ #ifdef CONFIG_VSX void emulate_vsx_load(struct instruction_op *op, union vsx_reg *reg, const void *mem, bool rev) { int size, read_size; int i, j; const unsigned int *wp; const unsigned short *hp; const unsigned char *bp; size = GETSIZE(op->type); reg->d[0] = reg->d[1] = 0; switch (op->element_size) { case 16: /* whole vector; lxv[x] or lxvl[l] */ if (size == 0) break; memcpy(reg, mem, size); if (IS_LE && (op->vsx_flags & VSX_LDLEFT)) rev = !rev; if (rev) do_byte_reverse(reg, 16); break; case 8: /* scalar loads, lxvd2x, lxvdsx */ read_size = (size >= 8) ? 8 : size; i = IS_LE ? 8 : 8 - read_size; memcpy(®->b[i], mem, read_size); if (rev) do_byte_reverse(®->b[i], 8); if (size < 8) { if (op->type & SIGNEXT) { /* size == 4 is the only case here */ reg->d[IS_LE] = (signed int) reg->d[IS_LE]; } else if (op->vsx_flags & VSX_FPCONV) { preempt_disable(); conv_sp_to_dp(®->fp[1 + IS_LE], ®->dp[IS_LE]); preempt_enable(); } } else { if (size == 16) { unsigned long v = *(unsigned long *)(mem + 8); reg->d[IS_BE] = !rev ? v : byterev_8(v); } else if (op->vsx_flags & VSX_SPLAT) reg->d[IS_BE] = reg->d[IS_LE]; } break; case 4: /* lxvw4x, lxvwsx */ wp = mem; for (j = 0; j < size / 4; ++j) { i = IS_LE ? 3 - j : j; reg->w[i] = !rev ? *wp++ : byterev_4(*wp++); } if (op->vsx_flags & VSX_SPLAT) { u32 val = reg->w[IS_LE ? 3 : 0]; for (; j < 4; ++j) { i = IS_LE ? 3 - j : j; reg->w[i] = val; } } break; case 2: /* lxvh8x */ hp = mem; for (j = 0; j < size / 2; ++j) { i = IS_LE ? 7 - j : j; reg->h[i] = !rev ? *hp++ : byterev_2(*hp++); } break; case 1: /* lxvb16x */ bp = mem; for (j = 0; j < size; ++j) { i = IS_LE ? 15 - j : j; reg->b[i] = *bp++; } break; } } EXPORT_SYMBOL_GPL(emulate_vsx_load); NOKPROBE_SYMBOL(emulate_vsx_load); void emulate_vsx_store(struct instruction_op *op, const union vsx_reg *reg, void *mem, bool rev) { int size, write_size; int i, j; union vsx_reg buf; unsigned int *wp; unsigned short *hp; unsigned char *bp; size = GETSIZE(op->type); switch (op->element_size) { case 16: /* stxv, stxvx, stxvl, stxvll */ if (size == 0) break; if (IS_LE && (op->vsx_flags & VSX_LDLEFT)) rev = !rev; if (rev) { /* reverse 16 bytes */ buf.d[0] = byterev_8(reg->d[1]); buf.d[1] = byterev_8(reg->d[0]); reg = &buf; } memcpy(mem, reg, size); break; case 8: /* scalar stores, stxvd2x */ write_size = (size >= 8) ? 8 : size; i = IS_LE ? 8 : 8 - write_size; if (size < 8 && op->vsx_flags & VSX_FPCONV) { buf.d[0] = buf.d[1] = 0; preempt_disable(); conv_dp_to_sp(®->dp[IS_LE], &buf.fp[1 + IS_LE]); preempt_enable(); reg = &buf; } memcpy(mem, ®->b[i], write_size); if (size == 16) memcpy(mem + 8, ®->d[IS_BE], 8); if (unlikely(rev)) { do_byte_reverse(mem, write_size); if (size == 16) do_byte_reverse(mem + 8, 8); } break; case 4: /* stxvw4x */ wp = mem; for (j = 0; j < size / 4; ++j) { i = IS_LE ? 3 - j : j; *wp++ = !rev ? reg->w[i] : byterev_4(reg->w[i]); } break; case 2: /* stxvh8x */ hp = mem; for (j = 0; j < size / 2; ++j) { i = IS_LE ? 7 - j : j; *hp++ = !rev ? reg->h[i] : byterev_2(reg->h[i]); } break; case 1: /* stvxb16x */ bp = mem; for (j = 0; j < size; ++j) { i = IS_LE ? 15 - j : j; *bp++ = reg->b[i]; } break; } } EXPORT_SYMBOL_GPL(emulate_vsx_store); NOKPROBE_SYMBOL(emulate_vsx_store); static nokprobe_inline int do_vsx_load(struct instruction_op *op, unsigned long ea, struct pt_regs *regs, bool cross_endian) { int reg = op->reg; u8 mem[16]; union vsx_reg buf; int size = GETSIZE(op->type); if (!address_ok(regs, ea, size) || copy_mem_in(mem, ea, size, regs)) return -EFAULT; emulate_vsx_load(op, &buf, mem, cross_endian); preempt_disable(); if (reg < 32) { /* FP regs + extensions */ if (regs->msr & MSR_FP) { load_vsrn(reg, &buf); } else { current->thread.fp_state.fpr[reg][0] = buf.d[0]; current->thread.fp_state.fpr[reg][1] = buf.d[1]; } } else { if (regs->msr & MSR_VEC) load_vsrn(reg, &buf); else current->thread.vr_state.vr[reg - 32] = buf.v; } preempt_enable(); return 0; } static nokprobe_inline int do_vsx_store(struct instruction_op *op, unsigned long ea, struct pt_regs *regs, bool cross_endian) { int reg = op->reg; u8 mem[16]; union vsx_reg buf; int size = GETSIZE(op->type); if (!address_ok(regs, ea, size)) return -EFAULT; preempt_disable(); if (reg < 32) { /* FP regs + extensions */ if (regs->msr & MSR_FP) { store_vsrn(reg, &buf); } else { buf.d[0] = current->thread.fp_state.fpr[reg][0]; buf.d[1] = current->thread.fp_state.fpr[reg][1]; } } else { if (regs->msr & MSR_VEC) store_vsrn(reg, &buf); else buf.v = current->thread.vr_state.vr[reg - 32]; } preempt_enable(); emulate_vsx_store(op, &buf, mem, cross_endian); return copy_mem_out(mem, ea, size, regs); } #endif /* CONFIG_VSX */ int emulate_dcbz(unsigned long ea, struct pt_regs *regs) { int err; unsigned long i, size; #ifdef __powerpc64__ size = ppc64_caches.l1d.block_size; if (!(regs->msr & MSR_64BIT)) ea &= 0xffffffffUL; #else size = L1_CACHE_BYTES; #endif ea &= ~(size - 1); if (!address_ok(regs, ea, size)) return -EFAULT; for (i = 0; i < size; i += sizeof(long)) { err = __put_user(0, (unsigned long __user *) (ea + i)); if (err) { regs->dar = ea; return err; } } return 0; } NOKPROBE_SYMBOL(emulate_dcbz); #define __put_user_asmx(x, addr, err, op, cr) \ __asm__ __volatile__( \ "1: " op " %2,0,%3\n" \ " mfcr %1\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: li %0,%4\n" \ " b 2b\n" \ ".previous\n" \ EX_TABLE(1b, 3b) \ : "=r" (err), "=r" (cr) \ : "r" (x), "r" (addr), "i" (-EFAULT), "0" (err)) #define __get_user_asmx(x, addr, err, op) \ __asm__ __volatile__( \ "1: "op" %1,0,%2\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: li %0,%3\n" \ " b 2b\n" \ ".previous\n" \ EX_TABLE(1b, 3b) \ : "=r" (err), "=r" (x) \ : "r" (addr), "i" (-EFAULT), "0" (err)) #define __cacheop_user_asmx(addr, err, op) \ __asm__ __volatile__( \ "1: "op" 0,%1\n" \ "2:\n" \ ".section .fixup,\"ax\"\n" \ "3: li %0,%3\n" \ " b 2b\n" \ ".previous\n" \ EX_TABLE(1b, 3b) \ : "=r" (err) \ : "r" (addr), "i" (-EFAULT), "0" (err)) static nokprobe_inline void set_cr0(const struct pt_regs *regs, struct instruction_op *op) { long val = op->val; op->type |= SETCC; op->ccval = (regs->ccr & 0x0fffffff) | ((regs->xer >> 3) & 0x10000000); #ifdef __powerpc64__ if (!(regs->msr & MSR_64BIT)) val = (int) val; #endif if (val < 0) op->ccval |= 0x80000000; else if (val > 0) op->ccval |= 0x40000000; else op->ccval |= 0x20000000; } static nokprobe_inline void set_ca32(struct instruction_op *op, bool val) { if (cpu_has_feature(CPU_FTR_ARCH_300)) { if (val) op->xerval |= XER_CA32; else op->xerval &= ~XER_CA32; } } static nokprobe_inline void add_with_carry(const struct pt_regs *regs, struct instruction_op *op, int rd, unsigned long val1, unsigned long val2, unsigned long carry_in) { unsigned long val = val1 + val2; if (carry_in) ++val; op->type = COMPUTE + SETREG + SETXER; op->reg = rd; op->val = val; #ifdef __powerpc64__ if (!