Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
535 | 88.43% | 1 | 20.00% | |
56 | 9.26% | 2 | 40.00% | |
12 | 1.98% | 1 | 20.00% | |
2 | 0.33% | 1 | 20.00% | |
Total | 605 | 5 |
Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Scott Wood | 535 | 88.43% | 1 | 20.00% |
Peter Zijlstra | 56 | 9.26% | 2 | 40.00% |
Chris Freehill | 12 | 1.98% | 1 | 20.00% |
Thomas Gleixner | 2 | 0.33% | 1 | 20.00% |
Total | 605 | 5 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Performance counter support for e500 family processors. * * Copyright 2008-2009 Paul Mackerras, IBM Corporation. * Copyright 2010 Freescale Semiconductor, Inc. */ #include <linux/string.h> #include <linux/perf_event.h> #include <asm/reg.h> #include <asm/cputable.h> /* * Map of generic hardware event types to hardware events * Zero if unsupported */ static int e500_generic_events[] = { [PERF_COUNT_HW_CPU_CYCLES] = 1, [PERF_COUNT_HW_INSTRUCTIONS] = 2, [PERF_COUNT_HW_CACHE_MISSES] = 41, /* Data L1 cache reloads */ [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 12, [PERF_COUNT_HW_BRANCH_MISSES] = 15, [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = 18, [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = 19, }; #define C(x) PERF_COUNT_HW_CACHE_##x /* * Table of generalized cache-related events. * 0 means not supported, -1 means nonsensical, other values * are event codes. */ static int e500_cache_events[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = { /* * D-cache misses are not split into read/write/prefetch; * use raw event 41. */ [C(L1D)] = { /* RESULT_ACCESS RESULT_MISS */ [C(OP_READ)] = { 27, 0 }, [C(OP_WRITE)] = { 28, 0 }, [C(OP_PREFETCH)] = { 29, 0 }, }, [C(L1I)] = { /* RESULT_ACCESS RESULT_MISS */ [C(OP_READ)] = { 2, 60 }, [C(OP_WRITE)] = { -1, -1 }, [C(OP_PREFETCH)] = { 0, 0 }, }, /* * Assuming LL means L2, it's not a good match for this model. * It allocates only on L1 castout or explicit prefetch, and * does not have separate read/write events (but it does have * separate instruction/data events). */ [C(LL)] = { /* RESULT_ACCESS RESULT_MISS */ [C(OP_READ)] = { 0, 0 }, [C(OP_WRITE)] = { 0, 0 }, [C(OP_PREFETCH)] = { 0, 0 }, }, /* * There are data/instruction MMU misses, but that's a miss on * the chip's internal level-one TLB which is probably not * what the user wants. Instead, unified level-two TLB misses * are reported here. */ [C(DTLB)] = { /* RESULT_ACCESS RESULT_MISS */ [C(OP_READ)] = { 26, 66 }, [C(OP_WRITE)] = { -1, -1 }, [C(OP_PREFETCH)] = { -1, -1 }, }, [C(BPU)] = { /* RESULT_ACCESS RESULT_MISS */ [C(OP_READ)] = { 12, 15 }, [C(OP_WRITE)] = { -1, -1 }, [C(OP_PREFETCH)] = { -1, -1 }, }, [C(NODE)] = { /* RESULT_ACCESS RESULT_MISS */ [C(OP_READ)] = { -1, -1 }, [C(OP_WRITE)] = { -1, -1 }, [C(OP_PREFETCH)] = { -1, -1 }, }, }; static int num_events = 128; /* Upper half of event id is PMLCb, for threshold events */ static u64 e500_xlate_event(u64 event_id) { u32 event_low = (u32)event_id; u64 ret; if (event_low >= num_events) return 0; ret = FSL_EMB_EVENT_VALID; if (event_low >= 76 && event_low <= 81) { ret |= FSL_EMB_EVENT_RESTRICTED; ret |= event_id & (FSL_EMB_EVENT_THRESHMUL | FSL_EMB_EVENT_THRESH); } else if (event_id & (FSL_EMB_EVENT_THRESHMUL | FSL_EMB_EVENT_THRESH)) { /* Threshold requested on non-threshold event */ return 0; } return ret; } static struct fsl_emb_pmu e500_pmu = { .name = "e500 family", .n_counter = 4, .n_restricted = 2, .xlate_event = e500_xlate_event, .n_generic = ARRAY_SIZE(e500_generic_events), .generic_events = e500_generic_events, .cache_events = &e500_cache_events, }; static int init_e500_pmu(void) { if (!cur_cpu_spec->oprofile_cpu_type) return -ENODEV; if (!strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc/e500mc")) num_events = 256; else if (strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc/e500")) return -ENODEV; return register_fsl_emb_pmu(&e500_pmu); } early_initcall(init_e500_pmu);