(regs->msr & MSR_64BIT)) { val = (unsigned int) val; val1 = (unsigned int) val1; } #endif op->xerval = regs->xer; if (val < val1 || (carry_in && val == val1)) op->xerval |= XER_CA; else op->xerval &= ~XER_CA; set_ca32(op, (unsigned int)val < (unsigned int)val1 || (carry_in && (unsigned int)val == (unsigned int)val1)); } static nokprobe_inline void do_cmp_signed(const struct pt_regs *regs, struct instruction_op *op, long v1, long v2, int crfld) { unsigned int crval, shift; op->type = COMPUTE + SETCC; crval = (regs->xer >> 31) & 1; /* get SO bit */ if (v1 < v2) crval |= 8; else if (v1 > v2) crval |= 4; else crval |= 2; shift = (7 - crfld) * 4; op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift); } static nokprobe_inline void do_cmp_unsigned(const struct pt_regs *regs, struct instruction_op *op, unsigned long v1, unsigned long v2, int crfld) { unsigned int crval, shift; op->type = COMPUTE + SETCC; crval = (regs->xer >> 31) & 1; /* get SO bit */ if (v1 < v2) crval |= 8; else if (v1 > v2) crval |= 4; else crval |= 2; shift = (7 - crfld) * 4; op->ccval = (regs->ccr & ~(0xf << shift)) | (crval << shift); } static nokprobe_inline void do_cmpb(const struct pt_regs *regs, struct instruction_op *op, unsigned long v1, unsigned long v2) { unsigned long long out_val, mask; int i; out_val = 0; for (i = 0; i < 8; i++) { mask = 0xffUL << (i * 8); if ((v1 & mask) == (v2 & mask)) out_val |= mask; } op->val = out_val; } /* * The size parameter is used to adjust the equivalent popcnt instruction. * popcntb = 8, popcntw = 32, popcntd = 64 */ static nokprobe_inline void do_popcnt(const struct pt_regs *regs, struct instruction_op *op, unsigned long v1, int size) { unsigned long long out = v1; out -= (out >> 1) & 0x5555555555555555ULL; out = (0x3333333333333333ULL & out) + (0x3333333333333333ULL & (out >> 2)); out = (out + (out >> 4)) & 0x0f0f0f0f0f0f0f0fULL; if (size == 8) { /* popcntb */ op->val = out; return; } out += out >> 8; out += out >> 16; if (size == 32) { /* popcntw */ op->val = out & 0x0000003f0000003fULL; return; } out = (out + (out >> 32)) & 0x7f; op->val = out; /* popcntd */ } #ifdef CONFIG_PPC64 static nokprobe_inline void do_bpermd(const struct pt_regs *regs, struct instruction_op *op, unsigned long v1, unsigned long v2) { unsigned char perm, idx; unsigned int i; perm = 0; for (i = 0; i < 8; i++) { idx = (v1 >> (i * 8)) & 0xff; if (idx < 64) if (v2 & PPC_BIT(idx)) perm |= 1 << i; } op->val = perm; } #endif /* CONFIG_PPC64 */ /* * The size parameter adjusts the equivalent prty instruction. * prtyw = 32, prtyd = 64 */ static nokprobe_inline void do_prty(const struct pt_regs *regs, struct instruction_op *op, unsigned long v, int size) { unsigned long long res = v ^ (v >> 8); res ^= res >> 16; if (size == 32) { /* prtyw */ op->val = res & 0x0000000100000001ULL; return; } res ^= res >> 32; op->val = res & 1; /*prtyd */ } static nokprobe_inline int trap_compare(long v1, long v2) { int ret = 0; if (v1 < v2) ret |= 0x10; else if (v1 > v2) ret |= 0x08; else ret |= 0x04; if ((unsigned long)v1 < (unsigned long)v2) ret |= 0x02; else if ((unsigned long)v1 > (unsigned long)v2) ret |= 0x01; return ret; } /* * Elements of 32-bit rotate and mask instructions. */ #define MASK32(mb, me) ((0xffffffffUL >> (mb)) + \ ((signed long)-0x80000000L >> (me)) + ((me) >= (mb))) #ifdef __powerpc64__ #define MASK64_L(mb) (~0UL >> (mb)) #define MASK64_R(me) ((signed long)-0x8000000000000000L >> (me)) #define MASK64(mb, me) (MASK64_L(mb) + MASK64_R(me) + ((me) >= (mb))) #define DATA32(x) (((x) & 0xffffffffUL) | (((x) & 0xffffffffUL) << 32)) #else #define DATA32(x) (x) #endif #define ROTATE(x, n) ((n) ? (((x) << (n)) | ((x) >> (8 * sizeof(long) - (n)))) : (x)) /* * Decode an instruction, and return information about it in *op * without changing *regs. * Integer arithmetic and logical instructions, branches, and barrier * instructions can be emulated just using the information in *op. * * Return value is 1 if the instruction can be emulated just by * updating *regs with the information in *op, -1 if we need the * GPRs but *regs doesn't contain the full register set, or 0 * otherwise. */ int analyse_instr(struct instruction_op *op, const struct pt_regs *regs, unsigned int instr) { unsigned int opcode, ra, rb, rc, rd, spr, u; unsigned long int imm; unsigned long int val, val2; unsigned int mb, me, sh; long ival; op->type = COMPUTE; opcode = instr >> 26; switch (opcode) { case 16: /* bc */ op->type = BRANCH; imm = (signed short)(instr & 0xfffc); if ((instr & 2) == 0) imm += regs->nip; op->val = truncate_if_32bit(regs->msr, imm); if (instr & 1) op->type |= SETLK; if (branch_taken(instr, regs, op)) op->type |= BRTAKEN; return 1; #ifdef CONFIG_PPC64 case 17: /* sc */ if ((instr & 0xfe2) == 2) op->type = SYSCALL; else op->type = UNKNOWN; return 0; #endif case 18: /* b */ op->type = BRANCH | BRTAKEN; imm = instr & 0x03fffffc; if (imm & 0x02000000) imm -= 0x04000000; if ((instr & 2) == 0) imm += regs->nip; op->val = truncate_if_32bit(regs->msr, imm); if (instr & 1) op->type |= SETLK; return 1; case 19: switch ((instr >> 1) & 0x3ff) { case 0: /* mcrf */ op->type = COMPUTE + SETCC; rd = 7 - ((instr >> 23) & 0x7); ra = 7 - ((instr >> 18) & 0x7); rd *= 4; ra *= 4; val = (regs->ccr >> ra) & 0xf; op->ccval = (regs->ccr & ~(0xfUL << rd)) | (val << rd); return 1; case 16: /* bclr */ case 528: /* bcctr */ op->type = BRANCH; imm = (instr & 0x400)? regs->ctr: regs->link; op->val = truncate_if_32bit(regs->msr, imm); if (instr & 1) op->type |= SETLK; if (branch_taken(instr, regs, op)) op->type |= BRTAKEN; return 1; case 18: /* rfid, scary */ if (regs->msr & MSR_PR) goto priv; op->type = RFI; return 0; case 150: /* isync */ op->type = BARRIER | BARRIER_ISYNC; return 1; case 33: /* crnor */ case 129: /* crandc */ case 193: /* crxor */ case 225: /* crnand */ case 257: /* crand */ case 289: /* creqv */ case 417: /* crorc */ case 449: /* cror */ op->type = COMPUTE + SETCC; ra = (instr >> 16) & 0x1f; rb = (instr >> 11) & 0x1f; rd = (instr >> 21) & 0x1f; ra = (regs->ccr >> (31 - ra)) & 1; rb = (regs->ccr >> (31 - rb)) & 1; val = (instr >> (6 + ra * 2 + rb)) & 1; op->ccval = (regs->ccr & ~(1UL << (31 - rd))) | (val << (31 - rd)); return 1; } break; case 31: switch ((instr >> 1) & 0x3ff) { case 598: /* sync */ op->type = BARRIER + BARRIER_SYNC; #ifdef __powerpc64__ switch ((instr >> 21) & 3) { case 1: /* lwsync */ op->type = BARRIER + BARRIER_LWSYNC; break; case 2: /* ptesync */ op->type = BARRIER + BARRIER_PTESYNC; break; } #endif return 1; case 854: /* eieio */ op->type = BARRIER + BARRIER_EIEIO; return 1; } break; } /* Following cases refer to regs->gpr[], so we need all regs */ if (!FULL_REGS(regs)) return -1; rd = (instr >> 21) & 0x1f; ra = (instr >> 16) & 0x1f; rb = (instr >> 11) & 0x1f; rc = (instr >> 6) & 0x1f; switch (opcode) { #ifdef __powerpc64__ case 2: /* tdi */ if (rd & trap_compare(regs->gpr[ra], (short) instr)) goto trap; return 1; #endif case 3: /* twi */ if (rd & trap_compare((int)regs->gpr[ra], (short) instr)) goto trap; return 1; #ifdef __powerpc64__ case 4: if (!cpu_has_feature(CPU_FTR_ARCH_300)) return -1; switch (instr & 0x3f) { case 48: /* maddhd */ asm volatile(PPC_MADDHD(%0, %1, %2, %3) : "=r" (op->val) : "r" (regs->gpr[ra]), "r" (regs->gpr[rb]), "r" (regs->gpr[rc])); goto compute_done; case 49: /* maddhdu */ asm volatile(PPC_MADDHDU(%0, %1, %2, %3) : "=r" (op->val) : "r" (regs->gpr[ra]), "r" (regs->gpr[rb]), "r" (regs->gpr[rc])); goto compute_done; case 51: /* maddld */ asm volatile(PPC_MADDLD(%0, %1, %2, %3) : "=r" (op->val) : "r" (regs->gpr[ra]), "r" (regs->gpr[rb]), "r" (regs->gpr[rc])); goto compute_done; } /* * There are other instructions from ISA 3.0 with the same * primary opcode which do not have emulation support yet. */ return -1; #endif case 7: /* mulli */ op->val = regs->gpr[ra] * (short) instr; goto compute_done; case 8: /* subfic */ imm = (short) instr; add_with_carry(regs, op, rd, ~regs->gpr[ra], imm, 1); return 1; case 10: /* cmpli */ imm = (unsigned short) instr; val = regs->gpr[ra]; #ifdef __powerpc64__ if ((rd & 1) == 0) val = (unsigned int) val; #endif do_cmp_unsigned(regs, op, val, imm, rd >> 2); return 1; case 11: /* cmpi */ imm = (short) instr; val = regs->gpr[ra]; #ifdef __powerpc64__ if ((rd & 1) == 0) val = (int) val; #endif do_cmp_signed(regs, op, val, imm, rd >> 2); return 1; case 12: /* addic */ imm = (short) instr; add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0); return 1; case 13: /* addic. */ imm = (short) instr; add_with_carry(regs, op, rd, regs->gpr[ra], imm, 0); set_cr0(regs, op); return 1; case 14: /* addi */ imm = (short) instr; if (ra) imm += regs->gpr[ra]; op->val = imm; goto compute_done; case 15: /* addis */ imm = ((short) instr) << 16; if (ra) imm += regs->gpr[ra]; op->val = imm; goto compute_done; case 19: if (((instr >> 1) & 0x1f) == 2) { /* addpcis */ imm = (short) (instr & 0xffc1); /* d0 + d2 fields */ imm |= (instr >> 15) & 0x3e; /* d1 field */ op->val = regs->nip + (imm << 16) + 4; goto compute_done; } op->type = UNKNOWN; return 0; case 20: /* rlwimi */ mb = (instr >> 6) & 0x1f; me = (instr >> 1) & 0x1f; val = DATA32(regs->gpr[rd]); imm = MASK32(mb, me); op->val = (regs->gpr[ra] & ~imm) | (ROTATE(val, rb) & imm); goto logical_done; case 21: /* rlwinm */ mb = (instr >> 6) & 0x1f; me = (instr >> 1) & 0x1f; val = DATA32(regs->gpr[rd]); op->val = ROTATE(val, rb) & MASK32(mb, me); goto logical_done; case 23: /* rlwnm */ mb = (instr >> 6) & 0x1f; me = (instr >> 1) & 0x1f; rb = regs->gpr[rb] & 0x1f; val = DATA32(regs->gpr[rd]); op->val = ROTATE(val, rb) & MASK32(mb, me); goto logical_done; case 24: /* ori */ op->val = regs->gpr[rd] | (unsigned short) instr; goto logical_done_nocc; case 25: /* oris */ imm = (unsigned short) instr; op->val = regs->gpr[rd] | (imm << 16); goto logical_done_nocc; case 26: /* xori */ op->val = regs->gpr[rd] ^ (unsigned short) instr; goto logical_done_nocc; case 27: /* xoris */ imm = (unsigned short) instr; op->val = regs->gpr[rd] ^ (imm << 16); goto logical_done_nocc; case 28: /* andi. */ op->val = regs->gpr[rd] & (unsigned short) instr; set_cr0(regs, op); goto logical_done_nocc; case 29: /* andis. */ imm = (unsigned short) instr; op->val = regs->gpr[rd] & (imm << 16); set_cr0(regs, op); goto logical_done_nocc; #ifdef __powerpc64__ case 30: /* rld* */ mb = ((instr >> 6) & 0x1f) | (instr & 0x20); val = regs->gpr[rd]; if ((instr & 0x10) == 0) { sh = rb | ((instr & 2) << 4); val = ROTATE(val, sh); switch ((instr >> 2) & 3) { case 0: /* rldicl */ val &= MASK64_L(mb); break; case 1: /* rldicr */ val &= MASK64_R(mb); break; case 2: /* rldic */ val &= MASK64(mb, 63 - sh); break; case 3: /* rldimi */ imm = MASK64(mb, 63 - sh); val = (regs->gpr[ra] & ~imm) | (val & imm); } op->val = val; goto logical_done; } else { sh = regs->gpr[rb] & 0x3f; val = ROTATE(val, sh); switch ((instr >> 1) & 7) { case 0: /* rldcl */ op->val = val & MASK64_L(mb); goto logical_done; case 1: /* rldcr */ op->val = val & MASK64_R(mb); goto logical_done; } } #endif op->type = UNKNOWN; /* illegal instruction */ return 0; case 31: /* isel occupies 32 minor opcodes */ if (((instr >> 1) & 0x1f) == 15) { mb = (instr >> 6) & 0x1f; /* bc field */ val = (regs->ccr >> (31 - mb)) & 1; val2 = (ra) ? regs->gpr[ra] : 0; op->val = (val) ? val2 : regs->gpr[rb]; goto compute_done; } switch ((instr >> 1) & 0x3ff) { case 4: /* tw */ if (rd == 0x1f || (rd & trap_compare((int)regs->gpr[ra], (int)regs->gpr[rb]))) goto trap; return 1; #ifdef __powerpc64__ case 68: /* td */ if (rd & trap_compare(regs->gpr[ra], regs->gpr[rb])) goto trap; return 1; #endif case 83: /* mfmsr */ if (regs->msr & MSR_PR) goto priv; op->type = MFMSR; op->reg = rd; return 0; case 146: /* mtmsr */ if (regs->msr & MSR_PR) goto priv; op->type = MTMSR; op->reg = rd; op->val = 0xffffffff & ~(MSR_ME | MSR_LE); return 0; #ifdef CONFIG_PPC64 case 178: /* mtmsrd */ if (regs->msr & MSR_PR) goto priv; op->type = MTMSR; op->reg = rd; /* only MSR_EE and MSR_RI get changed if bit 15 set */ /* mtmsrd doesn't change MSR_HV, MSR_ME or MSR_LE */ imm = (instr & 0x10000)? 0x8002: 0xefffffffffffeffeUL; op->val = imm; return 0; #endif case 19: /* mfcr */ imm = 0xffffffffUL; if ((instr >> 20) & 1) { imm = 0xf0000000UL; for (sh = 0; sh < 8; ++sh) { if (instr & (0x80000 >> sh)) break; imm >>= 4; } } op->val = regs->ccr & imm; goto compute_done; case 144: /* mtcrf */ op->type = COMPUTE + SETCC; imm = 0xf0000000UL; val = regs->gpr[rd]; op->ccval = regs->ccr; for (sh = 0; sh < 8; ++sh) { if (instr & (0x80000 >> sh)) op->ccval = (op->ccval & ~imm) | (val & imm); imm >>= 4; } return 1; case 339: /* mfspr */ spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0); op->type = MFSPR; op->reg = rd; op->spr = spr; if (spr == SPRN_XER || spr == SPRN_LR || spr == SPRN_CTR) return 1; return 0; case 467: /* mtspr */ spr = ((instr >> 16) & 0x1f) | ((instr >> 6) & 0x3e0); op->type = MTSPR; op->val = regs->gpr[rd]; op->spr = spr; if (spr == SPRN_XER || spr == SPRN_LR || spr == SPRN_CTR) return 1; return 0; /* * Compare instructions */ case 0: /* cmp */ val = regs->gpr[ra]; val2 = regs->gpr[rb]; #ifdef __powerpc64__ if ((rd & 1) == 0) { /* word (32-bit) compare */ val = (int) val; val2 = (int) val2; } #endif do_cmp_signed(regs, op, val, val2, rd >> 2); return 1; case 32: /* cmpl */ val = regs->gpr[ra]; val2 = regs->gpr[rb]; #ifdef __powerpc64__ if ((rd & 1) == 0) { /* word (32-bit) compare */ val = (unsigned int) val; val2 = (unsigned int) val2; } #endif do_cmp_unsigned(regs, op, val, val2, rd >> 2); return 1; case 508: /* cmpb */ do_cmpb(regs, op, regs->gpr[rd], regs->gpr[rb]); goto logical_done_nocc; /* * Arithmetic instructions */ case 8: /* subfc */ add_with_carry(regs, op, rd, ~regs->gpr[ra], regs->gpr[rb], 1); goto arith_done; #ifdef __powerpc64__ case 9: /* mulhdu */ asm("mulhdu %0,%1,%2" : "=r" (op->val) : "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); goto arith_done; #endif case 10: /* addc */ add_with_carry(regs, op, rd, regs->gpr[ra], regs->gpr[rb], 0); goto arith_done; case 11: /* mulhwu */ asm("mulhwu %0,%1,%2" : "=r" (op->val) : "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); goto arith_done; case 40: /* subf */ op->val = regs->gpr[rb] - regs->gpr[ra]; goto arith_done; #ifdef __powerpc64__ case 73: /* mulhd */ asm("mulhd %0,%1,%2" : "=r" (op->val) : "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); goto arith_done; #endif case 75: /* mulhw */ asm("mulhw %0,%1,%2" : "=r" (op->val) : "r" (regs->gpr[ra]), "r" (regs->gpr[rb])); goto arith_done; case 104: /* neg */ op->val = -regs->gpr[ra]; goto arith_done; case 136: /* subfe */ add_with_carry(regs, op, rd, ~regs->gpr[ra], regs->gpr[rb], regs->xer & XER_CA); goto arith_done; case 138: /* adde */ add_with_carry(regs, op, rd, regs->gpr[ra], regs->gpr[rb], regs->xer & XER_CA); goto arith_done; case 200: /* subfze */ add_with_carry(regs, op, rd, ~regs->gpr[ra], 0L, regs->xer & XER_CA); goto arith_done; case 202: /* addze */ add_with_carry(regs, op, rd, regs->gpr[ra], 0L, regs->xer & XER_CA); goto arith_done; case 232: /* subfme */ add_with_carry(regs, op, rd, ~regs->gpr[ra], -1L, regs->xer & XER_CA); goto arith_done; #ifdef __powerpc64__ case 233: /* mulld */ op->val = regs->gpr[ra] * regs->gpr[rb]; goto arith_done; #endif case 234: /* addme */ add_with_carry(regs, op, rd, regs->gpr[ra], -1L, regs->xer & XER_CA); goto arith_done; case 235: /* mullw */ op->val = (long)(int) regs->gpr[ra] * (int) regs->gpr[rb]; goto arith_done; #ifdef __powerpc64__ case 265: /* modud */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) return -1; op->val = regs->gpr[ra] % regs->gpr[rb]; goto compute_done; #endif case 266: /* add */ op->val = regs->gpr[ra] + regs->gpr[rb]; goto arith_done; case 267: /* moduw */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) return -1; op->val = (unsigned int) regs->gpr[ra] % (unsigned int) regs->gpr[rb]; goto compute_done; #ifdef __powerpc64__ case 457: /* divdu */ op->val = regs->gpr[ra] / regs->gpr[rb]; goto arith_done; #endif case 459: /* divwu */ op->val = (unsigned int) regs->gpr[ra] / (unsigned int) regs->gpr[rb]; goto arith_done; #ifdef __powerpc64__ case 489: /* divd */ op->val = (long int) regs->gpr[ra] / (long int) regs->gpr[rb]; goto arith_done; #endif case 491: /* divw */ op->val = (int) regs->gpr[ra] / (int) regs->gpr[rb]; goto arith_done; case 755: /* darn */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) return -1; switch (ra & 0x3) { case 0: /* 32-bit conditioned */ asm volatile(PPC_DARN(%0, 0) : "=r" (op->val)); goto compute_done; case 1: /* 64-bit conditioned */ asm volatile(PPC_DARN(%0, 1) : "=r" (op->val)); goto compute_done; case 2: /* 64-bit raw */ asm volatile(PPC_DARN(%0, 2) : "=r" (op->val)); goto compute_done; } return -1; #ifdef __powerpc64__ case 777: /* modsd */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) return -1; op->val = (long int) regs->gpr[ra] % (long int) regs->gpr[rb]; goto compute_done; #endif case 779: /* modsw */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) return -1; op->val = (int) regs->gpr[ra] % (int) regs->gpr[rb]; goto compute_done; /* * Logical instructions */ case 26: /* cntlzw */ val = (unsigned int) regs->gpr[rd]; op->val = ( val ? __builtin_clz(val) : 32 ); goto logical_done; #ifdef __powerpc64__ case 58: /* cntlzd */ val = regs->gpr[rd]; op->val = ( val ? __builtin_clzl(val) : 64 ); goto logical_done; #endif case 28: /* and */ op->val = regs->gpr[rd] & regs->gpr[rb]; goto logical_done; case 60: /* andc */ op->val = regs->gpr[rd] & ~regs->gpr[rb]; goto logical_done; case 122: /* popcntb */ do_popcnt(regs, op, regs->gpr[rd], 8); goto logical_done_nocc; case 124: /* nor */ op->val = ~(regs->gpr[rd] | regs->gpr[rb]); goto logical_done; case 154: /* prtyw */ do_prty(regs, op, regs->gpr[rd], 32); goto logical_done_nocc; case 186: /* prtyd */ do_prty(regs, op, regs->gpr[rd], 64); goto logical_done_nocc; #ifdef CONFIG_PPC64 case 252: /* bpermd */ do_bpermd(regs, op, regs->gpr[rd], regs->gpr[rb]); goto logical_done_nocc; #endif case 284: /* xor */ op->val = ~(regs->gpr[rd] ^ regs->gpr[rb]); goto logical_done; case 316: /* xor */ op->val = regs->gpr[rd] ^ regs->gpr[rb]; goto logical_done; case 378: /* popcntw */ do_popcnt(regs, op, regs->gpr[rd], 32); goto logical_done_nocc; case 412: /* orc */ op->val = regs->gpr[rd] | ~regs->gpr[rb]; goto logical_done; case 444: /* or */ op->val = regs->gpr[rd] | regs->gpr[rb]; goto logical_done; case 476: /* nand */ op->val = ~(regs->gpr[rd] & regs->gpr[rb]); goto logical_done; #ifdef CONFIG_PPC64 case 506: /* popcntd */ do_popcnt(regs, op, regs->gpr[rd], 64); goto logical_done_nocc; #endif case 538: /* cnttzw */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) return -1; val = (unsigned int) regs->gpr[rd]; op->val = (val ? __builtin_ctz(val) : 32); goto logical_done; #ifdef __powerpc64__ case 570: /* cnttzd */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) return -1; val = regs->gpr[rd]; op->val = (val ? __builtin_ctzl(val) : 64); goto logical_done; #endif case 922: /* extsh */ op->val = (signed short) regs->gpr[rd]; goto logical_done; case 954: /* extsb */ op->val = (signed char) regs->gpr[rd]; goto logical_done; #ifdef __powerpc64__ case 986: /* extsw */ op->val = (signed int) regs->gpr[rd]; goto logical_done; #endif /* * Shift instructions */ case 24: /* slw */ sh = regs->gpr[rb] & 0x3f; if (sh < 32) op->val = (regs->gpr[rd] << sh) & 0xffffffffUL; else op->val = 0; goto logical_done; case 536: /* srw */ sh = regs->gpr[rb] & 0x3f; if (sh < 32) op->val = (regs->gpr[rd] & 0xffffffffUL) >> sh; else op->val = 0; goto logical_done; case 792: /* sraw */ op->type = COMPUTE + SETREG + SETXER; sh = regs->gpr[rb] & 0x3f; ival = (signed int) regs->gpr[rd]; op->val = ival >> (sh < 32 ? sh : 31); op->xerval = regs->xer; if (ival < 0 && (sh >= 32 || (ival & ((1ul << sh) - 1)) != 0)) op->xerval |= XER_CA; else op->xerval &= ~XER_CA; set_ca32(op, op->xerval & XER_CA); goto logical_done; case 824: /* srawi */ op->type = COMPUTE + SETREG + SETXER; sh = rb; ival = (signed int) regs->gpr[rd]; op->val = ival >> sh; op->xerval = regs->xer; if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0) op->xerval |= XER_CA; else op->xerval &= ~XER_CA; set_ca32(op, op->xerval & XER_CA); goto logical_done; #ifdef __powerpc64__ case 27: /* sld */ sh = regs->gpr[rb] & 0x7f; if (sh < 64) op->val = regs->gpr[rd] << sh; else op->val = 0; goto logical_done; case 539: /* srd */ sh = regs->gpr[rb] & 0x7f; if (sh < 64) op->val = regs->gpr[rd] >> sh; else op->val = 0; goto logical_done; case 794: /* srad */ op->type = COMPUTE + SETREG + SETXER; sh = regs->gpr[rb] & 0x7f; ival = (signed long int) regs->gpr[rd]; op->val = ival >> (sh < 64 ? sh : 63); op->xerval = regs->xer; if (ival < 0 && (sh >= 64 || (ival & ((1ul << sh) - 1)) != 0)) op->xerval |= XER_CA; else op->xerval &= ~XER_CA; set_ca32(op, op->xerval & XER_CA); goto logical_done; case 826: /* sradi with sh_5 = 0 */ case 827: /* sradi with sh_5 = 1 */ op->type = COMPUTE + SETREG + SETXER; sh = rb | ((instr & 2) << 4); ival = (signed long int) regs->gpr[rd]; op->val = ival >> sh; op->xerval = regs->xer; if (ival < 0 && (ival & ((1ul << sh) - 1)) != 0) op->xerval |= XER_CA; else op->xerval &= ~XER_CA; set_ca32(op, op->xerval & XER_CA); goto logical_done; case 890: /* extswsli with sh_5 = 0 */ case 891: /* extswsli with sh_5 = 1 */ if (!cpu_has_feature(CPU_FTR_ARCH_300)) return -1; op->type = COMPUTE + SETREG; sh = rb | ((instr & 2) << 4); val = (signed int) regs->gpr[rd]; if (sh) op->val = ROTATE(val, sh) & MASK64(0, 63 - sh); else op->val = val; goto logical_done; #endif /* __powerpc64__ */ /* * Cache instructions */ case 54: /* dcbst */ op->type = MKOP(CACHEOP, DCBST, 0); op->ea = xform_ea(instr, regs); return 0; case 86: /* dcbf */ op->type = MKOP(CACHEOP, DCBF, 0); op->ea = xform_ea(instr, regs); return 0; case 246: /* dcbtst */ op->type = MKOP(CACHEOP, DCBTST, 0); op->ea = xform_ea(instr, regs); op->reg = rd; return 0; case 278: /* dcbt */ op->type = MKOP(CACHEOP, DCBTST, 0); op->ea = xform_ea(instr, regs); op->reg = rd; return 0; case 982: /* icbi */ op->type = MKOP(CACHEOP, ICBI, 0); op->ea = xform_ea(instr, regs); return 0; case 1014: /* dcbz */ op->type = MKOP(CACHEOP, DCBZ, 0); op->ea = xform_ea(instr, regs); return 0; } break; } /* * Loads and stores. */ op->type = UNKNOWN; op->update_reg = ra; op->reg = rd; op->val = regs->gpr[rd]; u = (instr >> 20) & UPDATE; op->vsx_flags = 0; switch (opcode) { case 31: u = instr & UPDATE; op->ea = xform_ea(instr, regs); switch ((instr >> 1) & 0x3ff) { case 20: /* lwarx */ op->type = MKOP(LARX, 0, 4); break; case 150: /* stwcx. */ op->type = MKOP(STCX, 0, 4); break; #ifdef __powerpc64__ case 84: /* ldarx */ op->type = MKOP(LARX, 0, 8); break; case 214: /* stdcx. */ op->type = MKOP(STCX, 0, 8); break; case 52: /* lbarx */ op->type = MKOP(LARX, 0, 1); break; case 694: /* stbcx. */ op->type = MKOP(STCX, 0, 1); break; case 116: /* lharx */ op->type = MKOP(LARX, 0, 2); break; case 726: /* sthcx. */ op->type = MKOP(STCX, 0, 2); break; case 276: /* lqarx */ if (!((rd & 1) || rd == ra || rd == rb)) op->type = MKOP(LARX, 0, 16); break; case 182: /* stqcx. */ if (!(rd & 1)) op->type = MKOP(STCX, 0, 16); break; #endif case 23: /* lwzx */ case 55: /* lwzux */ op->type = MKOP(LOAD, u, 4); break; case 87: /* lbzx */ case 119: /* lbzux */ op->type = MKOP(LOAD, u, 1); break; #ifdef CONFIG_ALTIVEC /* * Note: for the load/store vector element instructions, * bits of the EA say which field of the VMX register to use. */ case 7: /* lvebx */ op->type = MKOP(LOAD_VMX, 0, 1); op->element_size = 1; break; case 39: /* lvehx */ op->type = MKOP(LOAD_VMX, 0, 2); op->element_size = 2; break; case 71: /* lvewx */ op->type = MKOP(LOAD_VMX, 0, 4); op->element_size = 4; break; case 103: /* lvx */ case 359: /* lvxl */ op->type = MKOP(LOAD_VMX, 0, 16); op->element_size = 16; break; case 135: /* stvebx */ op->type = MKOP(STORE_VMX, 0, 1); op->element_size = 1; break; case 167: /* stvehx */ op->type = MKOP(STORE_VMX, 0, 2); op->element_size = 2; break; case 199: /* stvewx */ op->type = MKOP(STORE_VMX, 0, 4); op->element_size = 4; break; case 231: /* stvx */ case 487: /* stvxl */ op->type = MKOP(STORE_VMX, 0, 16); break; #endif /* CONFIG_ALTIVEC */ #ifdef __powerpc64__ case 21: /* ldx */ case 53: /* ldux */ op->type = MKOP(LOAD, u, 8); break; case 149: /* stdx */ case 181: /* stdux */ op->type = MKOP(STORE, u, 8); break; #endif case 151: /* stwx */ case 183: /* stwux */ op->type = MKOP(STORE, u, 4); break; case 215: /* stbx */ case 247: /* stbux */ op->type = MKOP(STORE, u, 1); break; case 279: /* lhzx */ case 311: /* lhzux */ op->type = MKOP(LOAD, u, 2); break; #ifdef __powerpc64__ case 341: /* lwax */ case 373: /* lwaux */ op->type = MKOP(LOAD, SIGNEXT | u, 4); break; #endif case 343: /* lhax */ case 375: /* lhaux */ op->type = MKOP(LOAD, SIGNEXT | u, 2); break; case 407: /* sthx */ case 439: /* sthux */ op->type = MKOP(STORE, u, 2); break; #ifdef __powerpc64__ case 532: /* ldbrx */ op->type = MKOP(LOAD, BYTEREV, 8); break; #endif case 533: /* lswx */ op->type = MKOP(LOAD_MULTI, 0, regs->xer & 0x7f); break; case 534: /* lwbrx */ op->type = MKOP(LOAD, BYTEREV, 4); break; case 597: /* lswi */ if (rb == 0) rb = 32; /* # bytes to load */ op->type = MKOP(LOAD_MULTI, 0, rb); op->ea = ra ? regs->gpr[ra] : 0; break; #ifdef CONFIG_PPC_FPU case 535: /* lfsx */ case 567: /* lfsux */ op->type = MKOP(LOAD_FP, u | FPCONV, 4); break; case 599: /* lfdx */ case 631: /* lfdux */ op->type = MKOP(LOAD_FP, u, 8); break; case 663: /* stfsx */ case 695: /* stfsux */ op->type = MKOP(STORE_FP, u | FPCONV, 4); break; case 727: /* stfdx */ case 759: /* stfdux */ op->type = MKOP(STORE_FP, u, 8); break; #ifdef __powerpc64__ case 791: /* lfdpx */ op->type = MKOP(LOAD_FP, 0, 16); break; case 855: /* lfiwax */ op->type = MKOP(LOAD_FP, SIGNEXT, 4); break; case 887: /* lfiwzx */ op->type = MKOP(LOAD_FP, 0, 4); break; case 919: /* stfdpx */ op->type = MKOP(STORE_FP, 0, 16); break; case 983: /* stfiwx */ op->type = MKOP(STORE_FP, 0, 4); break; #endif /* __powerpc64 */ #endif /* CONFIG_PPC_FPU */ #ifdef __powerpc64__ case 660: /* stdbrx */ op->type = MKOP(STORE, BYTEREV, 8); op->val = byterev_8(regs->gpr[rd]); break; #endif case 661: /* stswx */ op->type = MKOP(STORE_MULTI, 0, regs->xer & 0x7f); break; case 662: /* stwbrx */ op->type = MKOP(STORE, BYTEREV, 4); op->val = byterev_4(regs->gpr[rd]); break; case 725: /* stswi */ if (rb == 0) rb = 32; /* # bytes to store */ op->type = MKOP(STORE_MULTI, 0, rb); op->ea = ra ? regs->gpr[ra] : 0; break; case 790: /* lhbrx */ op->type = MKOP(LOAD, BYTEREV, 2); break; case 918: /* sthbrx */ op->type = MKOP(STORE, BYTEREV, 2); op->val = byterev_2(regs->gpr[rd]); break; #ifdef CONFIG_VSX case 12: /* lxsiwzx */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 4); op->element_size = 8; break; case 76: /* lxsiwax */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(LOAD_VSX, SIGNEXT, 4); op->element_size = 8; break; case 140: /* stxsiwx */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(STORE_VSX, 0, 4); op->element_size = 8; break; case 268: /* lxvx */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 16); op->element_size = 16; op->vsx_flags = VSX_CHECK_VEC; break; case 269: /* lxvl */ case 301: { /* lxvll */ int nb; op->reg = rd | ((instr & 1) << 5); op->ea = ra ? regs->gpr[ra] : 0; nb = regs->gpr[rb] & 0xff; if (nb > 16) nb = 16; op->type = MKOP(LOAD_VSX, 0, nb); op->element_size = 16; op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) | VSX_CHECK_VEC; break; } case 332: /* lxvdsx */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 8); op->element_size = 8; op->vsx_flags = VSX_SPLAT; break; case 364: /* lxvwsx */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 4); op->element_size = 4; op->vsx_flags = VSX_SPLAT | VSX_CHECK_VEC; break; case 396: /* stxvx */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(STORE_VSX, 0, 16); op->element_size = 16; op->vsx_flags = VSX_CHECK_VEC; break; case 397: /* stxvl */ case 429: { /* stxvll */ int nb; op->reg = rd | ((instr & 1) << 5); op->ea = ra ? regs->gpr[ra] : 0; nb = regs->gpr[rb] & 0xff; if (nb > 16) nb = 16; op->type = MKOP(STORE_VSX, 0, nb); op->element_size = 16; op->vsx_flags = ((instr & 0x20) ? VSX_LDLEFT : 0) | VSX_CHECK_VEC; break; } case 524: /* lxsspx */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 4); op->element_size = 8; op->vsx_flags = VSX_FPCONV; break; case 588: /* lxsdx */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 8); op->element_size = 8; break; case 652: /* stxsspx */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(STORE_VSX, 0, 4); op->element_size = 8; op->vsx_flags = VSX_FPCONV; break; case 716: /* stxsdx */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(STORE_VSX, 0, 8); op->element_size = 8; break; case 780: /* lxvw4x */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 16); op->element_size = 4; break; case 781: /* lxsibzx */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 1); op->element_size = 8; op->vsx_flags = VSX_CHECK_VEC; break; case 812: /* lxvh8x */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 16); op->element_size = 2; op->vsx_flags = VSX_CHECK_VEC; break; case 813: /* lxsihzx */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 2); op->element_size = 8; op->vsx_flags = VSX_CHECK_VEC; break; case 844: /* lxvd2x */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 16); op->element_size = 8; break; case 876: /* lxvb16x */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(LOAD_VSX, 0, 16); op->element_size = 1; op->vsx_flags = VSX_CHECK_VEC; break; case 908: /* stxvw4x */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(STORE_VSX, 0, 16); op->element_size = 4; break; case 909: /* stxsibx */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(STORE_VSX, 0, 1); op->element_size = 8; op->vsx_flags = VSX_CHECK_VEC; break; case 940: /* stxvh8x */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(STORE_VSX, 0, 16); op->element_size = 2; op->vsx_flags = VSX_CHECK_VEC; break; case 941: /* stxsihx */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(STORE_VSX, 0, 2); op->element_size = 8; op->vsx_flags = VSX_CHECK_VEC; break; case 972: /* stxvd2x */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(STORE_VSX, 0, 16); op->element_size = 8; break; case 1004: /* stxvb16x */ op->reg = rd | ((instr & 1) << 5); op->type = MKOP(STORE_VSX, 0, 16); op->element_size = 1; op->vsx_flags = VSX_CHECK_VEC; break; #endif /* CONFIG_VSX */ } break; case 32: /* lwz */ case 33: /* lwzu */ op->type = MKOP(LOAD, u, 4); op->ea = dform_ea(instr, regs); break; case 34: /* lbz */ case 35: /* lbzu */ op->type = MKOP(LOAD, u, 1); op->ea = dform_ea(instr, regs); break; case 36: /* stw */ case 37: /* stwu */ op->type = MKOP(STORE, u, 4); op->ea = dform_ea(instr, regs); break; case 38: /* stb */ case 39: /* stbu */ op->type = MKOP(STORE, u, 1); op->ea = dform_ea(instr, regs); break; case 40: /* lhz */ case 41: /* lhzu */ op->type = MKOP(LOAD, u, 2); op->ea = dform_ea(instr, regs); break; case 42: /* lha */ case 43: /* lhau */ op->type = MKOP(LOAD, SIGNEXT | u, 2); op->ea = dform_ea(instr, regs); break; case 44: /* sth */ case 45: /* sthu */ op->type = MKOP(STORE, u, 2); op->ea = dform_ea(instr, regs); break; case 46: /* lmw */ if (ra >= rd) break; /* invalid form, ra in range to load */ op->type = MKOP(LOAD_MULTI, 0, 4 * (32 - rd)); op->ea = dform_ea(instr, regs); break; case 47: /* stmw */ op->type = MKOP(STORE_MULTI, 0, 4 * (32 - rd)); op->ea = dform_ea(instr, regs); break; #ifdef CONFIG_PPC_FPU case 48: /* lfs */ case 49: /* lfsu */ op->type = MKOP(LOAD_FP, u | FPCONV, 4); op->ea = dform_ea(instr, regs); break; case 50: /* lfd */ case 51: /* lfdu */ op->type = MKOP(LOAD_FP, u, 8); op->ea = dform_ea(instr, regs); break; case 52: /* stfs */ case 53: /* stfsu */ op->type = MKOP(STORE_FP, u | FPCONV, 4); op->ea = dform_ea(instr, regs); break; case 54: /* stfd */ case 55: /* stfdu */ op->type = MKOP(STORE_FP, u, 8); op->ea = dform_ea(instr, regs); break; #endif #ifdef __powerpc64__ case 56: /* lq */ if (!((rd & 1) || (rd == ra))) op->type = MKOP(LOAD, 0, 16); op->ea = dqform_ea(instr, regs); break; #endif #ifdef CONFIG_VSX case 57: /* lfdp, lxsd, lxssp */ op->ea = dsform_ea(instr, regs); switch (instr & 3) { case 0: /* lfdp */ if (rd & 1) break; /* reg must be even */ op->type = MKOP(LOAD_FP, 0, 16); break; case 2: /* lxsd */ op->reg = rd + 32; op->type = MKOP(LOAD_VSX, 0, 8); op->element_size = 8; op->vsx_flags = VSX_CHECK_VEC; break; case 3: /* lxssp */ op->reg = rd + 32; op->type = MKOP(LOAD_VSX, 0, 4); op->element_size = 8; op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC; break; } break; #endif /* CONFIG_VSX */ #ifdef __powerpc64__ case 58: /* ld[u], lwa */ op->ea = dsform_ea(instr, regs); switch (instr & 3) { case 0: /* ld */ op->type = MKOP(LOAD, 0, 8); break; case 1: /* ldu */ op->type = MKOP(LOAD, UPDATE, 8); break; case 2: /* lwa */ op->type = MKOP(LOAD, SIGNEXT, 4); break; } break; #endif #ifdef CONFIG_VSX case 61: /* stfdp, lxv, stxsd, stxssp, stxv */ switch (instr & 7) { case 0: /* stfdp with LSB of DS field = 0 */ case 4: /* stfdp with LSB of DS field = 1 */ op->ea = dsform_ea(instr, regs); op->type = MKOP(STORE_FP, 0, 16); break; case 1: /* lxv */ op->ea = dqform_ea(instr, regs); if (instr & 8) op->reg = rd + 32; op->type = MKOP(LOAD_VSX, 0, 16); op->element_size = 16; op->vsx_flags = VSX_CHECK_VEC; break; case 2: /* stxsd with LSB of DS field = 0 */ case 6: /* stxsd with LSB of DS field = 1 */ op->ea = dsform_ea(instr, regs); op->reg = rd + 32; op->type = MKOP(STORE_VSX, 0, 8); op->element_size = 8; op->vsx_flags = VSX_CHECK_VEC; break; case 3: /* stxssp with LSB of DS field = 0 */ case 7: /* stxssp with LSB of DS field = 1 */ op->ea = dsform_ea(instr, regs); op->reg = rd + 32; op->type = MKOP(STORE_VSX, 0, 4); op->element_size = 8; op->vsx_flags = VSX_FPCONV | VSX_CHECK_VEC; break; case 5: /* stxv */ op->ea = dqform_ea(instr, regs); if (instr & 8) op->reg = rd + 32; op->type = MKOP(STORE_VSX, 0, 16); op->element_size = 16; op->vsx_flags = VSX_CHECK_VEC; break; } break; #endif /* CONFIG_VSX */ #ifdef __powerpc64__ case 62: /* std[u] */ op->ea = dsform_ea(instr, regs); switch (instr & 3) { case 0: /* std */ op->type = MKOP(STORE, 0, 8); break; case 1: /* stdu */ op->type = MKOP(STORE, UPDATE, 8); break; case 2: /* stq */ if (!(rd & 1)) op->type = MKOP(STORE, 0, 16); break; } break; #endif /* __powerpc64__ */ } #ifdef CONFIG_VSX if ((GETTYPE(op->type) == LOAD_VSX || GETTYPE(op->type) == STORE_VSX) && !cpu_has_feature(CPU_FTR_VSX)) { return -1; } #endif /* CONFIG_VSX */ return 0; logical_done: if (instr & 1) set_cr0(regs, op); logical_done_nocc: op->reg = ra; op->type |= SETREG; return 1; arith_done: if (instr & 1) set_cr0(regs, op); compute_done: op->reg = rd; op->type |= SETREG; return 1; priv: op->type = INTERRUPT | 0x700; op->val = SRR1_PROGPRIV; return 0; trap: op->type = INTERRUPT | 0x700; op->val = SRR1_PROGTRAP; return 0; } EXPORT_SYMBOL_GPL(analyse_instr); NOKPROBE_SYMBOL(analyse_instr); /* * For PPC32 we always use stwu with r1 to change the stack pointer. * So this emulated store may corrupt the exception frame, now we * have to provide the exception frame trampoline, which is pushed * below the kprobed function stack. So we only update gpr[1] but * don't emulate the real store operation. We will do real store * operation safely in exception return code by checking this flag. */ static nokprobe_inline int handle_stack_update(unsigned long ea, struct pt_regs *regs) { #ifdef CONFIG_PPC32 /* * Check if we will touch kernel stack overflow */ if (ea - STACK_INT_FRAME_SIZE <= current->thread.ksp_limit) { printk(KERN_CRIT "Can't kprobe this since kernel stack would overflow.\n"); return -EINVAL; } #endif /* CONFIG_PPC32 */ /* * Check if we already set since that means we'll * lose the previous value. */ WARN_ON(test_thread_flag(TIF_EMULATE_STACK_STORE)); set_thread_flag(TIF_EMULATE_STACK_STORE); return 0; } static nokprobe_inline void do_signext(unsigned long *valp, int size) { switch (size) { case 2: *valp = (signed short) *valp; break; case 4: *valp = (signed int) *valp; break; } } static nokprobe_inline void do_byterev(unsigned long *valp, int size) { switch (size) { case 2: *valp = byterev_2(*valp); break; case 4: *valp = byterev_4(*valp); break; #ifdef __powerpc64__ case 8: *valp = byterev_8(*valp); break; #endif } } /* * Emulate an instruction that can be executed just by updating * fields in *regs. */ void emulate_update_regs(struct pt_regs *regs, struct instruction_op *op) { unsigned long next_pc; next_pc = truncate_if_32bit(regs->msr, regs->nip + 4); switch (GETTYPE(op->type)) { case COMPUTE: if (op->type & SETREG) regs->gpr[op->reg] = op->val; if (op->type & SETCC) regs->ccr = op->ccval; if (op->type & SETXER) regs->xer = op->xerval; break; case BRANCH: if (op->type & SETLK) regs->link = next_pc; if (op->type & BRTAKEN) next_pc = op->val; if (op->type & DECCTR) --regs->ctr; break; case BARRIER: switch (op->type & BARRIER_MASK) { case BARRIER_SYNC: mb(); break; case BARRIER_ISYNC: isync(); break; case BARRIER_EIEIO: eieio(); break; case BARRIER_LWSYNC: asm volatile("lwsync" : : : "memory"); break; case BARRIER_PTESYNC: asm volatile("ptesync" : : : "memory"); break; } break; case MFSPR: switch (op->spr) { case SPRN_XER: regs->gpr[op->reg] = regs->xer & 0xffffffffUL; break; case SPRN_LR: regs->gpr[op->reg] = regs->link; break; case SPRN_CTR: regs->gpr[op->reg] = regs->ctr; break; default: WARN_ON_ONCE(1); } break; case MTSPR: switch (op->spr) { case SPRN_XER: regs->xer = op->val & 0xffffffffUL; break; case SPRN_LR: regs->link = op->val; break; case SPRN_CTR: regs->ctr = op->val; break; default: WARN_ON_ONCE(1); } break; default: WARN_ON_ONCE(1); } regs->nip = next_pc; } NOKPROBE_SYMBOL(emulate_update_regs); /* * Emulate a previously-analysed load or store instruction. * Return values are: * 0 = instruction emulated successfully * -EFAULT = address out of range or access faulted (regs->dar * contains the faulting address) * -EACCES = misaligned access, instruction requires alignment * -EINVAL = unknown operation in *op */ int emulate_loadstore(struct pt_regs *regs, struct instruction_op *op) { int err, size, type; int i, rd, nb; unsigned int cr; unsigned long val; unsigned long ea; bool cross_endian; err = 0; size = GETSIZE(op->type); type = GETTYPE(op->type); cross_endian = (regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE); ea = truncate_if_32bit(regs->msr, op->ea); switch (type) { case LARX: if (ea & (size - 1)) return -EACCES; /* can't handle misaligned */ if (!address_ok(regs, ea, size)) return -EFAULT; err = 0; val = 0; switch (size) { #ifdef __powerpc64__ case 1: __get_user_asmx(val, ea, err, "lbarx"); break; case 2: __get_user_asmx(val, ea, err, "lharx"); break; #endif case 4: __get_user_asmx(val, ea, err, "lwarx"); break; #ifdef __powerpc64__ case 8: __get_user_asmx(val, ea, err, "ldarx"); break; case 16: err = do_lqarx(ea, ®s->gpr[op->reg]); break; #endif default: return -EINVAL; } if (err) { regs->dar = ea; break; } if (size < 16) regs->gpr[op->reg] = val; break; case STCX: if (ea & (size - 1)) return -EACCES; /* can't handle misaligned */ if (!address_ok(regs, ea, size)) return -EFAULT; err = 0; switch (size) { #ifdef __powerpc64__ case 1: __put_user_asmx(op->val, ea, err, "stbcx.", cr); break; case 2: __put_user_asmx(op->val, ea, err, "stbcx.", cr); break; #endif case 4: __put_user_asmx(op->val, ea, err, "stwcx.", cr); break; #ifdef __powerpc64__ case 8: __put_user_asmx(op->val, ea, err, "stdcx.", cr); break; case 16: err = do_stqcx(ea, regs->gpr[op->reg], regs->gpr[op->reg + 1], &cr); break; #endif default: return -EINVAL; } if (!err) regs->ccr = (regs->ccr & 0x0fffffff) | (cr & 0xe0000000) | ((regs->xer >> 3) & 0x10000000); else regs->dar = ea; break; case LOAD: #ifdef __powerpc64__ if (size == 16) { err = emulate_lq(regs, ea, op->reg, cross_endian); break; } #endif err = read_mem(®s->gpr[op->reg], ea, size, regs); if (!err) { if (op->type & SIGNEXT) do_signext(®s->gpr[op->reg], size); if ((op->type & BYTEREV) == (cross_endian ? 0 : BYTEREV)) do_byterev(®s->gpr[op->reg], size); } break; #ifdef CONFIG_PPC_FPU case LOAD_FP: /* * If the instruction is in userspace, we can emulate it even * if the VMX state is not live, because we have the state * stored in the thread_struct. If the instruction is in * the kernel, we must not touch the state in the thread_struct. */ if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP)) return 0; err = do_fp_load(op, ea, regs, cross_endian); break; #endif #ifdef CONFIG_ALTIVEC case LOAD_VMX: if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC)) return 0; err = do_vec_load(op->reg, ea, size, regs, cross_endian); break; #endif #ifdef CONFIG_VSX case LOAD_VSX: { unsigned long msrbit = MSR_VSX; /* * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX * when the target of the instruction is a vector register. */ if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC)) msrbit = MSR_VEC; if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit)) return 0; err = do_vsx_load(op, ea, regs, cross_endian); break; } #endif case LOAD_MULTI: if (!address_ok(regs, ea, size)) return -EFAULT; rd = op->reg; for (i = 0; i < size; i += 4) { unsigned int v32 = 0; nb = size - i; if (nb > 4) nb = 4; err = copy_mem_in((u8 *) &v32, ea, nb, regs); if (err) break; if (unlikely(cross_endian)) v32 = byterev_4(v32); regs->gpr[rd] = v32; ea += 4; /* reg number wraps from 31 to 0 for lsw[ix] */ rd = (rd + 1) & 0x1f; } break; case STORE: #ifdef __powerpc64__ if (size == 16) { err = emulate_stq(regs, ea, op->reg, cross_endian); break; } #endif if ((op->type & UPDATE) && size == sizeof(long) && op->reg == 1 && op->update_reg == 1 && !(regs->msr & MSR_PR) && ea >= regs->gpr[1] - STACK_INT_FRAME_SIZE) { err = handle_stack_update(ea, regs); break; } if (unlikely(cross_endian)) do_byterev(&op->val, size); err = write_mem(op->val, ea, size, regs); break; #ifdef CONFIG_PPC_FPU case STORE_FP: if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_FP)) return 0; err = do_fp_store(op, ea, regs, cross_endian); break; #endif #ifdef CONFIG_ALTIVEC case STORE_VMX: if (!(regs->msr & MSR_PR) && !(regs->msr & MSR_VEC)) return 0; err = do_vec_store(op->reg, ea, size, regs, cross_endian); break; #endif #ifdef CONFIG_VSX case STORE_VSX: { unsigned long msrbit = MSR_VSX; /* * Some VSX instructions check the MSR_VEC bit rather than MSR_VSX * when the target of the instruction is a vector register. */ if (op->reg >= 32 && (op->vsx_flags & VSX_CHECK_VEC)) msrbit = MSR_VEC; if (!(regs->msr & MSR_PR) && !(regs->msr & msrbit)) return 0; err = do_vsx_store(op, ea, regs, cross_endian); break; } #endif case STORE_MULTI: if (!address_ok(regs, ea, size)) return -EFAULT; rd = op->reg; for (i = 0; i < size; i += 4) { unsigned int v32 = regs->gpr[rd]; nb = size - i; if (nb > 4) nb = 4; if (unlikely(cross_endian)) v32 = byterev_4(v32); err = copy_mem_out((u8 *) &v32, ea, nb, regs); if (err) break; ea += 4; /* reg number wraps from 31 to 0 for stsw[ix] */ rd = (rd + 1) & 0x1f; } break; default: return -EINVAL; } if (err) return err; if (op->type & UPDATE) regs->gpr[op->update_reg] = op->ea; return 0; } NOKPROBE_SYMBOL(emulate_loadstore); /* * Emulate instructions that cause a transfer of control, * loads and stores, and a few other instructions. * Returns 1 if the step was emulated, 0 if not, * or -1 if the instruction is one that should not be stepped, * such as an rfid, or a mtmsrd that would clear MSR_RI. */ int emulate_step(struct pt_regs *regs, unsigned int instr) { struct instruction_op op; int r, err, type; unsigned long val; unsigned long ea; r = analyse_instr(&op, regs, instr); if (r < 0) return r; if (r > 0) { emulate_update_regs(regs, &op); return 1; } err = 0; type = GETTYPE(op.type); if (OP_IS_LOAD_STORE(type)) { err = emulate_loadstore(regs, &op); if (err) return 0; goto instr_done; } switch (type) { case CACHEOP: ea = truncate_if_32bit(regs->msr, op.ea); if (!address_ok(regs, ea, 8)) return 0; switch (op.type & CACHEOP_MASK) { case DCBST: __cacheop_user_asmx(ea, err, "dcbst"); break; case DCBF: __cacheop_user_asmx(ea, err, "dcbf"); break; case DCBTST: if (op.reg == 0) prefetchw((void *) ea); break; case DCBT: if (op.reg == 0) prefetch((void *) ea); break; case ICBI: __cacheop_user_asmx(ea, err, "icbi"); break; case DCBZ: err = emulate_dcbz(ea, regs); break; } if (err) { regs->dar = ea; return 0; } goto instr_done; case MFMSR: regs->gpr[op.reg] = regs->msr & MSR_MASK; goto instr_done; case MTMSR: val = regs->gpr[op.reg]; if ((val & MSR_RI) == 0) /* can't step mtmsr[d] that would clear MSR_RI */ return -1; /* here op.val is the mask of bits to change */ regs->msr = (regs->msr & ~op.val) | (val & op.val); goto instr_done; #ifdef CONFIG_PPC64 case SYSCALL: /* sc */ /* * N.B. this uses knowledge about how the syscall * entry code works. If that is changed, this will * need to be changed also. */ if (regs->gpr[0] == 0x1ebe && cpu_has_feature(CPU_FTR_REAL_LE)) { regs->msr ^= MSR_LE; goto instr_done; } regs->gpr[9] = regs->gpr[13]; regs->gpr[10] = MSR_KERNEL; regs->gpr[11] = regs->nip + 4; regs->gpr[12] = regs->msr & MSR_MASK; regs->gpr[13] = (unsigned long) get_paca(); regs->nip = (unsigned long) &system_call_common; regs->msr = MSR_KERNEL; return 1; case RFI: return -1; #endif } return 0; instr_done: regs->nip = truncate_if_32bit(regs->msr, regs->nip + 4); return 1; } NOKPROBE_SYMBOL(emulate_step);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1